34
Biomarker development for immunotherapy using peripheral blood Ryan J. Sullivan, M.D. Massachusetts General Hospital Cancer Center Boston, MA

Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Embed Size (px)

Citation preview

Page 1: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Biomarker development for immunotherapy using peripheral 

blood

Ryan J. Sullivan, M.D.Massachusetts General Hospital Cancer Center

Boston, MA

Page 2: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Disclosures• Advisory Board/Consulting:

• Novartis• Biodesix• Prometheus

• Research Sponsorship:• Biodesix• Exosome Diagnostics• Adaptive Biotechnologies• Merck• Bristol Myers Squibb• Prometheus

Page 3: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Advances in Immunotherapy* *Defined as treatments targeting immune activation 

1980/90s 2011 20152014

High‐dose IL‐2Interferon alfa 2b

Ipilimumab Nivolumab

Pembrolizumab

Ipi + Nivo

TVEC

2010

Sipuleucel‐T

Nivo/PembroPDL1iCAR‐T cellsTCR^ T cellsOther CkPi(TIM3i, LAG3i, etc.)

Page 4: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

1. Who is going to benefit from immunotherapy?

2. Will we able to detect time and mechanism of resistance to immune therapy?

Page 5: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Blood‐based biomarker development:Blood vs Tissue

Advantages of blood analysis• Accessibility / Safety• Serial sampling is much easier• Blood may be reflective of entire disease burden (heterogeneity)

• Amenable to analysis to virtually every platform of testing (flow cytometry, ELISA, Mass spectometry, nucleic acid sequencing, etc.)

• Ready access to normal samples for comparative analysis

Advantages of tissue analysis• Gold standard• Sample is enriched for tumor 

• As opposed to blood which has other shed elements competing with tumor signal

• More amenable to nucleic acid sequencing (WES/ESG, RNA sequencing) 

• The tumor microenvironment is present and evaluable for physical interaction (IHC, IF, etc.)

Page 6: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Blood‐based biomarker development

• Serum / Plasma• Proteins• Exosomes• cfDNA

• Buffy Coat• PBLs• Other immune cells• CTCs• Platelets

• RBCs

Serum / Plasma

“Buffy‐coat”

RBCs

Page 7: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

USING BLOOD BASED ASSAYS TO OPTIMIZE SELECTION STRATEGIES

1. Who is going to benefit from immunotherapy?

Page 8: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

1980 2011 20152013

DTIC

High‐dose IL‐2

Ipilimumab

Vemurafenib (V) Nivolumab

Pembrolizumab

Ipi + Nivo

Dabafenib (D), Trametinib (T)

Binimetinib, Encorafenib

D + T

TVEC

Cobimetinib + V

Optimizing Selection Strategy: Melanoma Model

Page 9: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Optimizing Selection Strategy: Melanoma Model #1

1980 2011 20152013

DTIC

High‐dose IL‐2

Ipilimumab

Vemurafenib (V) Nivolumab

Pembrolizumab

Ipi + Nivo

Dabafenib (D), Trametinib (T)

Binimetinib, Encorafenib

D + T

TVEC

Cobimetinib + V

BRAF

NRAS

NF1

Triple WT

CKIT

Blood or tissuegenotyping

Page 10: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

• Entirely dependent on: • Genotyping (blood or tissue)• Availability of targeted therapies for specific genotypes

• Selection of immunotherapy by default or gestalt

1980 2011 20152013

DTIC

High‐dose IL‐2

Ipilimumab

Vemurafenib (V) Nivolumab

Pembrolizumab

Ipi + Nivo

Dabafenib (D), Trametinib (T)

Binimetinib, Encorafenib

D + T

TVEC

Cobimetinib + V

BRAF

NRAS

NF1

Triple WT

CKIT

Blood or tissuegenotyping

Optimizing Selection Strategy: Melanoma Model #1

Page 11: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Optimizing Selection Strategy: Melanoma Model #2

Blood Assay

Immunotherapy responsive

Immunotherapy non‐responsive

Page 12: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Use of serum profile to predict outcome to anti‐PD1 antibody therapy in melanoma (Biodesix)

Reproducible, high throughput protein expression measurement with deep MALDI

• Measure expression of protein fragments/peptides• Median CV < 10%• 4‐4.5 orders of magnitude dynamic range

….Feature space;

Subspace ensembleMany test candidates

Filter mini-classifiers to design goals

Base classifiers/ complex tests

Train Test

Stratified training/test splits (bags)

Abstraction Level

BaseClassifieri

Design clinically useful tests from spectral and clinical data using methods adapted from deep learning

• Uses hierarchical approach with increasing levels of data abstraction

• Create tests to stratify patients by  outcome (overall survival)• Get reliable performance estimates from development set by 

‘out‐of‐bag’ estimates• Validate tests on independent sample sets

Weber et al. SITC 2015

conventional

Deep MALDI

Page 13: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Use of serum profile to predict outcome to anti‐PD1 antibody therapy in melanoma (Biodesix)

• Development (J. Weber)• Pre‐treatment serum samples from 119 patients with advanced melanoma in clinical trial of nivolumab with or without peptide vaccine (NCT01176461)

• At least one prior therapy• 74% ipilimumab‐refractory• PS 0‐1

• 72 (61%) patients in BDX008 high• 47 (39%) patients in BDX008 low

OS TTP

HR (95% CI) 0.38  (0.19‐0.55) 0.50 (0.29‐0.71)

log‐rank p <0.001 0.001

Median BDX008 low | BDX008 high 61 weeks | Not reached 84 days | 230 days 

Weber et al. SITC 2015

Page 14: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Use of serum profile to predict outcome to anti‐PD1 antibody therapy in melanoma (Biodesix)

• Independent Validation (M. Sznol, H. Kluger, R. Halaban)

• Pre‐treatment serum samples from 30 patients with advanced melanoma treated with anti‐PD1 therapy at Yale

• Observational 

• 20 patients in BDX008 high• 10 patients in BDX008 low OS

HR (95% CI) 0.27 (0.05‐0.52)

log‐rank p 0.002

Median BDX008 low 32 weeks

Median BDX008 high 210 weeks

Weber et al. SITC 2015

Page 15: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Use of serum profile to predict outcome to anti‐PD1 antibody therapy in melanoma (Biodesix)

• BDX008 is a protein signature developed in an unbiased manner using deep learning

• Protein levels are detected using MALDI, offering excellent discrimination of specific proteins 

• “Gene” set enrichment analysis shows the following when comparing BDX008 high vs low

• Acute inflammatory response (p<0.02)• Complement system (p=0.01)• Acute phase reactants (p=0.01)

• Further validation is ongoingWeber et al. SITC 2015

Page 16: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Use of plasma exosome profile to predict outcome to ipilimumab in melanoma (Exosome Diagnostics)

Coticchia et al. Mol Targets Cancer Ther. 2015

Page 17: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Use of plasma exosome profile to predict outcome to ipilimumab in melanoma (Exosome Diagnostics)

Patient groups N

Duration of PFS (mo.) Mean ± SE Notes

Progression Free Survival  (PFS)> 6 months

8 16.38 ±4.374 patients achieved durable response4 patients progressed at 9.75 ± 2.39 months

Early Progressive Disease (PD) 8 2.75 ±0.49

1 patient progressed within 1 month4 patients progressed at 2 months3  Patient progressed between 4‐5 months

Normal Human Plasma 3 NA NA

No depletion + depletion

Coticchia et al. Mol Targets Cancer Ther. 2015

Plasmaw/ all Exosomes

EXO90Depletion

Plasma w/ Exosomes of interest

RT-qPCR

Page 18: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Use of plasma exosome profile to predict outcome to ipilimumab in melanoma (Exosome Diagnostics)

Coticchia et al. Mol Targets Cancer Ther. 2015

• Gene Selection Criteria• Up in >50% of PFS groupAND• Down in >50% of PD group

• 10 of 607 examined genes identified using depletion method

• 0 of 607 identified in total plasma exosomes

P < 0.0001

• Genes:IL11, CNTFR, TNFSF11, IFNA2, IL31RA, BDKRB1, IL17B, IFNB1, BMP8B, CXCR6

Page 19: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

• Utilizes emerging technologies/approaches to assay blood• As opposed to Model #1, selection of immunotherapy is active• Does not help (yet) select amongst specific immunotherapies• Minimizes the potential selection of long‐term survivors of targeted therapy

1980 2011 20152013

DTIC

High‐dose IL‐2

Ipilimumab

Vemurafenib (V) Nivolumab

Pembrolizumab

Ipi + Nivo

Dabafenib (D), Trametinib (T)

Binimetinib, Encorafenib

D + T

TVEC

Cobimetinib + V

Optimizing Selection Strategy: Melanoma Model #2

Blood Assay

Immunotherapy responsive

Immunotherapy non‐responsive

Page 20: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Optimizing Selection Strategy: Melanoma Model #3

Blood Assay

Immunotherapy responsive

Immunotherapy non‐responsiveImmunotherapy non‐responsive

Blood Assay # 1

Blood Assay # 2Blood Assay # 3

Page 21: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Use of serum and tissue arrays to identify responders to high‐dose IL2 in melanoma

Can we identify those patients who may be cured with high‐dose IL2?

• High dose IL‐2 is associated with durable benefit in ~10% of patients treated

• However:• It requires inpatient hospitalization due to severe toxicities

• Frontline therapy potentially takes away an opportunity to receive “better” immunotherapy (anti‐PD1 based treatments)

• Very little data exists about its safety and effectiveness after anti‐PD1 or anti‐CTLA4 antibody therapy

Page 22: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Use of serum and tissue arrays to identify responders to high‐dose IL2 in melanoma

Sabatino et al. J Clin Oncol. 2009

Test set Validation set

Multiplex antibody‐targeted protein array platform• 68 potentially relevant soluble factors were identified (test)• 11 biomarkers associated with therapeutic outcome (validation)• 2 were identified as independent predictors (validation)

Page 23: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Class 1 Class 2

Class 2:Immune/inflammatory genese.g. Annexin A1, IL6R, oncostatin M, MCSF, GMCSF, etc. 

Class 1: MITF and melanocyte antigen expressione.g. MITF, ML‐AIP, GP100, tyrosinase, MelanA

Sullivan  et al. J Clin Oncol; suppl. 2009

Class 1 Class 2 p-value

Total 21 7

Complete response 3 (14%) 2 (29%)

Partial response 5 (24%) 4 (57%)

Total response 8 (38%) 6 (86%) 0.077

Durable (>18 mo) response 3 (14%) 4 (57%) 0.043

Median OS 22.8 Not Reached 0.27

Median PFS 2.5 19.4 0.049

Use of serum and tissue arrays to identify responders to high‐dose IL2 in melanoma

Class 2 (immune subclass)– Better PFS (p = 0.049)– Better durable RR (p = 0.043)– Trend towards improved RR (p = 0.077)– OS similar

Page 24: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Use of serum and tissue arrays to identify responders to high‐dose IL2 in melanoma

High Dose IL2 Select in Melanoma(NCT01288963)• 15 Cytokine Working Group sites• 170 patients enrolled• 31 PR/CR, 12 alive without PD• ~120 with RNA/DNA available for analysis from pretreatment tumor block

• All with pretreatment isolated serum and PBMCs

• RNA sequencing (Primary endpoint)• Serum VEGF/fibronectin (Secondary endpoint)• Genotyping ‐WES (Secondary endpoint)• Immunosequencing tumor and blood (Exploratory)• Biodesix assay (Exploratory)• Exosomal RNA sequencing (Exploratory)

Page 25: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Identify responders to single‐agent vs combination immune checkpoint inhibitors in melanoma

Can we identify those patients who may be be spared toxicity of combined immune checkpoint inhibitor therapy?

Page 26: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Identify responders to single‐agent vs combination immune checkpoint inhibitors in melanoma

Unresectable orMetatastic Melanoma

• Previously untreated

• 945 patients

Treat until progression**

orunacceptable

toxicity

NIVO 3 mg/kg Q2W +IPI‐matched placebo

NIVO 1 mg/kg + IPI 3 mg/kg Q3W for 4 doses then

NIVO 3 mg/kg Q2W

IPI 3 mg/kg Q3W for 4 doses +

NIVO‐matched placebo

Randomize1:1:1

Stratify by:

• PD‐L1 expression*

• BRAF status

• AJCC M stage

N=314

Co-Primary Endpoints: PFS and OSSecondary Endpoints: overall response rate (ORR), predictive value of PD-L1 expression as a predictive biomarker, safety

PFS (Intent‐to‐Treat) NIVO + IPI (N=314)

NIVO(N=316) IPI (N=315)

Median PFS, months (95% CI)

11.5 (8.9–16.7)

6.9 (4.3–9.5)

2.9 (2.8–3.4)

HR (99.5% CI)vs. IPI

0.42 (0.31–0.57)*

0.57(0.43–0.76)* ‐‐

HR (95% CI)vs. NIVO

0.74 (0.60–0.92)** ‐‐ ‐‐

*Stratified log-rank P<0.00001 vs. IPI **Exploratory endpoint

0 6 9 12 15 183 21

NIVONIVO + IPI

IPI

Months

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Proportion alive and progression‐free

Tumor Burden Change From Baseline

NIVO + IPIMedian change: ‐51.9%

NIVOMedian change: ‐34.5%

IPIMedian change: +5.9%

Patients Reporting Event, %NIVO + IPI (N=313) NIVO (N=313) IPI (N=311)

Any Grade

Grade 3–4

Any Grade

Grade 3–4

Any Grade

Grade 3–4

Treatment-related adverse event (AE) 95.5 55.0 82.1 16.3 86.2 27.3

Treatment-related AE leading to discontinuation 36.4 29.4 7.7 5.1 14.8 13.2

Treatment-related death* 0 0.3 0.3

*One reported in the NIVO group (neutropenia) and one in the IPI group (cardiac arrest).

Wolchok et al. ASCO 2015; Larkin et al. NEJM 2015

Page 27: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Identify responders to single‐agent vs combination immune checkpoint inhibitors in melanoma

PFS by PD-L1 Expression Level (5%)

0 3 6 9 12 15 17

Months

1.0

0.8

0.6

0.4

0.2

0.00 3 6 9 12 15 17

Months

NIVO + IPINIVOIPI

NIVO + IPINIVOIPI

PD-L1 ≥5%* PD-L1 <5%*

*Per validated PD-L1 immunohistochemical assay based on PD-L1 staining of tumor cells in a section of at least 100 evaluable tumor cells.

Prop

ortio

n al

ive

and

prog

ress

ion-

free

Prop

ortio

n al

ive

and

prog

ress

ion-

free 1.0

0.8

0.6

0.4

0.2

0.0

mPFS HR

NIVO + IPI 14.0 0.40

NIVO 14.0 0.40

IPI 3.9 --

mPFS HR

NIVO + IPI 11.2 0.42

NIVO 5.3 0.60

IPI 2.8 --

Wolchok et al. ASCO 2015; Larkin et al. NEJM 2015

Page 28: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Identify responders to single‐agent vs combination immune checkpoint inhibitors in melanoma

Challenges of PDL1 testing:• Many assays, many targets of assay

• e.g. Tumor vs Stromal vs Immune cell expression

• Tumor heterogeneity• Inducible

Blood PD1/PDL1 analysis theoretically gets around all these issues

• Flow for PDL1 in PBMCS by Quest (data in SLE)• UCSF/Epic sciences (GU ASCO 2015 abstr#353; 2016 abstr#446):

• FISH used to assess CTC PDL1 expression, no tissue expression• 21 patients tested, OS in 3 “hi” vs 14 “low” much improved• No comparison of outcomes with PD1/PDL1 inhibitors

• UCLA (Di Carlo) 2015 AACR#1582/Triple meeting abstr B98• Vortex HC chip (microfluidics)• Compared to tumor testing, correlated with response to PD1i in NSCLC

Page 29: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

• Utilizes emerging technologies/approaches to assay blood• As opposed to Model #2, helps to select amongst specific immunotherapies

• Still minimizes the potential selection of long‐term survivors of targeted therapy

• Obviously no utility in following serially to detect resistance

1980 2011 20152013

DTIC

High‐dose IL‐2

Ipilimumab

Vemurafenib (V) Nivolumab

Pembrolizumab

Ipi + Nivo

Dabafenib (D), Trametinib (T)

Binimetinib, Encorafenib

D + T

TVEC

Cobimetinib + V

Optimizing Selection Strategy: Melanoma Model #3

Blood Assay # 1

Blood Assay # 2Blood Assay # 3

Page 30: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

USING BLOOD BASED ASSAYS TO MONITOR RESPONSE AND RESISTANCE

1. Who is going to benefit from immunotherapy?

2. Will we able to detect time and mechanism of resistance to immune therapy?

Page 31: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Response and Resistance Monitoring StrategyMGH11276-032

01

20

300

5,000

V60

0E c

p/m

l

BL PR PR PR PR PR PR PR PD PD PD

Tum

or

encorafenib binimetinib ipilimumab

dabrafenib trametinib

0

20

40

V600

E %

0

10k

20k

BR

AF

BN

EW

2W

4

M 2

M 4

M 6

M 8

M10

M12

M14

M16 B 2

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10

FOLD

 CHAN

GE RE

LATIVE

 TO 

PRETRE

ATMEN

T

CYCLE NUMBER

PLX004 BRAFV600E

PLX004RECIST

Panka et al. Mol Cancer Ther. 2014

• Blood BRAF levels are reduced in all patients treated with BRAF inhibitor‐based therapy

• Reduction in blood BRAF level is similar in patients treated with vemurafenib and dabrafenib + trametinib

• In at least a third to a half of patients, blood BRAF value increases in advance of radiographic evidence of PD

• BRAF blood levels can be measured in cfDNAand exoRNA in BRAF mutant, Stage IV melanoma (12/12 patients)

• Levels reduced in 11, and all 10 PRs

• Levels increases in 9 of 10 PRs at time of PD, and 5/10 ahead of imaging PD

Sullivan et al. ASCO. 2015

Page 32: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Response and Resistance Monitoring Strategy

Piotrowska, et al. Cancer Discovery 2015

Longitudinal plasma ctDNA assessments demonstrate the emergence of T790M‐positive and T790‐wild type rociletinib resistance.

Response to Rocile nib

OR

Acquired Resistance to Rocile nib

Pre‐Rocile nib

T790M+

T790WT

Page 33: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Concluding Thoughts• Effective and transformative immunotherapy has been developed for the treatment of many malignancies

• An important and emerging issue is figuring out to whom we should be offering standard immunotherapy

• Blood‐based biomarkers may help with patient selection• Serum protein quantification, exosomal RNA analysis, PDL1 expression (PBMCs)

• Rapid improvements in detection and quantification of oncogenic mutations in blood is changing how we diagnoses and treat patients

• CTCs, cfDNA, exosomal RNA

• As genetic mechanisms of resistance to immunotherapies are described, the application of assays currently used in the targeted therapy setting to immunotherapy will be critical

Page 34: Biomarker development for immunotherapy using peripheral …itoc-conference.eu/files/2016/04/Sullivan_Ryan.pdf · Biomarker development for immunotherapy using peripheral blood Ryan

Acknowledgements

Collaborators (Academic)• MGH

• Keith Flaherty• Don Lawrence• Marc Hammond• Aislyn Schalck• Shauna Blackmon• Zosia Piotrowska• Jeff Engelman• Nir Hacohen• Moshe Sade‐Feldman

• BIDMC• David McDermott• James Mier• David Panka

• DFCI• Steve Hodi• Beth Buchbinder• Anita Giobbie‐Hurder

• GLCCC• Mike Atkins

Funding• Conquer Cancer Foundation• Clinical Investigator Training Program (MIT/Harvard 

Medical School)• Harvard Skin SPORE• K12 program at DFHCC• Melanoma Research Foundation Team Science

Collaborators (Industry)• Biodesix

• Heinrich Roder• Sabita Sankar

• Exosome Diagnostics• Christina Coticcia• Johan Skog• Daniel Enderle• Mikkel Noerholm

Patients and their families for participation in correlative studies