25
Biology Honors 2015 2016 Name ___________________________________________________ Block__________ Date___________________________ Unit 3: Energy and Metabolism Reading: BSCS Text Chapter 2.2 – 2.4, 2.7 – 2.11 Objectives: Upon completion of this unit, you should be able to: Topic 1: Energy in Living Things 1. Discuss why organisms need energy and how they obtain it. (2.2) 2. Describe energy flow through an ecosystem. (2.3) 3. Relate the first and second laws of bioenergetics to their implications for living systems. (2.4) Topic 2: Energy Exchange 4. Explain how every chemical reaction involves either a net absorption or net release of energy. (2.6) 5. Distinguish between synthesis and decomposition reactions in metabolism. (2.7) 6. Explain how chemical reactions affect chemical bonds in reactions. (2.7) 7. Explain why ATP is referred to as “the energy currency” of the cell. (2.7) 8. Summarize the importance of ATP in cellular energy transfer. (2.7) 9. Explain the movement of electrons in oxidation and reduction, and give examples of each Topic 3: Digestion 10. Label all of the parts of the human digestive system (2.10) 11. Describe the four main stages of food processing. Define and compare mechanical digestion vs. chemical digestion (2.10) 12. Explain why human digestion is extracellular (2.9) 13. Describe how proteins, lipids, and carbohydrates are digested (including where the digestion happens for each, and whether the digestion is mechanical or chemical). (2.10) 14. Complete a table with major enzymes (as bolded in the “Key Terms” below): note the organ that manufactures each, and where they work for the digestion of fats, proteins, and carbohydrates. (2.11) 15. Discuss the negative feedback loop that regulates blood glucose concentration. Explain how this is used to maintain homeostasis.

BiologyHonors’ ’ ’ 20150’2016’ Name’ ’’Block ’’Datemsdaley.weebly.com/uploads/8/7/2/0/8720335/packet6_energy2016.pdfenergy (A,) is what drives chemical reactions

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Biology  Honors       2015  -­‐  2016  Name  ___________________________________________________    Block__________    Date___________________________    Unit  3:  Energy  and  Metabolism    Reading:  BSCS  Text  Chapter  2.2  –  2.4,  2.7  –  2.11    Objectives:  Upon  completion  of  this  unit,  you  should  be  able  to:    Topic  1:  Energy  in  Living  Things  

1. Discuss  why  organisms  need  energy  and  how  they  obtain  it.  (2.2)  

2. Describe  energy  flow  through  an  ecosystem.  (2.3)  

3. Relate  the  first  and  second  laws  of  bioenergetics  to  their  implications  for  living  systems.  (2.4)  

 

Topic  2:  Energy  Exchange  

4. Explain  how  every  chemical  reaction  involves  either  a  net  absorption  or  net  release  of  energy.  (2.6)  

5. Distinguish  between  synthesis  and  decomposition  reactions  in  metabolism.  (2.7)  

6. Explain  how  chemical  reactions  affect  chemical  bonds  in  reactions.  (2.7)  

7. Explain  why  ATP  is  referred  to  as  “the  energy  currency”  of  the  cell.  (2.7)  

8. Summarize  the  importance  of  ATP  in  cellular  energy  transfer.  (2.7)  

9. Explain  the  movement  of  electrons  in  oxidation  and  reduction,  and  give  examples  of  each  

 

Topic  3:  Digestion  

10. Label all of the parts of the human digestive system (2.10)

11. Describe the four main stages of food processing. Define and compare mechanical digestion vs. chemical digestion (2.10)

12. Explain why human digestion is extracellular (2.9)

13. Describe how proteins, lipids, and carbohydrates are digested (including where the digestion happens for each, and whether the digestion is mechanical or chemical). (2.10)

14. Complete a table with major enzymes (as bolded in the “Key Terms” below): note the organ that manufactures each, and where they work for the digestion of fats, proteins, and carbohydrates. (2.11)

15. Discuss the negative feedback loop that regulates blood glucose concentration. Explain how this is used to maintain homeostasis.

         

 

2  

Vocabulary  Energy  Heterotroph  Autotroph  Photosynthesis  Cellular  respiration  Decomposer  

First  and  second  laws  of  thermodynamics  

Food  web  Ecosystem  Keystone  species  ATP/ADP  

Metabolism  Endergonic  Exergonic  Reduction  Oxidation

   Ingestion Mechanical digestion Chemical digestion Absorption Elimination Mouth Salivary glands Salivary amylase Small intestine Pancreas Gallbladder Liver Bile

Villi Microvilli Epiglottis Pharynx Esophagus Peristalsis Stomach Gastric juice Pepsin HCl Large Intestine/Colon Maltase, Sucrase, Lactase Lipase

Nuclease��� Trypsin ��� Pancreatic amylase Homeostasis Chyme Negative feedback Gastrin Emulsification Rectum Feces Metabolism

LIGHT LIGHT

Simple Organic

Molecules (e.g. PGA)

+ Pi

ATP

Biosynthesis Anabolism Reduction

Endergonic

Degradatior Catabolism Oxidation Exergonic

 

3  

         

chap te r 2 -8 : Energy Flow in L i v i n g Things The total amount of energy that exists in the universe remains,

constant, but energy can change from one form to another. For example, the chemical energy in gasoline can be released and transformed into heat energy and the energy of motion.

This type of transformation of energy occurs in many of the processes that fake place in living things. In this plate, we will examine the flow of energy through living things and identify the molecule that serves as the main energy source in all life processes.

' sThis plate shows how energy exists in different forms at different times in living things. As you encounter the terms, color the appropriate structures in the dia-

( All of the energy on the Earth comes from the sun (A); the sun's energy (A,) is what drives chemical reactions and the processes of life. This solar energy is trapped in a photosynthesizing organelle of the plant called the chloroplast (B); we discuss this organelle in detail later in the book.

A number of chemical reactions take place in the chloroplast to transform solar energy into chemical energy. Carbon dioxide (C) and water (D) are necessary for the process of photosynthe-sis (E), and the products of photosynthesis include carbohydrates (F), which are represented by a candy bar, and molecular oxy-gen (G). The bonds of the carbohydrates now contain some of the sun's energy; photosynthesis has transformed fhe sun's energy into the chemical energy of the carbohydrate. Oxygen is given off as a waste product of photosynthesis, and it is expelled from the plant cell into the atmosphere.

Having explained how the sun's energy is converted to the chemical energy found in carbohydrates, we \vill jVow, discuss another, transformation of energy Continue your readjhg belofy and focus on the right side of the diagram as we continue to study energy flow in living things

Plants, humans, and many other living things use carbohy-drates as their essential source of energy. Carbohydrates are transported to an organelle called the mitochondrion (H), where they are combined with oxygen molecules in the process of res-piration (I), illustrated by the arrow. During chemical reactions in the mitochondrion,_the energy from carbohydrates is released and used to form the energy-rich molecule adenosine triphos-phate (J). (Adenosine triphosphate is commonly abbreviated as ATP.) Carbon dioxide and water are byproducts of respiration; notice that they are both essential for photosynthesis. To summa-rize, the energy of the sun is first transformed into the energy of carbohydrates and then into the energy in the ATP molecule.

We will conclude with a brief examination of the ATP molecule Recall that the energy ,of the ATP molecule comes from the sun. As you read, color the appro¬

, priate structures in the diagram.

The adenosine triphosphate (ATP) molecule (J) is shown at the bottom of the plate. You should use a light shade to color the inte-rior of the box, and darker colors should be used for the components of ATP. These components include an adenine mole-cule (J,) and a ribose molecule (J2). Adenine is one of the four nitrogenous bases found in DNA and RNA, and ribose is a five-carbon carbohydrate. Attached to the ribose molecule are three phosphate groups (J3).

Living things use energy in the form of ATP, breaking it down into adenosine diphosphate (K) and an inorganic phosphate group. Adenosine diphosphate (ADP) contains adenine (J,) and a ribose molecule (J2), but only two phosphate groups (J3). During this breakdown, seven kilocalories of energy are given off for use by the cell.

In the following plates, we will study the processes by which ATP is created, such as glycolysis, the Krebs cycle, electron trans-port, and chemiosmosis.

The  picture  below  shows  how  energy  exists  in  different  forms  at  different  times  in  living  things.  As  you  encounter  the  terms,  color  the  appropriate  structures  in  the  diagram.    

Having  explained  how  the  sun’s  energy  is  converted  to  chemical  energy  found  in  carbohydrates,  we  will  now  discuss  another  transformation  of  energy.    Continue  your  reading  below  and  focus  on  the  right  side  of  the  diagram  aw  we  continue  to  study  energy  flow  in  living  things.    

We  will  conclude  with  a  brief  examination  of  the  ATP  molecule.  Recall  that  the  energy  of  the  ATP  molecule  comes  from  the  sun.    As  you  read,  color  the  appropriate  structures  in  the  diagram.      

 

4  

   

Energy Flow: m CD ~5

CQ

O

< — i .

=5 CQ

Z3 CQ 00

7Kcal Energy

O Sun -.' A O Sun's Energy Ad

O Ch lo rop las t B O Carbon Dioxide C 0-Water , , D

Energy Flow in L i v ing Things O Photosynthesis E O Carbohydrates F O Oxygen G O Mitochondr ion H O Resp i ra t ion I

O Adenosine Triphosphate J O Adenine J :

O Ribose J2

O Phosphate Groups . .J 3

O Adenosine Diphosphate K

 

5  

                           

   

 

   

The  Assignment:      • Color  and  cut  out  the  animals  from  the  next  page.  Use  them  to  

create  an  aquatic  food  web  using  the  “What  Do  I  Eat?”  chart.      • Create  a  food  web  showing  energy  transfer  through  the  aquatic  

ecosystem.    • This  food  web  does  not  display  any  decomposers…  add  them  in  !  • Answer  the  questions  below  once  your  food  web  is  complete.    

Analysis  Questions:    1. What  would  happen  to  your  food  web  if  phytoplankton  died  out  

because  of  water  pollution?    2. How  would  the  jellyfish  population  be  affected  if  sea  turtles  

were  removed?    3. How  important  are  plankton  in  the  marine  food  web?  Explain  

your  answer  using  evidence  from  your  food  web.  4. Why  do  we  use  arrows  when  creating  a  food  web?  What  do  they  

represent?    

 

 

6  

 

 

AC

C0R

PIN

6 TO

THE

FIRST UW

Of

THGRMOPyNAM

I£$, EN

ERG

Y 15 N

EITH

ER

CREATED? NOR

PE

STR

OY

EP

.

NO

NE

OF

THE

SE P

EV

OU

RIN

6S CAW

CREATE A

My MEW

E

NE

R6Y

: THE

Y JU

ST PA

S5 A

LON

6 ENER

GY

THA

T C

AM

E FR

OM

SOM

EWH

ERE

ELSE- ANP W

HE

RE

15 THA

T? IF YO

U TR

AC

E BACK

THE LIN

KS

OF

ANY FO

OP

CH

AIN

FAR E

NO

UG

H, Y

OU

'LL CO

ME

TO

A

PLAMT,

WH

ICH

60

T

ITS EN

ERG

Y S

TRA

IGH

T FRO

M THE

$UM.

ALL LIFE

PE

PE

NP

S ULTIM

ATE

LY ON

THE S

UN

."

UN

TIL H

UM

AN

ITY C

AM

E

ALO

N6, TH

ER

E W

ER

E O

NLY

T

WO

WA

YS FOR

LIVIN

G

BE

IN6S

TO

6-ET ENERG

Y--S

IT IN A W

AR

M PLA

CE,

OR EA

T SO

ME

THIN

G!

OF TH

E TOTA

L S

UN

LI&H

T FA

LLIN6 O

N EA

RTH

, 3£>%

IS R

EFLE

CTE

D N

EA

RLY

15 CO

NV

ER

TEP T

O

HEA

T, AM

P A

LMO

ST

ALL TH

E R

ES

T P

OW

ER

* THE

WA

TER C

YC

LE

-EVA

POR

ATIO

N, RAIN. W

lNP

, ETC.

LESS THAN

1% IS

USEP

BY LIV

IN6

PLA

NTS

.

MO

VE

S W

»-7ER

ARO

OIJ^

BU

T T

HA

T T

IN/

FR

AC

TIO

N O

F 50L

AR

EN

ER

&y P

RO

-V

IPE

S A

LL

OF

LIF

E'S

FO

OP

NE

EP

S,

TH

RO

U6

H

TH

E P

RO

CE

SS

OF

PHO

TOSYN

THESIS C

ON

VERTS

SOLAR

ENERGY

INTO

STO

RED CHSM

iCAL ENER6Y-

IN TH

E CELLS O

F &R

EEN PLA

NTS, C

AR

BO

N PIOXIPE

FROM

TH

E AIR. WA

TER FRO

M

THE

EAR

TH, A

NP

LI6HT FRO

M

THE

SUN

REA

CT T

O

PRO

PUC

E SU&AR,

A CO

MPLEX O

R6A

NIC

C

OM

POU

NP TH

AT S

TOR

ES

CH

EMIC

AL EN

ERfry

FOR LA

TER USE. O

XYfrEN 15 R

ELEASEP A

S A B

Y-PRO

PUC

T.

HV 0

TH

IS S

TO

RE

P CH

EMIC

AL

ENER

&Y

PRIVES A

LL TH

E B

IO&

EO

CH

EM

ICA

L C

yCLES O

F THE

EAR

TH.

EWEPT: AT

UHPERSEA VO

UAHIC VENTS,

SULFU

R-L0VIN

6 BACTERIA CAN CO

NVER

T THE

EARTH'S HEAT

INTO

CHEMICAL ENERfi-y. A

PROCESS CALLEP CHEM

OSYNTHESIS.

THE

SE

BACTERIA SUPPO

RT A CO

MM

UNITY OF W

ORM

S, CRABS, ANP CLAM

S IN THE TO

TAL

PARKNESS-

VOLCANIC HEAT CO

MES FRO

M TH

E ENERGY O

F RAPIO

A£TIVE DECAY

OF ELEM

ENTS IN

THE

EARTH.

69

 

7  

   

THAT ENERGY

CONVERSIO

NS ARE NEVER

1CV% EFFICIENT:

WHEN-

EVER ENERGY /S TRANS-FO

RMEP IN

TO W

ORK,

SOM

E I? ALW

AYS PI5SIPATEP,

OR W

ASTEP, AS HEAT.

HEAT

US

£F

DL

FOR EXAMPLE, W

HEN A CAR CONVERTS THE CHEM

ICAL ENERGY OF G

ASOLINE

INTO M

OTIO

N, M

OST O

F THE ENERGY TURNS TO HEAT: THE ENGINE AMP

EX-HAUST GASES G

ET HOT, FRICTIO

N HEATS THE WHEEL BEARINGS, ETC... O

NLY ABOUT 19%

O

F THE ORIG

INAL CHEMICAL ENERGY ACTUALLY M

OVES THE CAR.'

• o

ANP OTH

ER

WA

lTet> ENERGf

OR FOO

P CHAIN EFFICIENCY. 15 THE PERCENTAGE O

F USABLE ENERGY CAPTUREP AT EACH LEVEL O

F CON-SUM

PTION. FOR EXAMPLE,

PLANTS RANGE IN EFFICIENCY BETW

EEN 1%

AM

P 3%

PEPENPING ON THE PLANT:

ONLY 1-3%

O

F THE SOLAR ENERGY ABSORBEP BY THE PLANT 15 ACTUALLY CONVERTEP TO BIO

MAS5.

BETTER TKAtJ N

OTH

ING

, BUT W

HA

TJ

A TYPICA

L HERBIVORE USES SO

ME

10%

OF TH

E TOTA

L PLANT

ENER&Y C

ON

SUM

E?, WITH TH

E REST LOST

TO HEAT O

R RESPIR

ATIO

N.

r A CARNIVORE'S EFFIC

IENC

Y IS ALSO

ABOUT

10%,

MEA

NIN

6 THE

CARNIVORE

6CTS O

NLY 1/1C O

F O

F TH

E O

RI6IN

AL PLA

NT

ENER6Y.

AW

1 W

&> 10 TIM

ES A

S W

^C«

THE TOTAL EFFICIENCY AT ANY LEVEL

OF CO

NSUMPTIO

N 15 THE

PROPUCT O

F THE EFFICIENCIES OF ALL THE

CO

NVEN

OR

S UP TO THAT LEVEL. IN THIS CASE (TA

KING

THE PLANT EFFICIENCY AS 1%

), THE CARNIVORE'S

TOTAL EFFICIENCY 15

0.02*0.1 * 0.1=0.0002. THE CARNIVORE USES O

NLY 0.02%

OF

THE SOLAR ENERGY THAT WENT INTO

THE GRAS5 THAT W

ENT INTO THE

COW

THAT WENT INTO

THE CARNIVORE!

71

 

8  

 

 ATP— The Free Energy Carrier 1

ATP—The Free Energy CarrierHow does the ATP molecule capture, store, and release energy?

Why?A sporting goods store might accept a $100 bill for the purchase of a bicycle, but the corner store will not take a $100 bill when you buy a package of gum. That is why people often carry smaller denominations in their wallet—it makes everyday transactions easier. The same concept is true for the energy transactions in cells. Cells need energy (their “currency”) to take care of everyday functions, and they need it in many denominations. As humans we eat food for energy, but food molecules provide too much energy for our cells to use all at once. For quick cellular transactions, your cells store energy in the small molecule of ATP. This is analogous to a $1 bill for your cells’ daily activities.

Model 1 – Adenosine Triphosphate (ATP)

N

NN

N OCH2 O P O–

O–

O

NH2

OH OH

O P

O–

O

O P

O–

O

1. The diagram of ATP in Model 1 has three parts. Use your knowledge of biomolecules to label the molecule with an “adenine” section, a “ribose sugar” section, and a “phosphate groups” section.

2. Refer to Model 1.

a. What is meant by the “tri-” in the name adenosine triphosphate?

b. Discuss with your group what the structure of adenosine diphosphate (ADP) might look like. Draw or describe your conclusions.

 

9  

         

2 POGIL™ Activities for AP* Biology

Model 2 – Hydrolysis of ATP

N

NN

N OCH2 O P O P O P O–

O O O

NH2

OH OH

H2O

N

NN

N OCH2 O P O P OH

O O

NH2

OH OH

+ HO P O–

O–O–O–O–O–O–

O

3. Model 2 illustrates a chemical reaction. Write the reaction as an equation, using the name or abbreviation of each of the two reactants and each of the three products.

4. Consider the structural formulas of ATP, ADP, and phosphate in Model 2 carefully. What happens to the atoms from the water molecule during the hydrolysis of ATP?

5. The word hydrolysis has two roots, hydro and lysis. Describe how this term relates to the chemi-cal reaction illustrated in Model 2.

6. Refer to Model 2.

a. Does the hydrolysis of ATP result in a net output, or a net input of energy?

b. Which molecule, ATP or ADP, has a higher potential energy? Explain your reasoning.

Energy

InorganicPhosphate

(Pi)

 

10  

   

ATP— The Free Energy Carrier 3

7. Consider Model 2.

a. Is the process endothermic or exothermic?

b. Recall that all bonds require energy to break, but energy is released when bonds are formed. With this in mind, explain why it is incorrect to say that the phosphoester bond in ATP releases a large amount of energy when ATP turns into ADP.

Read This!The conversion of ATP to ADP is not only exothermic, but there is also an increase in entropy of the system. Therefore, the hydrolysis of ATP is exergonic, and provides free energy for many processes needed to sustain life.

8. The reaction in Model 2 is reversible.

a. Write a reaction for the process that is the reverse of Model 1.

b. This reaction is called phosphorylation. Explain why this name is appropriate for the reac-tion above.

c. Would you expect this reaction to be endergonic or exergonic? Explain your reasoning.

 

11  

   4 POGIL™ Activities for AP* Biology

Model 3 – The ATP Cycle

ATP+ water

ADP+ phosphate

Energy Energy Respirationor photosynthesis

Cellular processes such as muscle contraction,

protein synthesis,cell division, etc.

9. Label the two large arrows in Model 3 with “hydrolysis” and “phosphorylation.” 9. Label the two large arrows in Model 3 with “hydrolysis” and “phosphorylation.” 9. Label the two large arrows in Model 3 with “hydrolysis” and “phosphorylation.”

10. When ATP is hydrolyzed, free energy is available.

a. According to Model 3, what does that energy get used for?

b. Name at least two other cellular processes that could be fueled by the hydrolysis of ATP that are not listed in Model 3.

11. After it is used, an ADP molecule is recycled back into ATP. What cellular, exergonic processes supply the energy needed for the phosphorylation of ADP?

12. In the Why? box at the start of this activity, an analogy was made between money and cellular energy.

a. What part(s) of the ATP cycle are analogous to earning money?

b What part(s) of the ATP cycle are analogous to spending money?

c. What would be analogous to saving money in the context of ATP?

 

12  

     ATP— The Free Energy Carrier 5

Extension Questions13. Describe or draw a diagram of adenosine monophosphate (AMP).

14. If ADP were to be hydrolyzed in a similar manner to ATP, would you expect the reaction to be endergonic or exergonic? Explain your answer.

Read This!It is estimated that more than 2 × 1026 molecules of ATP are hydrolyzed in the human body daily. If each molecule was used only once you would need approximately 160 kg (350 lbs) of ATP daily. The repeated use of ATP molecules through the ATP cycle saves the body a huge amount of resources and energy.

ATP is synthesized in two ways:

Substrate-level phosphorylation—Energy released during a reaction, such as the breakdown of sugar molecules, is used directly to synthesize ATP. A small amount of energy is generated through this process.

Electron transfer (oxidative phosphorylation)—Energy from the movement of electrons from one molecule to another, via electron carriers, is used to synthesize ATP. Most cellular ATP is synthesized by electron transfer in the mitochondria.

15. Dinitrophenol (DNP) is an “uncoupler,” which means it interferes with the flow of electrons during electron transfer. Fifty years ago, DNP was given as a drug to help patients lose weight.

a. Why would taking DNP make someone lose weight?

b. Why would taking DNP be dangerous?

 

13  

The  Digestive  System    Use  the  E.  O.  Wilson  iBook  “Life  On  Earth,  Volume  4”  to  fill  in  the  table  below.  Location  in  Body  

Part  of  digest  tract?  (Y/N)  

 What  happens  here?  Be  specific!  

 

Mech.  digestion?  Chem.  digestion?  Both/neither?  

 Mouth    

     

 Pharynx  and  Esophagus    

     

Stomach        

Small  Intestine  

     

Pancreas        

Liver        

Gall  Bladder  

     

Large  Intestine  

     

 1. Compare  and  contrast  emulsification  and  hydrolysis  (digestion).    Which  substances  are  

emulsified  by  your  digestive  system?  How  does  this  help  your  body  obtain  nutrients?            

2. Describe  the  action  and  function  of  the  epiglottis.        

3. How  do  villi,  microvilli,  and  transporters  speed  up  absorption  of  nutrients  in  the  small  intestine?  

     

 

14  

Objective  15:  Negative  Feedback  and  Homeostasis  of  Blood  Glucose    Observe  the  line  graphs  and  explain  the  role  of  insulin  and  glucagon  in  regulating  blood  glucose.                                                                        1.  The  role  of  insulin  is  _______________________________________________________________________________________      2.  The  role  of  glucagon  is  ___________________________________________________________________________________      3.  The  line  graph  is  an  example  of  ___________________________________________________________________________      4.  Both  glucagon  and  insulin  are  hormones  that  work  together  to  _____________________________________      ________________________________________________________________________________________________________________

 

15  

Fill  in  the  blanks  of  the  following  paragraph.  Use  the  words  on  the  list.  The  same  word  can  be  use  more  than  once.    Glucose,  glucagon,  fat,  increase,  skeletal  muscles,  decrease,  insulin,  liver,      For those who ate breakfast or lunch today, blood glucose levels _____________after eating.

The pancreas releases ______________.

Insulin stimulates cells throughout the body to take ________ out of the bloodstream.

Glucose taken out of the circulation is stored in __________ and ____________________, or

converted to _______.

Within one or two hours after eating, the

level of blood glucose ______________

Then, pancreas releases

______________.

Glucagon stimulates the cells of the

_________ and skeletal muscles to

break down complex sugar and increase

____________ levels in the blood.

Glucagon also causes fat cells to break

down fats so that they can be used for

the production of ________________.  

   

 

16  

Blood Glucose Level Graph    The  results  of  blood  tests  for  two  individuals  are  shown  in  the  data  table  below.  The  blood  

glucose  level  before  breakfast  is  normally  80–90  mg/100  mL  of  blood.  A  blood  glucose  

level  above  110  mg/100  mL  of  blood  indicates  a  failure  in  a  feedback  mechanism.  

Injection  of  chemical  X,  a  chemical  normally  produced  in  the  body,  may  be  required  to  

correct  this  problem.    

   Using  the  information  in  the  data  table,  construct  a  line  graph  on  the  grid  on  the  next  page,  following  the  directions  below.    

o Label  the  horizontal  axis  as  “TIME”  

o Mark  a  scale  on  the  horizontal  axis.  

o Label  the  vertical  axis  as  “BLOOD  GLUCOSE  mg/100mL”  

o Mark  a  scale  on  the  vertical  axis.  

o Plot  the  data  of  individual  #  1.  Surround  each  data  point  with  a  small  circle  and  

connect  the  points.    

o Plot  the  data  of  individual  #  2.  Surround  each  data  point  with  a  small  triangle  and  

connect  the  points.  

 

 

17  

     

 

 

 

 

 

 

 

 

 

 

 

 

1. State  a  title  for  the  graph:    

 

2. Identify  chemical  X.    ______________________________________________________________  

 

3. Which  individuals  will  most  likely  need  injections  of  chemical  X?  Explain  your  answer.  

 

 

4. State  one  reason  for  the  change  in  blood  glucose  level  between  7:00  a.m.  and  8:00  a.m.    

 

 

5. What  term  refers  to  the  relatively  constant  level  of  blood  glucose  of  individual  1  between  

9:00  a.m.  and  11:00  a.m.?    

   

 

18  

Energy  Practice  problems    Energy  Transfer  in  an  Ecosystem    Part  A  –  Answer  the  questions  using  the  diagram  to  the  right.    1.    How  many  food  chains  make  up  the  food  web?    2.    Which  organism  is  an  herbivore?  3.    Which  organism  is  an  autotroph?  4.    Which  organism  is  an  omnivore?  5.    Which  organism  is  a  tertiary  consumer?    6.    Finish  the  web:  Draw  in  arrows  showing  how  the  organisms  on  the  diagram  relate  to  the  decomposer.    Summarize  your  answer.    

       Part  B  –  Use  the  food  web  below  to  fill  in  the  table.    List  all  organisms  as  autotrophs  or  heterotrophs  in  the  first  two  columns.  In  the  third  columns,  state  whether  each  heterotroph  is  a  primary,  secondary,  or  tertiary  consumer.  (Note:  If  an  organism  fits  into  more  than  one  category,  list  only  the  highest  order.          

 

19  

Energy Exchange

1. The diagram below shows the structure of ATP.

a. Label the high-energy bonds.

b. Circle the portion of the molecule that makes up ADP.

c. ATP is a derivative of which type of monomer? ______________________

2. How does ATP enable the cell to store and transfer energy?

3. In which cellular organelle is ATP produced? _____________________ a. What is the name of the process by which ATP is produced? __________________

 Human  Digestion    1.    In  the  blanks  that  precede  each  description,  write  in  the  appropriate  place  in  the  human  digestive  system.  You  should  also  be  able  to  identify  each  of  these  organs  on  a  diagram.    _____________________  stores  bile.  _____________________  is  where  the  final  steps  of  digestion  and  absorption  of  small  molecules  occurs.    _____________________  is  where  chemical  digestion  begins.  _____________________  is  where  absorption  of  water  occurs.  _____________________  produces  bile.    _____________________  is  where  chemical  digestion  of  proteins  begins.  _____________________  is  very  acidic.  _____________________  produces  negatively-­‐charged  ions  to  neutralize  H+  ions  in  chime.    _____________________  and  _____________________  both  produce  enzymes  that  are  used  in  the  small  intestine.  _____________________  is  where  mechanical  digestion  begins.    _____________________  is  where  peristalsis  begins.  _____________________  is  the  tube  that  connects  the  mouth  and  the  stomach.    _____________________  is  the  flap  of  cartilage  and  connective  tissue  that  keeps  food  out  of  the  trachea.      2.    Bacterial  infections  causing  severe  diarrhea  and  subsequent  dehydration  are  the  reason  for  many,  many  infant  and  young  child  deaths  in  developing  countries.       a.    Why  do  you  think  these  infections  are  so  common  in  these  countries?       b.    What  digestive  organ  do  you  hypothesize  these  bacteria  are  attacking?  Why?      

 

20  

Blank        

 

21  

Cut-­‐out  pages:  Paste  these  pictures  into  your  notebook  along  with  your  homework  objectives.    Objective  1:    

   

Objective  2:        

   

 

22  

Blank        

 

23  

Objective  7:        

                             

 

Objective  8:          

                     

     

   

       

         

 

24  

Blank                      

 

25  

Objective  10:                                                  Objective  14:      

Biology H 2015-2016 CUT OUT PAGES: These images will help you with your objectives in your notebook. Objective 19: !!!!!!!!!!!!!!!!!!!!!!!!!!!!Objective 26:

!15

Biology H 2015-2016 Objective 23:

!!

!17

Macromolecule Mouth Stomach Small Intestine

Carbohydrates

-Teeth mechanically digest carbohydrate molecules !-Salivary amylase chemically digests starch molecules into maltose molecules

Proteins

Lipids

Nucleic Acids