Biology I D N A DNADNA contains genes, sequences of nucleotide bases GenesThese Genes code for polypeptides (proteins) ProteinsProteins are used to build.

  • Published on
    16-Jan-2016

  • View
    212

  • Download
    0

Transcript

  • Biology I

  • D N ADNA contains genes, sequences of nucleotide basesThese Genes code for polypeptides (proteins)Proteins are used to build cells and do much of the work inside cells

  • DNA Begins the ProcessDNA is found inside the nucleusProteins, however, are made in the cytosol of cells by organelles called ribosomesRibosomes may be free in the cytosol or attached to the surface of rough ER

  • Starting with DNADNA s code must be copied and taken to the cytosolIn the cytosol, this code must be read so amino acids can be assembled to make polypeptides (proteins)This process is called PROTEIN SYNTHESIS

  • RNA~ Ribonucleic acidRNA like DNA consists of nitrogen bases, sugar-phosphate polymers, but there are also some differences.There are 4 main differences b/t RNA & DNA:The sugar in RNA is ribose, DNA has deoxyriboseRNA is single stranded, DNA is double strandedRNA contains the base uracil, DNA has thymineRNA is smaller in size compared to DNA

  • Comparison of Structures DNA & RNA

  • Structure of RNA

  • Since the base Thymine is being replaced by the base Uracil lets answer the following:For the following DNA sequence add the complementary RNA nucleotides: T T A G G C T G G A T G C T A A C

    The complementary RNA sequence would be: A A U C C G A C C U A C G A U U G

  • Question:What would be the complementary RNA strand for the following DNA sequence?

    DNA 5-GCGTATG-3

  • Answer:DNA 5-GCGTATG-3RNA 3-CGCAUAC-5

  • Another difference between DNA & RNA is in the function. DNA has only one function~ STORING GENETIC INFORMATION in its bases. But there are 3 main types of ribonucleic acid; each has a specific job to doRibosomal RNA (rRNA) ~ exists outside the nucleus in the cytoplasm of cells in structures called ribosomes. Ribosomes are small, granular structures where protein synthesis takes place. Messenger RNA (mRNA) ~ records" information from DNA in the cells nucleus and carry it to the ribosomes. They serve as messengers to the cell.Transfer RNA (tRNA)~ the function of transfer RNA is to deliver amino acids one by one to protein chains growing at ribosomes.

  • Messenger RNARibosomal RNATransfer RNA

  • The following diagram is an example for gene expression how the information in DNA is translated into organisms traits

    RNA molecules are copied by copying part of the nucleotide sequence of DNA into a complementary sequence in RNA

    This process by which DNA is copied to RNA is called Transcription, it requires the enzyme RNA polymerase & occurs in the nucleus of cells

  • Step 1~ Transcription begins when RNA polymerase binds to the promoter site (a specific sequence of DNA that acts as a START signal)

    Step 2~ RNA polymerase unwinds & separates thetwo strands of DNA

    Step 3~ RNA polymerase adds & links complementary RNA nucleotides

    Transcription continues until RNA polymerase reaches the STOP signal on DNA

  • mRNA TranscriptmRNA leaves the nucleus through its pores and goes to the ribosomes

  • Proteins are made by the joining of amino acids into long polypeptide chains, which contain any combination of the 20 AA.The language of mRNA is called the genetic code.A sequence of 3 nucleotides in mRNA codes for each AA, are called codons.Codons consists of 3 bases that specify an AA, therefore the genetic code is read 3 letters at a time.

  • Lets practice below:Using the following DNA sequence: ATCGTAACCGTTCTG

    Transcribe the DNA sequence into an mRNA sequence: UAGCAUUGGCAAGAC

    Now break the mRNA sequence down where it can be read: UAG CAU UGG CAA GAC

    Now identify the Amino Acids:Stop Hist Tryp Glut Asp

  • Use the code by reading from the center to the outside

    Example: AUG codes for Methionine

  • Messenger RNA (mRNA)

  • Transcription

  • Proteins are made by joining amino acids into long chains called polypeptides. The production of these proteins is called protein synthesis. Each polypeptide contains any of ____ Amino AcidsThe language of mRNA instructions is called the _____Codons contain___ nucleotides that specify a single AASome AA are represented by more than one codonEX: __ codons specify AA Leucine, what are they?One codon AUG can represent Methionine or START codon for protein synthesis. Stop codons are like periods at the end of sentence!!

    Name the codons for the following AA:TyrosineAlanineGlutamine

    Name the AA for the following codons:AAACUGUAG

  • THE MAKING OF PROTEINS

  • TRANSLATIONThe decoding of an mRNA message into a polypeptide chain (protein) is called translation, which takes place on ribosomesAmino Acids are transported by ribosomes & tRNA molecules, which have specific regions that bond to AAThe loop attachment has a sequence of 3 nucleotides called anticodons.The tRNA anticodon is complementary & pairs with the mRNA codons.During translation or protein synthesis the cells use info from mRNA to produce the proteins

  • EX: The tRNA anticodon UAC would bind with the mRNA codon_______

    mRNA is transcribed from the DNA in the nucleusTranslation begins when mRNA attaches to a ribosome at the start codonThe pairing of codons & anticodons causes AA to attach to the growing polypeptide chainEach AA is added to the chain until it reaches a stop codon ending translationA U G

  • Another Example of Translation

  • What is a Mutation? A mutation is a permanent change in the DNA sequence of a gene. Mutations in a gene's DNA sequence can alter the amino acid sequence of the protein encoded by the gene.There are two main types of mutations:Gene & ChromosomalGene mutations results from changes in a single gene there are two types:Point & Frameshift Mutations

  • Point mutations~ these affect one nucleotide, because they occur at a single point in the DNA sequence & substitutes one nucleotide for another. . ExampleDNA:TAC GCA TGG AATmRNA:AUG CGU ACC UUAAA:MetArg ThrLeu Substitution DNA:TAC GTA TGG AATmRNA:AUG CAU ACC UUAAA:Met Hist Thr Leu

  • Frame shift mutations~ these include inserting a extra nucleotide or deleting a nucleotide, which shifts the reading frame of the genetic messageDNA:TAC GCA TGG AATmRNA:AUG CGU ACC UUAAA:Met Arg Thr Leu InsertionDNA:TAT CGC ATG GAA TmRNA:AUA GCG UAC CUU AAA:Ile Ala Tyr Leu

  • Normal hemoglobin (eight out of the 146 amino acid units of normal hemoglobin)ValHisLeuThrProGluGluLysSickle-cell hemoglobin (the same section as above as found in Sickle-cell hemoglobin)ValHisLeuThrProValGluLysGood red blood cells Sickle cell blood cells pictures from: www.cc.nih.gov/ccc/ ccnews/nov99/The function of normal human red blood cells, which are disk-shaped, is to transport oxygen from the lungs to the other organs of the body. Each red blood cell contains millions of molecules of hemoglobin that carries the oxygen. A slight change in the order of the amino acids in the hemoglobin molecule (valine substituted for glutamine), which has only 146 amino acids, causes sickle-cell disease. Abnormal hemoglobin molecules stick together and crystallize deforming the red blood cells. The deformed blood cells then clog tiny blood vessels impeding the flow of blood. Sickle-cell anemia kills about 100,000 people per year in the US

  • The molecular basis of sickle-cell disease

  • Environmental factors including radiation, chemicals, and viruses, can cause chromosomes to break; if the broken ends do not rejoin in the same pattern, this causes a change in chromosomal structure.

  • Types of Chromosomal MutationsInversion: a segment that has become separated from the chromosome is reinserted at the same place but in reverse; the position and sequence of genes are altered. Translocation: a chromosomal segment is removed from one chromosome and inserted on another chromosome Deletion is a type of mutation in which an end of a chromosome breaks off or when two simultaneous breaks lead to the loss of a segment. a. Even if only one member of pair of chromosomes is affected, a deletion can cause abnormalities. b. Cri du chat syndrome is deletion in which an individual has a small head, is mentally retarded, has facial abnormalities, and abnormal glottis and larynx resulting in a cry resembling that of a cat. Duplication is a doubling of a chromosomal segment. a. A broken segment from one chromosome can simply attach to its homologue. b. Unequal crossing-over may occur.

  • Examples of MutationsDELETIONDUPLICATIONINVERSIONTRANSLOCATION

    *******Like DNA, RNA is a polymer of nucleotides. In an RNA nucleotide, the sugar ribose is attached to a phosphate molecule and to a base, either G, U, A, or C. Notice that in RNA, the base uracil replaces thymine as one of the pyrimidine bases. RNA is single-stranded, whereas DNA is double-stranded.*******************************

Recommended

View more >