38
PENN Center for Sensor Technologies 1 Fort Collins – 7/27/05 Biologically Inspired CMOS Vision Sensors Jan Van der Spiegel [email protected] University of Pennsylvania Department of Electrical and Systems Engineering Philadelphia, PA 19104 SSCS Fort Collins Chapter, Colorado (Denver Section) July 27, 2005

Biologically Inspired CMOS Vision Sensors - IEEEewh.ieee.org/r5/denver/sscs/Presentations/2005_07_VanDerSpiegel.pdf · Fort Collins – 7/27/05 1 PENN Center for Sensor Technologies

Embed Size (px)

Citation preview

PENN Center for Sensor Technologies1Fort Collins – 7/27/05

Biologically Inspired CMOS Vision Sensors

Jan Van der [email protected]

University of PennsylvaniaDepartment of Electrical and Systems Engineering

Philadelphia, PA 19104

SSCS Fort Collins Chapter, Colorado (Denver Section)July 27, 2005

PENN Center for Sensor Technologies2Fort Collins – 7/27/05

Overview

• Why biologically inspired sensors?• Biological visual system

� Computational strategies, Neural circuits

• Neuromorphic Vision Sensors:� Sensor for the detection of image features

(spatial) � Tracking sensor (spatio-temporal)

• Conclusions

PENN Center for Sensor Technologies3Fort Collins – 7/27/05

A picture is worth a thousand words

01001010111100101001010111010011101001010000011110101010111010101010100010101100001000011111010110001110100110111010101010101101001110011010110001010101010101011011011010101010011110101010001110101011010101110011010001011101001011101101010111010111010000111110101011110110100

PENN Center for Sensor Technologies4Fort Collins – 7/27/05

Biological Vision System

RetinaReceptive Fields

Visual Cortex

PENN Center for Sensor Technologies5Fort Collins – 7/27/05

Retina - Center surround receptive field

Cell output (on-center)

Synaptic connections

excitatory

inhibitory

CENTER SurroundSurround

On-Center

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

-3 -2 -1 0 1 2 3

Out

put

Position

(after: www.ini.unizh.ch/avlsi/)

Horizontal cell

Bipolar cells

To ganglion cells

CENTER SurroundSurroundDetailed cross section of retina

PENN Center for Sensor Technologies6Fort Collins – 7/27/05

Processing in the Visual Cortex

Primary Visual Cortex

(Scientific American)

PENN Center for Sensor Technologies7Fort Collins – 7/27/05

Brain (area V1) Retina

Processing in the Visual Cortex

• Cortical area V1: hypercolumn structure� Orientation, edge, line stops, etc detectors

PENN Center for Sensor Technologies8Fort Collins – 7/27/05

Orientation selectivity of a simple cell

receptive field

bar stimulus neural response

Vertical line

On-center cells

PENN Center for Sensor Technologies9Fort Collins – 7/27/05

Information flow from retina to brain

On, off cellsShift variant

retina AITV2, V4V1LGN

Brain (Cortex)

(Anterior Inferotemporal area)

simple cell

complex cell

hypercomplex cell (linestop, corner)

Lower levelfeatures

T-type junctions, star-shaped stimuliShift Invariant

Increased complexity of the stimuli for Cell excitation

Higher level features

PENN Center for Sensor Technologies10Fort Collins – 7/27/05

In summary: the biological system...

• Decomposes a picture in many features: edges, orientation, line stops, junctions, onset (in time) etc.

• The features are integrated at higher levelinto a more conceptual representation.

• Highly structured, parallel and hierarchical. • Distributed architecture leads to:

� Data reduction; fast processing (parallelism), robustness

PENN Center for Sensor Technologies11Fort Collins – 7/27/05

Neuromorphic Vision Sensors

Confluence of electronics and biology(Sc. American, May 2005)

PENN Center for Sensor Technologies12Fort Collins – 7/27/05

Vision Sensor for the Detection of Image Features

Line orientations, line stopsEdges, corners, intersections:

(a) (b) (c) (d) (e)

Corner T-type X-type Y-type Line stops

Example 1

PENN Center for Sensor Technologies13Fort Collins – 7/27/05

Detected features for printed characters

trueLS

JCT-T & trueCJCT-X

JCT-Y

PENN Center for Sensor Technologies14Fort Collins – 7/27/05

Detected features for handwritten characters

trueLS

JCT-T & trueCJCT-X

JCT-Y

PENN Center for Sensor Technologies15Fort Collins – 7/27/05

Retinal orientation sensorSmart pixel array:Receptors & feature detector

Orientation columns

Simple, complex, hypercomplexcells

Recognition layer

Features

• Template matching • Programmable templates

are executed in sequence

Proposed approach:

• Multiple receptive fields • Massively parallel execution• Requires many processing

element (cells)

Biological approach for feature detection:

Trade-off between speed and area to reduce the number of processing elements.

PENN Center for Sensor Technologies16Fort Collins – 7/27/05

Implementation considerations

),)((

),)(()1(

1

1

1

1

1

1

1

1

Iknxf

Irnxfnx

l mlmmjli

l mlmmjliij

��

��

−= −=−−

−= −=++

=

=+

0,1,1110111

100010

110111

−=

���

���

=

−−−−

ijr

rrr

rrr

rrr

K

Template matching (or convolution)

Template is made programmable to detecta variety of features and perform a set of operation

f(x;I) = 1 if x≥I= 0 of x<I

I: Threshold

Template:

can be naturally mapped onto hardware by current distribution

IN INE

IE

ISEISISW

IW

INW

xij xi+1,jxi-1,j

xi,j+1

PENN Center for Sensor Technologies17Fort Collins – 7/27/05

Photodetector

Conceptual pixel architecture

Processing: summation fromneighboring pixels

Thresholding (decision)

Memory

Iphf2

f1

Va

Ma IS

IEIW

ISum

Ith2

IN

f1

Vth2

VoIref

lightIth1

photo

photoVph

Vth1

Vref

PENN Center for Sensor Technologies18Fort Collins – 7/27/05

Schematic of the processing circuit

Vref

Ith

IW

IS

IE

IN

a1 b1 c1 d1

φ1

φ2

y2

Md

Mc

Mb

Ma

My

N1

N2

NE1 E1 SE1 S1 SW1 W1

W2

NW1

INE

ISE ISW

INW

NE2 SW2 NW2

x2Mx

a1

b1

c1

d1

y2

C

φ2

φ2

φ2

φ1

φ1

φ1

RE

φ2 φ1

φ2 φ1

x1

φ1

y1

Nc

IcIsum

Vo

Vth1 Vth2 E2 SE2 S2

y1n

Memory (x6)

Current distribution unitThreshold current

PENN Center for Sensor Technologies19Fort Collins – 7/27/05

Design procedure based on transistor mismatch analysis

Current variation is function of:• design parameters (W,L,Iref)•mirroring operation•summation and subtraction operations

specification 1: error rate (yield)

specification 2: speed (power)

required current accuracy

1

determination of design parameters (W,L, Iref)

2a

2b

PENN Center for Sensor Technologies20Fort Collins – 7/27/05

tf=10 [nsec]

tf=5 [nsec]

tf=15 [nsec]

faster

slower

s=0.03

s=0.04

Variance s=0.02more accurate

less accurate

Speed and Accuracy as a function of the reference current

Iref [mA]

Ln[m

m]

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 61

2

3

4

5

6

7

8

9

10

11NMOS W=1.5 um

PENN Center for Sensor Technologies21Fort Collins – 7/27/05

Processing Flow on the Sensor

thinning

oriented line segment

�0

�54

�09

�351

Line Segments

linestopsLSa

LSb

LSa

LSc

Line Stops

Image

Additional operations: Line completion ; elimination of isolated points; line elongation

OR

totalLS

totalCAND2

AND3JCT-Y

Intermediate junctions

AND2 totalJCT

JCT-X

trueLS

trueC

JCT-T

excitatory

inhibitory

JCT-XT

PENN Center for Sensor Technologies22Fort Collins – 7/27/05

Prototype Test Chip

• technology: HP CMOS 0.5µm (3 metal 1 poly)

• chip area: 3.2mm x 3.2mm• pixel number: 16x16• pixel area :154.5 µm x 153.3

µm• number of transistors:

147tr/pixel• fill factor: 12.5 %• Each pixel is programmable:

27 types of operations (30-bit word) involving up to 270 individual steps

PENN Center for Sensor Technologies23Fort Collins – 7/27/05

Results

PENN Center for Sensor Technologies24Fort Collins – 7/27/05

Maximum operating frequency as a function of the reference current

0

1

2

3

4

5

6

0 2 4 6 8 10 12Reference current (uA)

Max

imum

ope

ratin

g fr

eque

ncy

(MH

z)

delay = 4.2 nsecdelay = 20 nsecdelay = 28.2 nsecdelay = 32 nsecdelay = 35.4 nsec

Delay (between φ2d and φ2))large smallOperating conditions

VDD = 4 [V] and

Iref = 4.5 [µµµµA]

100 mW

5 MHz

An operation (template matching, thresholding, storing in memory) over full array takes only 200ns.

PENN Center for Sensor Technologies25Fort Collins – 7/27/05

Sensor responses to letter images

True LineStops

Corner

JCT-Y

T-JCT

JCT-X

Processing time @ 5MHz: 54.2 µsec (271 steps)

PENN Center for Sensor Technologies26Fort Collins – 7/27/05

Silicon Retina for 2-D Tracking

(Ref: R. Etienne, J. Van der Spiegel, P. Mueller, M. Zhang, IEEE CAS II, June 2000)

Example 2

PENN Center for Sensor Technologies27Fort Collins – 7/27/05

Proposed approach

• Loosely modeled after the primate oculomotor system:

– Retinal photoreceptor organization– Retinal photosensing and early processing– Visual cortex for smooth pursuit

• Superior colliculus for saccadic generation• Capture the functions found in biology and

use the most efficient way to implement it using hardware (vs. wet ware)

PENN Center for Sensor Technologies28Fort Collins – 7/27/05

Tracking Chip Architecture

• Keep object centered on fovea

• Fovea: smooth pursuit• Periphery:

� localization� saccadic generation

• Interaction fovea-periphery

• Select target based on motion

(After R. Etienne, J. Van der Spiegel, Mueller, M. Zhang, ISSCC 1997 and IEEE CAS II, June 2000)Fovea Periphery

Tracking Chip Object to be tracked

PENN Center for Sensor Technologies29Fort Collins – 7/27/05

Tracking Chip

• Fovea: 9x9 cells• Periphery: 19x17• 2µm CMOS• 6.4x6.8 mm2

PENN Center for Sensor Technologies30Fort Collins – 7/27/05

Retina with edge detection

CENTER SurroundSurround

(after: www.ini.unizh.ch/avlsi/)

Horizontal cell

Bipolar cells

PENN Center for Sensor Technologies31Fort Collins – 7/27/05

Result of edge detector

-0.5

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5

Impulse Response of the Edge Detection Circuit:Bright Spot at Center Pixel

Out

put [

V]

Pixel

PENN Center for Sensor Technologies32Fort Collins – 7/27/05

Motion detection in the fovea: smooth pursuit

Left Right

Down

Up

Global x-motion

Global y-motion

PhototransductionRange compressionEdge detection

DivergentPixel Motion

GlobalFoveal Motion

Performed outside array

• Correlation based• X-motion (conceptual):

timePix x

Pix x+1

ON OFF

ON

Right Motion

PENN Center for Sensor Technologies33Fort Collins – 7/27/05

Measurement of the Foveal Motion detection

Pixel (-1,1)

Pixel (0 ,0)

Pixel (1 ,-1)

Right

4

GlobalRight signal

(-1,1)

(0,0)

(1,-1)

PixelEdge detection from moving edge

t1 t2 t3t1

t2t3

PENN Center for Sensor Technologies34Fort Collins – 7/27/05

Periphery: Target Acquisition

• Lower resolution• Edge-detection• ON-set detection

(temporal differentation but No motion detection)

• Localization of centroid in relatationto the spatio-temporal boundaries

• Row & column labeling: X and Y

X Motion Centroid Computation

Y M

otion Centroid C

omputation

PENN Center for Sensor Technologies35Fort Collins – 7/27/05

Tracking Experiments

Stepper Motors

CCD Camera

Tracking Camera

Eye Muscles

Optic Nerve

Click on Demo #1 from webpage Click on Demo #2 from webpage

PENN Center for Sensor Technologies36Fort Collins – 7/27/05

Conclusions

PENN Center for Sensor Technologies37Fort Collins – 7/27/05

Summary• Biological systems provide a viable paradigm

for building vision sensors:� Compact, low power, robust under different conditions� Massively parallel pixel-level processing

• Two Vision sensors:� Higher level features (X-, Y, and T-type) : Incorporates

processing functions found in area V1� Target tracking: space variant (foveal and periphery) for

smooth pursuit and saccadic motion generation� Implements the functions and algorithms of biology.� Optimized for information extraction, not image

rendering� Limitations: limited resolution, large pixel size and small

fill factor.

PENN Center for Sensor Technologies38Fort Collins – 7/27/05

Thank you