109
BIOLOGICAL FLORA OF THE BRITISH ISLES* No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological Flora of the British Isles: Eryngium maritimum Maike Isermann 1 † and Paul Rooney 2 1 Vegetation Ecology and Conservation Biology, Department of Ecology, Bremen University, Leobener Strasse, 28359 Bremen, Germany, and 2 Sand Dune and Shingle Network, Department of Geography, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK Running head: Eryngium maritimum * Nomenclature of vascular plants follows Stace (2010) and, for non-British species, Flora Europaea. † Correspondence author. Email: [email protected]

BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

BIOLOGICAL FLORA OF THE BRITISH ISLES* No. 274

List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3

Biological Flora of the British Isles: Eryngium maritimum

Maike Isermann1† and Paul Rooney2

1Vegetation Ecology and Conservation Biology, Department of Ecology, Bremen University,

Leobener Strasse, 28359 Bremen, Germany, and 2Sand Dune and Shingle Network, Department of

Geography, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK

Running head: Eryngium maritimum

* Nomenclature of vascular plants follows Stace (2010) and, for non-British species, Flora

Europaea.

† Correspondence author. Email: [email protected]

Page 2: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Summary

1. This account presents information on all aspects of the biology of Eryngium maritimum L. (Sea

Holly) that are relevant to understanding its ecological characteristics and behaviour. The main topics

are presented within the standard framework of the Biological Flora of the British Isles: distribution,

habitat, communities, responses to biotic factors, responses to environment, structure and physiology,

phenology, floral and seed characters, herbivores and disease, history, and conservation.

2. Eryngium maritimum is a native perennial hemicryptophyte, with a large taproot, spiny and leathery

leaves, and a pale bluish inflorescence. It has a more or less continuous distribution in suitable habitats

along the coasts of Great Britain and Ireland up to about 55° N but it is more scattered further north.

On the west coast it is found south of the Hebrides and on the east coast, with some exceptions, south

of Yorkshire. In Europe it has a wide, but mainly southern-temperate, European distribution along the

coasts of the Atlantic Ocean, the Baltic, the Mediterranean, and the Black and Azov Seas. Its

northern distribution limit is at c. 60° N.

3. Eryngium maritimum grows typically on sand and shingle beaches, foredunes and yellow dunes,

as well as in semi-fixed grey dunes. Its habitats have full sunlight and are more or less dry. It occurs

in many coastal plant communities from the beach inland and, because of its wide European

distribution, it occurs with members of several different biogeographic species-groups.

4. Protected from grazing by its spininess and sclerophylly, E. maritimum is nevertheless vulnerable

to direct damage by trampling. It supports few insect herbivores, probably because of chemical

defences. Historically, it has had a great number of medicinal uses.

5. Eryngium maritimum is unable to withstand competition from faster and more densely growing

plant species. In many coastal regions, in both temperate mediterranean parts of Europe, it is one of

the rarest and most threatened plant species, mainly because of habitat loss and land-use changes.

Key-words: climatic limitation, communities, conservation, ecophysiology, geographical and

altitudinal distribution, germination, herbivory, mycorrhiza, parasites and diseases, reproductive

biology, soils

Page 3: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Sea Holly. Apiaceae subfamily Saniculoideae. A long-lived, perennial herb with a long, well-

developed tap-root and thick and fleshy rhizomes extending laterally from buried stems.

Reproductive stems 0.15-0.60 m; lower part often root-like and buried in the sand; arial part pale

below but with bluish tinge above, erect, robust, terete or sulcate, glabrous, solid and widely

branched above so that the plant forms an open cushion. Basal leaves several; lamina 4-10 x 15-20

cm, leathery, glabrous, intensely glaucous, subrotund in outline and palmately 3(-5) lobed; base

truncate or cordate; venation palmate and reticulate, the veins thick, prominent; margin thick,

cartilaginous, with large spinose teeth; petioles about as long as the lamina, with swollen bases.

Cauline leaves similar but sessile and progressively smaller upwards. Vegetative individuals c.15

cm tall, consisting of a few basal leaves.

Inflorescence a dense capitulum with spiny bracts. Capitula borne at apices of stems and

branches, globose to broadly ovoid; peduncles stout, 3.5-5 cm. Bracts 5-7, ovate to ovate-

lanceolate, leaf-like. Bracteoles 2.5-4 mm, purplish blue, tricuspidate, spiny, longer than the

flowers. Flowers 25-50, mainly hermaphrodite, with nectaries on a disc at the base. Sepals 5, 4-6

mm, exceeding the petals, bluish, lanceolate, with a prominent midrib which is excurrent as a stout

spine. Petals 5, 3-4 mm, oblong, pale bluish white, emarginate. Stamens 5; filaments purplish to

bluish; anthers yellow. Styles 2. Fruit a schizocarp, 8-14(15) mm, with persistent sepals, consisting

of two mericarps each containing one seed; mericarps 6-7 mm, densely covered in narrow white

scales and 5 ridges, the 3 dorsal ridges indistinct, the 2 lateral ridges more prominent and with air-

filled cells.

Eryngium maritimum is native to the British Isles, occuring widely on maritime sand and

shingle.

I. Geographical and altitudinal distribution

Eryngium maritimum is a coastal species throughout its range. It occurs more or less continuously

along the west coast of England and in Ireland up to latitude 56° N, whereas along the east coast the

contiguous distribution reaches only 54° N (Fig. 1). In N.E. England and Scotland it occurs in

scattered localities; it was found as far north as Shetland until 1884 near Fitful Head probably at the

Bay of Quendale (Scott 2011), its recorded world northern limit. In Britain the distribution is

orientated to the South (South-North Index 2.5, where the value of the most southerly and westerly

distributed species was defined as 0, and those of the most northerly and easterly as 10; Fitter &

Peat 1994). It is more abundant on the west coast, although formerly there was probably no western

preference (East-West Index of 5.73). The distribution of E. maritimum in northern Britain is

limited by the lack of suitable of dune systems (Doody 2008).

Page 4: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Eryngium maritimum has a wide native distribution in Europe and adjacent parts of northern

Africa and Middle East (Hegi 1975; Hultén & Fries 1986; Fitter & Peat 1994; Preston & Hill 1997),

occurring the shores of the Atlantic Ocean, the Baltic, the Mediterranean, Black and Azov Seas

(Fig. 2).

Around the southern Baltic Sea E. maritimum is distributed in Denmark, Germany, Poland

(Łabuz 2007), the Kaliningrad region, Lithuania, Latvia to Estonia, along the Skagerrak (Fries et al.

1971), and on the Swedish islands of Öland and Gotland (Fröman 1930). It occurs only in the

southern parts of Norway (Fremstad & Moen 2001) and reaches a north-eastern distribution limit in

the Gulf of Bothnia (Hegi 1975), a little north of 56° N in Sweden (Tyler 1969), and north-eastward

up to the southern part of the Saaremaa Islands in Estonia (Rebassoo 1975; Olsauskas 1996). In

Scandinavia it belongs to a southerly group of species (Pedersen 1990).

Eryngium maritimum is distributed along the northern Mediterranean coast, including Malta and

Gozo (Scapini 2002), and extends along that of the Black Sea (Uphof 1941; Eberle 1979; Van der

Maarel & Van der Maarel-Versluys 1996). Its distribution along the southern Black Sea coast and

the Azov Sea is scattered (Avižienė, Pakalnis & Senzikaite 2008). The species is absent from the

shores of the Caspian Sea, the Canaries and Azores (Ridley 1930; Hultén & Fries 1986). On the

southern Mediterranean coast it is recorded from Algeria, Egypt, Libya, Morocco and Tunisia

(Turmel 1948; Hanifi, Kadik & Guittonneau 2007). In western Asia it occurs on Cyprus and Crete,

and in Georgia, Israel, Lebanon, Syria, and Turkey (Chater 1968; Lakkis et al. 1996; Jawdat et al.

2010; USDA ARS, National Genetic Resources Program 2010; Akalin Uruşak et al. 2013).

Eryngium maritimum has been introduced into parts of eastern North America (Hultén & Fries

1986): e.g. to Camden, New Jersey before 1881 (Britton 1881) and to Ellis Island, New York in

1922 (Mathias & Lincoln 1941), where it was used as ornamental plant for seashore restoration

(Lieberman & O’Neill 1988). It is naturalised along the eastern seaboard of Canada (Ontario) and

the USA (Virginia, New York, New Jersey, North Carolina; USDA, NRCS 2012) but is not

considered invasive in New Jersey (New Jersey Invasive Species Council 2009).

Eryngium maritimum has been introduced to Australia with plantings of Ammophila arenaria

(Weeda 1987) and is naturalised in southeast Australia (Pálá-Paúl et al. 2006) where it occurs at 5

sites on the coast of New South Wales (Hnatiuk 1990; eFloraSA 1999). It is considered a potential

weed in Australia (Csurhes & Edwards 1998), but no dominant stands have been recorded recently

and it grows in similar habitats to those in in Europe (Graham Prichard, pers. comm.).

II. Habitat

(A) CLIMATIC AND TOPOGRAPHICAL LIMITATIONS

Page 5: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Eryngium maritimum is a member of the EuropeanSouthern-temperate floristic biogeographic

element (Preston & Hill 1997), confined to regions with mild winters. Bournérias & Wattez (1990)

classified it as a member of the Mediterranean-Atlantic phytogeographical element but this differs

from Preston & Hill’s definition of this element, as it scarcely extends further north in western

Europe than it does in the east (Fig. 2). The Gulf Stream facilitates its distribution along the

Atlantic coast. According to Clausing, Vickers & Kadereit (2000) the northern distribution limit of

E. maritimum in Europe corresponds approximately with the 8 °C January and the 14 °C July

isotherm. However, its northern limit in southern Norway and Sweden (Hultén & Fries 1986; Fitter

& Peat 1994; Preston 2007) corresponds with the 0 °C January and 15 °C July isotherms

(Bengtsson, Appelqvist & Lindholm 2009).

In the British Isles the 10 x 10 km squares (hectads) occupied by E. maritimum have a January

mean temperature of 4.7 °C, a July mean temperature of 15.2 °C and annual precipitation of 1010

mm (Hill et al. 2004). Eryngium maritimum is a member of a group of British plant species,

characterised by Crithmum maritimum, whose area of distribution has the second highest mean

January temperature (5.2 °C) among the groups in Britain and Ireland recognized by Preston et al.

(2013).

(B) SUBSTRATUM

Eryngium maritimum grows on beaches, foredunes and yellow dunes, as well as grey dunes, (Forey

et al. 2008). In Wales it is considered as an obligate dune species or one strongly associated with

sand dunes (Rhind & Jones 1999). However, it does occur on shingle, especially where there is

some sand content and on similar soils where Ammophila arenaria and Euphorbia paralias occur

(Scott 1963; Moore & Wilson 1999; Doody 2001; Hitchmough, Kendle & Paraskevopoulou 2001;

Doody & Randall 2003). It occurs especially on dunes and sandy shingle where blown sand is less

active than on the beach, but where sand accretion is still relatively high; this results in open

vegetation which receives nutrients from sea-spray, carbonates from mollusc shells and material

blown from the driftline. Eryngium maritimum is also recorded from dry-deflation (blow out type)

features that form as depressions between moving dune ridges (Ėringis & Pancekauskienė 1995).

The driftline itself does not favour the establishment of E. maritimum. Very rarely, it is found on

rocky coasts (Eberle 1979), probably where there is some sand, or on sandy patches between

artificial hard coastal protection features that have similar structural qualities to shingle e.g. at Hall

Road on the Sefton coast, north west England (Maike Isermann pers. obs.).

Soil on foredunes mainly consists of sand, with low silt and clay contents, for example 89.8%

sand, 6.0% silt and 4.2% clay in Iğneada, Turkey, Black Sea (Ali Kavgaci pers. comm.). Foredune

soils with E. maritimum along the Saros Gulf (north Aegean Sea, Turkey) contain 95% sand, with

Page 6: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

about 70% medium to fine grained sands (0.5-0.215 mm), 23% with sand grains below 0.215 mm,

and 2.1-2.6% classed as clays and silts (Özcan et al. 2010).

Soils where Eryngium maritimum occurs have a neutral or somewhat higher soil pH. In Britain

soil pHs of 6.9 - 7.7 are typical (Moore 1931). More broadly, ranges of pH are 6.2 - 8.5 with

means c. 6.7, but exceptionally as low as 4.5 (Pancekauskienė 2003; Avižienė, Pakalnis &

Senzikaite 2008; Forey et al. 2008; Andersone et al. 2011; Ali Kavgaci pers. comm.). The CaCO3

content of these soils can be as high as 18.0% (Greiß et al. 1995), but isn usually lower, e.g. at sites

in Turkey with 8.42% (Ali Kavgaci pers. comm.) and on the Isle of Man with 2.73% (Moore 1931).

At low pH, E. maritimum presumably occurs on dunes with even lower carbonate contents. Soil

organic matter content is generally low; 0 - 1.3% (means 0.4-0.7%) especially where there is low

grass cover (Pancekauskienė 2003; Avižienė, Pakalnis & Senzikaite 2008; Andersone et al. 2011;

Ali Kavgaci pers. comm.). An organic matter content of about 0.86% was measured on the Isle of

Man (Moore 1931).

Dune soils supporting E. maritimum are generally low in nutrients (Fitter & Peat 1994), but can

be enriched for example by the addition of driftline material or shells. There are low concentrations

of total nitrogen (0-320 mg kg-1) and total potassium (19-85 mg kg-1, n = 66). Total phosphorus

concentrations vary (typically146-200 mg kg-1;Andersone et al. 2011) but may be much higher,

between 578 and 1000 mg kg-1 (mean 732 mg kg-1; Pancekauskienė 2003; Avižienė, Pakalnis &

Senzikaite 2008). Total concentrations of elements on Turkish dunes were determined as: Na 33, K

19, Ca 1550, Mg 55, P 2 mg kg-1; (Ali Kavgaci pers. comm.). Salt content, expressed as chloride

compounds, reaches values of 4500 - 6700 mg kg-1 in dunes along the Danish North Sea coast

(Greiß et al. 1995); in contrast, Andersone et al. (2011) reported Cl- concentrations of only 13-20

mg kg-1 (equivalent to 21-33 NaCl mg kg-1).

Sites are more or less dry, with a well-drained soil (Forey et al. 2008). These environmental conditions are reflected in the ecological indicator values for E. maritimum (

Page 7: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological
Page 8: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological
Page 9: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological
Page 10: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological
Page 11: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological
Page 12: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Appendix S1. Sources for Table 2: Biogeographical species-groups distinguished by TWINSPAN

classification of species frequency in 8 biogeographic regions from Europe and adjacent countries.

Appendix S2. Additional acknowledgements.).

III. Communities

In Great Britain Eryngium maritimum is scattered in shingle and strandline communities (Fig. 3a)

such as the Honckenya peploides-Cakile maritima strandline community (SD2, Rodwell 2000). The

community occurs above the tidal limit as patchy strips of pioneer vegetation with Cakile maritima

and Honckenya peploides on sand and fine shingle strandlines. Additions of driftline material also

support the growth of nitrophilous ephemeral species. In contrast to Crambe maritima, Honckenya

peploides, Lathyrus japonicus ssp. maritimus and Silene uniflora, that are capable of withstanding

large amounts of burial by sand, E. maritimum grows on shingle and dunes that have low rates of

sand accumulation (Scott 1963).

On dunes, Eryngium maritimum is found in the Elymus farctus ssp. boreali-atlanticus foredune

community (SD4, Rodwell 2000; Fig. 3b), the pioneer vegetation on foredunes, with Elytrigia

juncea (E. farctus) as dominant. Ammophila arenaria can establish on the raised foredunes and,

with ongoing sand accumulation, the foredune community develops continously into the

Ammophila arenaria mobile dune community (SD6, Rodwell 2000), in which A. arenaria is

dominant. Where rates of sand accretion are not too high, Eespecially in more southern parts of

Britain, E. maritimum is a characteristic species in this community (Rodwell 2000). With reduced

sand accumulation, vegetation cover increases and the Ammophila arenaria-Festuca rubra semi-

fixed dune community (SD7, Rodwell 2000) develops successively at the back of the first dune

ridge. Where rates of sand accretion are not too high, many other plant species co-occur. Eryngium

maritimum can persist in the this semi-fixed dune community, which is dominated by Ammophila

arenaria and short grasses like Festuca rubra, and has increasing numbers of herbs such as

Anthyllis vulneraria, Sonchus arvensis, and Viola tricolor, as well as bryophytes such as

Brachythecium albicans (Rhind & Jones 1999; Rodwell 2000).

In warmer, southerly stands of Ammophila arenaria communities on the coast in Britain,

Eryngium maritimum is associated with Calystegia soldanella and more thermophilous species such

as Euphorbia paralias and E. portlandica, providing a link with the dune vegetation of the Atlantic

coast further south in Europe (Rodwell 2000).

Comparison of the floristic composition of plant communities with Eryngium maritimum from

all over Europe, including 3605 relevés , reveals distinct biogeographical species groups (Table 2).

Characteristic communities of the Black Sea and the Mediterranean Sea include Cakile maritima,

Elytrigia juncea, Euphorbia paralias, Medicago marina and Pancratium maritimum. In Italy, for

Page 13: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

example, most of these species characterise different communities on embryonic and on yellow

dunes (Ciccarelli, Bacaro & Chiarucci 2012, Prisco et al. 2012).

Around the Black Sea Eryngium maritimum communities typically contain Artemisia

tschernieviana, Crambe maritima, Lactuca tatarica and Xanthium strumarium at higher frequencies

than in E. maritimum communities along the S. European Atlantic and Mediterranean Sea (Table

2). Different species-groups are characteristic of the N.E. Black Sea (e.g. with Astrodaucus

littoralis and Galium humifusum) and the S.W. Black Sea coasts (e.g. with Centaurea arenaria,

Medicago sativa and Secale sylvestre).

Typical species in Eryngium maritimum communities of the southern European Atlantic and the

Mediterranean Sea are Achillea maritima (Otanthus maritimum), Ammophila arenaria ssp.

arundinacea, Calystegia soldanella, Cutandia maritima, Echinophora spinosa, Elytrigia juncea,

Euphorbia paralias, Medicago marina, Pancratium maritimum and Sporobolus pungens. In the

south European Atlantic, N.W. Mediterranean and the south Mediterranean Sea, species such as

Aetheorhiza bulbosa, Helichrysum stoechas, Malcolmia littorea and Lotus creticus are more

frequent than in the north-east Mediterranean Sea area.

Communities of the N.W. European Atlantic, the North Sea and the Baltic Sea are characterised,

for example, by Ammophila arenaria, Carex arenaria, Festuca rubra, Hieracium umbellatum,

Honckenya peploides, Leymus arenarius and Sedum acre. Within this group, communities of the

N.W. European Atlantic and the North Sea are differentiated from S.W. Baltic communities by

Cerastium semidecandrum, Galium verum, Hypochaeris radicata, Leontodon saxatilis, Lotus

corniculatus, Phleum arenarium, Sedum acre and Sonchus arvensis.

The biogeographic species group of the northern North Sea and the Baltic Sea is characterised

for example by Artemisia campestris, Festuca polesica, Hieracium umbellatum and Lathyrus

japonicus ssp. maritimus. Along the central south and the N.E. Baltic Sea Festuca lemanii, Salix

daphnoides, Thymus serpyllum and Tragopogon floccosus are more frequent. The most northern

communities more frequently include Arrhenatherum elatius, Atriplex littoralis, Atriplex prostrata,

Elytrigia repens, Linaria vulgaris, Potentilla anserina, Sedum telephium and Vicia cracca.

Eryngium maritimum is most frequent in mobile dunes and is usually categorised as a characteristic

species of the class Ammophiletea Br.-Bl. et R. Tx. ex Westhoff et al. 1946 (synon: Ammophiletea

R. Tx. in Knapp 1943, Ammophiletea Br.-Bl. et R. Tx. 1943, Helichryso-Crucianelletea maritimae

J.-M. Géhu et al. in Bon et J.-M. Géhu 1973, Helichryso-Crucianelletea maritimae J.-M. Géhu et al.

in J.-M. Géhu 1975, Euphorbio-Ammophiletea arundinaceae J.-M. Géhu et J. Géhu 1988) (Mucina

1997). However, E. maritimum is recognised in various other phytosociological classes:

communities of Cakiletea maritimae that occur on driftlines, those of Honckenyo-Elymetea on

sandy beaches and shingle, of Koelerio-Corynephoretea on semi-fixed and fixed dunes, of

13

Page 14: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Saginetea maritimae on transition zones to salt marshes, of Crithmo-Staticetea representing

chasmophytic coastal vegetation under salt-spray influence on rocks and sand. Often these

communities contain species of classes typical for nutrient rich stands like Artemisietea vulgaris,

Epilobietea angustifolii and Galio-Urticetea; or in spatial associated communities like Festuco-

Brometea, Juncetea maritima, Puccinellio-Salicornietea and Salicornietea fruticosae; in older

successional stages of first shrubs and trees, in classes such as Rhamno-Prunetea and Quercetea

ilicis.

Eryngium maritimum is affiliated to a functional group of plant species adapted to harsh

environmental conditions, including the low nutrient content of the soils, across their whole range.

This group includes perennials (or summer annuals) which are larger than 0.15 m, and mostly

scleromorphs that grow in full light, have below-ground storage of reserves, are mostly dispersed

by sea water, withstand sand burial, and show leaf succulence or reinforced cuticles (García-Mora,

Gallego-Fernández & García-Novo 1999; 2000; Gallego-Fernández, García Mora & de Seoane

2003).

IV. Response to biotic factors

Grazing

Eryngium maritimum is protected from grazing to a degree by its spininess and biochemical

defences e.g. terpenes, which deter herbivores such as rabbits (Hicks 1895). Nevertheless, under

strong grazing pressure, populations probably decline (Olsson & Tyler 2001), as the similar species

E. campestre and E. nudicaule have been shown to be more frequent in areas without rabbits

(Pucheta et al. 1998; Katona et al. 2004). However, grazing indirectly favours E. maritimum

through the removal of potential competitors, as well as by the creation of open areas (Pedersen &

Høiland 1989). Disturbance may result in the growth of new shoots from nodal root meristems

(Andersone et al. 2011).

Trampling

Eryngium maritimum is vulnerable to direct damage from trampling both by humans and by larger

grazing animals because its stems and roots are brittle (Stasiak 1986; Vökler 1992; Tzatzanis,

Wrbka & Sauberer 2003). Trampling damage, especially to the rootstock, results in dieback of the

plant. A decrease of grazing animals and therefore of direct damage by trampling resulted in a

slight increase of Eryngium maritimum on Gotland (Lars Fröberg, pers. comm.). Trampling by

humans in regions with high tourism pressure often causes a decline and local extinction (Stasiak

1986; Weber & Kendzior 2006; Żółkoś et al. 2007). Nevertheless, E. maritimum occurs frequently

in and around dune blowouts (Mir-Gual et al. 2013). Thus, E. maritimum can grow on open, bare

14

Page 15: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

sand where fixed dunes have been destroyed (Tansley 1911; Heukels 2000), where there is some

sand deposition (Forey et al. 2008). It is probably favoured by light human pressure, for example

along pathways to the beach where the vegetation cover is sparse and competition with other plant

species reduced, and where some nutrient input occurs due to footpath management with straw

mulches etc. (Weeda 1987).

Competition

Eryngium maritimum is a poor competitor (Stasiak 1986). It generally occupies open areas because

it is out-competed, especially by densely growing species such as Carex arenaria in northern

Europe. It declines when habitats are invaded by shrubs such as Elaeagnus commutata, Hippophae

rhamnoides, Rosa rugosa (Fig. 3c) and Salix repens, because of shading effects. Similarly, in

Portugal Acacia longifolia excludes Eryngium maritimum (Stasiak 1986; Pedersen & Høiland 1989;

Bruun 2005; Stephan 2006; Bengtsson, Appelqvist & Lindholm 2009). On the south-eastern coast

of France, the non-native species Carpobrotus edulis forms dense mats that out-compete E,.

maritimum (Suehs, Médail & Affre 2003). In Italy, the frequency of E., maritimum decreased by

nearly 80% in embryonic and yellow dunes, when these dune types were dominated by

Carpobrotus acinaciformis (Attorre et al. 2013).

V. Response to environment

(A) GREGARIOUSNESS

The size of Eryngium maritimum populations varies greatly, from a single plant to more than

several hundred individuals, and rarely to more than 1000 individuals (Burmester 2007; Curle,

Stabbetorp & Nordal 2007). Large populations can exist even in regions where the species is rare

(Halvorsen & Lima 1984). Fertile individuals show a 70-75% probability of surviving to the

following year (Curle, Stabbetorp & Nordal 2007). The survival of small, vegetative individuals is

low (26-37%) in comparison to that of large sterile and fertile individuals (70-100%) (Curle,

Stabbetorp & Nordal 2007). Stems of reproductive individuals are (0.15)0.20-0.60 m tall, erect and

branched in the upper part (Stace 2010; Jäger & Werner 2005; Avižienė, Pakalnis & Senzikaite

2008), whereas vegetative individuals are about 0.15 m tall (Fitter & Peat 1994).

Eryngium maritimum is generally is long-lived (10-15 years) (Curle, Stabbetorp & Nordal 2007),

and individuals may live to 30 or more years (Eberle 1979; Stephan 2006). Flowering and fruiting

sometimes starts in the second year (Clausing, Vickers & Kadereit 2000), but often not until the

fourth to sixth year (Curle, Stabbetorp & Nordal 2007; Avižienė, Pakalnis & Senzikaite 2008). In a

situation of sand accumulation, juveniles need longer for the development of a first inflorescence,

probably because internodal stem elongation is necessary to bring the rejuvenation bud near to the

15

Page 16: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

substrate surface (Burmester 2010). Because of the high mortality of juvenile individuals, several

growing seasons are necessary to establish a stable or growing population (Frisendahl 1926; Curle,

Stabbetorp & Nordal 2007). Plants which have reached maturity and flowered at least once may fail

to flower in some years in which conditions are adverse (Weeda 1987), i.e. poor nutrient

availability, unusual temperature extremes or dry weather in spring and early summer etc.

In general, the fraction of reproductive individuals characterizes the stability of a population;

stable or growing populations are dominated by vegetative individuals (Curle, Stabbetorp & Nordal

2007). Long-term studies between 1968 and 1999, at the Curonian Spit, Lithuania and along the

German Baltic coast, have suggested declining populations (Pancekauskienė 2003; Burmester

2007).

(B) PERFORMANCE IN VARIOUS HABITATS

Habitat suitability for Eryngium maritimum varies along the zonation from the driftline to fixed

dunes. The best conditions for E. maritimum occur in areas where abiotic conditions are less harsh

and there is also reduced competition by dense vegetation in the older successional stages.

Storms and high tides characterise the environment of driftlines: substrate instability, salinity

and water content probably constrain the growth of E. maritimum. In dry dune succession, under

favourable environments, it first establishes on dunes that are between 3-10 years of age (Pignatti &

Ubrizsy Savoia 1989). Eryngium maritimum is regarded as intermediate between competitor and

stress-tolerant strategies (Grime 1979; Hitchmough, Kendle & Paraskevopoulou 2001). It

establishes larger populations and grows more vigorously on yellow dunes than on foredunes,

because of the more stable substrate and reduced effects of wind and blown sand (Łabuz 2007).

Individuals may flower for many years favourable in sites (Burmester 2010), but sometimes

individuals flower only once (Hegi 1975).

Eryngium maritimum declines in older successional stages, such as on grey dunes (Prat &

Salomon 1997; Stankevičiūtė 2006), where it is out-competed by dense grass or scrub. However,

because of its rootstock it can persist vegetatively for long periods in older successional stages. The

species benefits from moderate dune dynamics that create open sites (Stasiak 1986). In contrast to

more western sites, in Poland, E. maritimum is found more frequently on grey dunes: about 40% of

the individuals occur in foredunes and yellow dunes, 46% in open grey dunes and 14% in older

grey dunes adjacent to Pinus forests (Stasiak 1988). In Poland its distribution has shifted during the

last century from the yellow dunes to the grey dunes (Stasiak 1986; 1988). These changes were

probably caused by the retreat of many parts of the coast, as well as by erosion of yellow dunes, and

the establishment of seeds of E. maritimum blown inland along paths in grey dunes. The

development of vegetation as well as soil conditions towards older successional stages is enhanced

16

Page 17: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

by acid deposition, pollutants and eutrophication (Van der Laan 1985). Where the dune area is

relatively small and only a few ridges occur, such along the Baltic Sea, seeds often are blown

towards the forest where they are not able to establish (Łabuz 2007).

(C) EFFECT OF FROST, DROUGHT, ETC.

Coastal beaches, foredunes and yellow dunes worldwide are regularly subjected to similar types of

environmental stress: salt spray, episodic over-wash, highly permeable substrates, low field

capacity, high temperatures, drought, strong winds and substrate mobility (García-Mora, Gallego-

Fernández & García-Novo 1999).

Frost

The above-ground parts of Eryngium maritimum probably tolerate short periods of light frost, but

young shoots and seedlings are susceptible to frost particularly in spring. Therefore, in northern

Europe the increased number of days with frost and the reduced length of the growing season limits

the distribution of Eryngium maritimum (Halvorsen 1982; Bakker 1976; Curle, Stabbetorp &

Nordal 2007).

Sand mobility

Moving sand is mostly a threat during seedling establishment, especially because of the disruption

to root development (Eberle 1979). Eryngium maritimum is able to cope with a little sand burial,

typically only up to 0.18 m (Walmsley 1995; Walmsley & Davy 2001), probably by shoot

elongation (Frisendahl 1926; Turmel 1947; Salisbury 1952; Eberle 1979; Łukasiewicz 1985). The

depth of sand burial tolerated by E. maritimum is less than that tolerated by Glaucium flavum (0.20

m), Lathyrus japonicus ssp. maritimus (0.37 m) and Honckenya peploides (0.41 m), but more than

Crambe maritima (0.16 m) and Rumex crispus (0.15 m) (Walmsley 1995; Walmsley & Davy 2001).

Its leaf characteristics provide good protection from wind and blown sand (Eberle 1979).

Although high levels of sand accumulation may be disadvantageous to the survival of adult

individuals, surface lowering may result in mechanical damage of the brittle roots by wind and

water, and lead to death (Łabuz 2007). Eryngium maritimum tolerated surface lowering of about

0.19 m, less than Crambe maritima (0.22 m) and Honckenya peploides (0.26 m) but more than

Glaucium flavum (0.04 m), Lathyrus japonicus ssp. maritimus and Rumex crispus (0.08 m)

(Walmsley 1995; Walmsley & Davy 2001).

Drought

Eryngium maritimum occurs in very dry to moderately dry conditions. It has a well-developed

taproot (Avižienė, Pakalnis & Senzikaite 2008), on average about 1.5 m long (Salisbury 1952), but

can reach a length of 3(-5) m (Fig. 3d). This facilitates the absorption and storage of water (Hicks

17

Page 18: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

1895; Eberle 1979; Avižienė, Pakalnis & Senzikaite 2008). Moreover, the rootstock may have

access the water table, which in dunes is frequently about 3-4 m below the surface (Ranwell 1972),

although this varies with site and season. The more or less thick taproot enables the species to hold

water reserves (Meyer & Van Dieken 1947) and thus it is able to survive dry periods. Water uptake

is hampered in upper parts of the soil, especially in young plants, by salinity. Coarse substrates lead

to water stress, and therefore probably limit the distribution of E. maritimum on shingle beaches

(Walmsley 1995). The less favourable growing conditions of high precipitation and low

temperatures mean that at the northern range of its distribution there is a decline of photosynthetic

productivity (Andersone et al. 2011). Reduced physiological conditions are This is probably related

to the increased clonal growth of E. maritimum in northern regions (Andersone et al. 2011).

Nutrient supply

Some nutrient availability arising from moderate amounts of driftline material seems to support the

growth of Eryngium maritimum. However, raised soil nutrient concentrations caused by gull faeces

have led to the decline or extinction of species such as E. maritimum, Artemisia caerulescens,

Calystegia soldanella and Polypogon maritimus on the Riou archipelago near Marseille, France

(Vidal et al. 1998). In recent decades the atmospheric deposition of nutrients, especially nitrogen

and phosphate, has led to the increase of both dense, short and tall grasslands in dunes, and caused a

decline in open dune areas, in north-west Europe (Veer & Kooijman 1997). Therefore, atmospheric

deposition of nutrients reduces the habitat quality and indirectly promotes the decline in E.

maritimum.

Light

Eryngium maritimum is a light-demanding plant, and thus grows only on open sites (Ćwikliński

1972). It is protected against high insolation, as well as the high levels of light reflection from the

sand, by its equifacial leaves with multilayered palisade parenchyma (Eberle 1979).

VI. Structure and physiology

(A) MORPHOLOGY

Eryngium maritimum is a slightly succulent xerophyte (Fig. 4) with adaptations including a well-

developed root system and other scleromorphological traits (Delf 1912; Hanson 1950; Hegi 1975).

Thus, the above-ground parts are more or less fleshy and, due to surface waxes, are greyish-blue

sometimes greenish, or bluish throughout (Mathias & Lincoln 1941). The root and stem have a

thick cambium with internal phelloderm and a very thick secondary cortex develops (Wolff 1913).

The cortex and the pith/medulla of the napiformed taproot contain many oil channels (Eberle 1979).

18

Page 19: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

The stele/vascular bundles of the stem are interfascicular. The secondary bark has clearly visible

medullary rays/vascular rays, and oil channels. Glands with calcium oxalate occur in the secondary

bark as well as in the cortical parenchyma/cortex and in the pith (Erikson 1896).

A leaf cuticle with epicuticular waxes, in the form of massive wax rodlets (Fig. 5), protects the

plant from water loss, and together with the cartilaginous margin, the cuticle protects the plant from

the erosive effect of blown sand. The epicuticular waxes of Eryngium maritimum are similar to the

so-called Strelitzia wax type, with massive projections composed of various wax crystalloids and

rodlike subunits (Fröhlich & Barthlott 1988). The wax layer develops during the year (Samsone et

al. 2007), giving the plant has a more or less bluish appearance at the end of the growing season.

Epicuticular waxes are characteristically found in species such as Brassica oleracea, Crambe

maritima, Leymus arenarius, Medicago maritima, Pancratium maritimum, and Salsola kali, which

are pioneer colonists of open sites such as beaches (Neinhuis & Barthlott 1997).

The stomata are counter-sunk in the two-plied epidermis (Chermezon 1910; Eberle 1979).

Stomata are on both surfaces of the leaf (amphistomatous) as in most other dune and shingle

species (Davy, Willis & Beerling 2001). The stomatal density (mm-²) on the upper (adaxial) surface

varies between 243 (Delf 1912), 102 (Iversen 1936), 90 (Davy, Willis & Beerling 2001), 67 (Fitter

& Peat 1994) , 60 (Erikson 1896) and 35 (Burmester 2010); correspondingly, on the lower (abaxial)

surface it is between 149 (Delf 1912), 102 (Iversen 1936), 81 (Davy, Willis & Beerling 2001), 59

(Fitter & Peat 1994), 52 (Erikson 1896) and 38 (Burmester 2010). Thus, the ratio between upper

and lower surface varies between 1:0.6 and 1:1.1. Like Eryngium maritimum, other coastal beach

and dune species, particularly those that are somewhat succulent, have similar numbers on both leaf

sides or more stomata on the upper leaf surface. In the northern distribution area, the stomatal

density of Eryngium maritimum on the upper/lower surface (60/52, 90/81) is lower than in Lathyrus

japonicus ssp. maritimus (70/80, 96/95), Petasites japonicus (88/130) (Erikson 1896), and Crambe

maritima (102/104) (Davy, Willis & Beerling 2001). The higher the stomatal density, the greater

the stomatal index (Salisbury 1952; Davy, Willis & Beerling 2001) and the stomatal index for

shingle species is on average 16.8%. On the other hand, the stomatal density of the upper/lower

surfaces is higher than in many other species of similar habitats (Honckenya peploides 49/80,

71/65, Salsola kali 71/0, Cakile maritima 127/163) (Delf 1912; Iversen 1936; Davy, Willis &

Beerling 2001). The stomatal index of Eryngium maritimum is low (11.0/11.2) in comparison with

other species (Davy, Willis & Beerling 2001).

The leaves are xeromorphic; both upper and lower epidermes have thickened cell walls

(Chermezon 1910; Burmester 2010). The leaf epidermis is collenchymatic, about 12-14 µm thick,

and is thus similar to Petasites japonicus (9-12 µm) but much thicker than in Honckenya peploides

(6 µm) (Erikson 1896). Under the two-layered epidermis of both the upper and the lower leaves, a

19

Page 20: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

2-3 layered palisade mesophyll occurs. Between the two palisade parenchymas there are 2-3 layers

of isodiametric cells forming the lacunary tissue. Therefore, the leaf has an equifacial structure as in

Cakile maritima (Grigore & Toma 2008). Leaf areas range between 0.001-0.01 m² (Fitter & Peat

1994). Although Eryngium maritimum and Pancratium maritimum co-occur in Mediterranean

semi-fixed coastal dunes, E. maritimum has a much greater leaf area index than P. maritimum

(Table 3). In comparison with P. maritimum, E., maritimum, has fewer larger leaves (Gratani &

Fiorentino 1988).

(B) MYCORRHIZA

Arbuscular mycorrhiza (AM) occurs in about 70% of species of coastal, sandy habitats, including

Eryngium maritimum (Giovannetti & Nicolson 1983; Giovannetti 1985; Harley & Harley 1987;

Maremmani et al. 2003; Nikopoulos et al. 2006). AM colonisation in E. maritimum is 3-18% of the

total root length (Puppi & Riess 1987; Harley & Harley 1990; Çakan & Karataş 2006), but there are

individuals that reach 70-90% (Read 1989, Andersone et al. 2011). Furthermore, the percentage of

individuals with mycorrhiza is only about 33% (Puppi & Riess 1987), so it is facultatively

mycorrhizal (Harley & Harley 1987).

A number of species of AM fungi occur in coastal dunes (Giovannetti & Avio 1983;

Błaszkowski, Adamska & Czerniawska 2003). The highest number spores of Glomus spp.,

Gigaspora gregaria and Gigaspora calospora occurred with Ammophila arenaria, Helichrysum

spp. and Eryngium maritimum in Italian sand dunes: under Eryngium maritimum up to 102 spores

100 g-1 of sand was recorded (Giovannetti & Avio 1983).

Colonization of E. maritimum with AM varies during the year in relation to photosynthetic

activity, and inversely with leaf chlorophyll content (Andersone et al. 2011). Colonisation increases

from late winter/early spring until the beginning flowering season in early summer, decreases

during summer, and stays relatively constant in autumn and winter (Giovanetti 1985; Andersone et

al. 2011).

(C) PERENNATION: REPRODUCTION

Eryngium maritimum shows both sexual and vegetative reproduction. Mediterranean populations

appear to be more age-differentiated, with large numbers of seedlings and young plants (Stasiak

1986), whereas in the northern part of its range seed production appears to be quite rarereduced

(Stasiak 1986; Stephan 2006; Bengtsson, Appelqvist & Lindholm 2009), and populations seem to

be maintained by vegetative reproduction (Stasiak 1986). This probable change from sexual to

vegetative reproduction in the northern distribution area suggests reduced fitness of the species at

the climatic extremes of its geographical range (Stasiak 1986).

20

Page 21: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Vegetative reproduction by offshoots from rhizomes or root fragments, which are possibly

distributed by the sea, seems to be common particularly in the case of burial by sand (Frisendahl

1926; Blackman 1935; Turmel 1947; Wołk 1973; Walmsley 1995). E. maritimum is a clump former

(Hitchmough, Kendle & Paraskevopoulou 2001), and juveniles growing 2-3 m from a

stock/maternal plant, may be connected to it deep in the sand (Frisendahl 1926; Stasiak 1986;

Avižienė, Pakalnis & Senzikaite 2008). A possible sequence of clonal growth starts with branches

attached to the mature plant, and then with sand accumulation the shoots develop into separate

individuals (Andersone et al. 2011). Vegetative reproduction is used in horticulture, where root

cuttings are taken in winter (Christopher 2006).

(D) CHROMOSOMES

The chromosome number is 2n = 16 (Wulff 1937; Maude 1939; Bowden 1945 (cultivated plants);

Malheiros-Gardé & Gardé 1951; Hamel 1955; Skalińska et al. 1964; Valdés-Bermojo 1979;

Perdigó Arisó & Llauradó Miravall 1985; Al-Bermani et al. 1993; Wörz 1999; Curle, Stabbetorp &

Nordal 2007). A high degree of heterozygosity implies that the species is probably tetraploid with a

basic chromosome number x = 4 (Curle, Stabbetorp & Nordal 2007). Genetic variation and

geographic distribution along the European coasts are well correlated (see X History.

Phylogeography).

(E) PHYSIOLOGICAL DATA

The photosynthetic pathway is assumed to be C3 (Fitter & Peat 1994). Predictions of transpiration

rate, photosynthetic rate and water-use efficiency were made from stomatal measurements (Davy,

Willis & Beerling 2001). In comparison to other shingle species, Eryngium maritimum has a

slightly higher photosynthetic rate (17.6 µmol m-2 s-1, mean 17.5), a clearly lower water vapour

conductance (812 mmol m-2 s-1, mean 1054.5), a lower transpiration rate (6.5 mmol m-2 s-1, mean

8.1) and a higher photosynthetic water use efficiency (2.7 mmol CO2/mol H2O, mean 2.33) (Davy,

Willis & Beerling 2001). Comparing it with the dune species Ammophila arenaria, Anthemis

maritima, Cakile maritima, Elytrigia juncea, Ononis variegata and Pancratium maritimum,

Eryngium maritimum had the highest leaf area (0.0067 m²) and ranked third for leaf mass area (14.6

mg cm-2). Eryngium maritimum has the second highest succulence index (81.5 mg cm-2) behind

Cakile maritima, with values of the species studied between 28.3 and 96.4 mg cm-2 (Gratani,

Varone & Crescente 2009). E. maritimum produced greatest biomass during experiments at 25/15

°C day/night-temperature treatments, and growth was lower in 20/10 °C and 30/20 °C treatments

(Arve 2008).

21

Page 22: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

(F) BIOCHEMICAL DATA

In common with other Eryngium species, E., maritimum contains bioactive secondary metabolites.

Flavonoids, polyacetylenes and essential oils are present in aerial parts, while triterpene saponins

and monoterpenoid glycosides are observed mainly in the roots. Saponin complexes are also found

in aerial parts, but their composition is different. Phenolic acids are present in a whole plant and

coumarins in fruits and roots.

Triterpene saponins occur mainly as saponin complexes with ester structures such as polyhydroxy-

triterpenoid glycosides and phenolic acids, e.g. rosmarinic acids and its derivates, chlorogenic acid

and caffeic acid (Hiller 1971; Hiller, von Mach & Franke 1976; Kartal et al. 2005; 2006; Le Claire

et al. 2005; Thiem & Wiatrowska 2007; Kikowska, Thiem & Krawczyk 2009; Thiem & Kikowska

2009). Some saponins possess anti-inflammatory properties, anti-HIV-1 protease activity and

cytotoxicity for tumour cells (Roberg 1937; Zhang et al. 2008).

Flavonoids were identified from the above-ground parts of Eryngium maritimum (Hiller, Pohl &

Franke 1981; Kartnig & Wolf 1993; Hohmann et al. 1997), particulary flavonol glycosides

(kaempferol and quercetin derivatives) and poliacetylenes (falcarinol, falcarinon, falcarinolon)

(Hegnauer 1973; Lam, Christensen & Thomasen 1992; Christensen & Brandt 2006).

Essential oils are frequent in species of Apiaceae. The genus Eryngium, belonging to the

subfamily Saniculoideae, does not contain large amounts of essential oil (Aslan & Kartal 2006;

Djarri et al. 2008). The average oil content of the seeds is 31% (Barclay & Earle 1974). The

essential oil composition of E. maritimum consists of several dozen compounds, varied in their

amount and concentration in different parts of the plant (Palá-Paúl 2002, 2006; Ayoub, Kubeczka &

Nawwar 2003; Brophy et al. 2003; Ayoub et al. 2006). The main components of the aerial parts are

germacrene D (43%) and 9-muurolen-15-aldehyde (20%) and in the roots γ-guaiene (40%), 2,3,4-

trimethyl-benzylaldehyde (24%) and germacrene D (10%) (Palá-Paúl et al. 2005 a; b). Major

compounds consisting of more than 2% of the total amount of essential oils in the leaves are α-

pinene, germacrene D, bicyclogermacrene, germacrene B and δ-cadinene (Machado et al. 2010).

Further components are described by Muckensturm et al. (2010). Eryngium species contain

coumarins (Erdelmeier & Sticher 1985), betaines (Adrian-Romero et al. 1998) and tannins (Dinan,

Savchenko & Whiting 2001).

Eryngium species are well-known worldwide in traditional medicine. They provide raw

materials for Eryngii herba and Eryngii radix, both of which are herbal medicines. Extracts from

aerial and root parts of Eryngium species show anti-inflammatory and antinociceptive activity, and

are used in folk medicine as an antitussive, analgesic, diuretic, appetizer, stimulant and aphrodisiac

(Lisciani et al. 1984; Küpeli et al. 2006; Thiem & Wiatrowska 2007). Moreover, Eryngium species

22

Page 23: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

possess antimicrobial (Meot-Duros, Le Floch & Magné 2008), mainly antimycotic, qualities

(Barbara Thiem pers. comm.).

VII. Phenology

Growth of Eryngium maritimum each year starts with the development of one or more basal leaves.

A flowering stem develops at the centre of the basal rosette. In the northern part of its distribution,

the basal leaves remain until late autumn, dying back as late as November (Eberle 1979), whereas

in the Mediteranean the leaves die back during summer (Giovannetti 1985). In the southern part of

Britain the flowering period extends from June/July to August (Tutin 1980; Fitter & Peat 1994).

However, the flowering season varies with climatic region, according to temperature, with a

gradient (Table 4) across Europe. Flowering starts as the average daily maximum temperature

reaches 18-23 °C, and starting during April/May on the south Mediterranean coast. Along the

north-east Mediterranean coast the flowering season starts about one month earlier than on the

north west Mediterranean coast. Similarly, along the Atlantic coast in the south up to France, the

flowering season begins about one month earlier than along the North Sea and the Northern

Atlantic coasts. Along the coast of the Swedish Skagerrak (Bohuslän) the main flowering time is

July to August (Korhonen 2011). It seems that along the northern Atlantic and the Baltic Sea coasts,

the main flowering period is shorter. The time between anthesis and dissemination is on average

78.6 days (Burmester 2010). Ripening of seeds occurs along the German North Sea coast during

September and October (Eberle 1979), and finally along the Baltic in late September and October

(Olšauskas & Olšauskaite Urboniene 1999; Avižienė, Pakalnis & Senzikaite 2008). The onset of

germination and the growing season show similar geographicaal patterns throughout Europe, again

beginning in the Mediterranean area (Gratani, Fiorentino & Fida 1986). The decay of the above-

ground parts of the plant starts in Italy as early as August (Gratani, Fiorentino & Fida 1986).

VIII. Floral and seed characters

(A) FLORAL BIOLOGY

Flowers

The flowering plant produces one terminal umbel that is larger and flowers earlier than the other

umbels (Burmester 2010). The inflorescence is a dense, subglobose or ovoid capitulum, 1.5-3 cm in

length and an average of 2 cm across (Bodkin 1986; Stace 2010) with ovate, spiny bracts. The

inflorescence is pale blue to conspicuously amethystine. Each inflorescence contains 25-50,

pedicellate, inconspicuous five-petalled flowers. Sepals are 4-5 mm long, ovate-lanceolate, aristate,

and bluish. Petals are light blue, each about 10 mm long. Flowers are composed of purplish-bluish

filaments, sometimes more pink (Sell & Murrell 2009). The bracteoles are 3-cuspidate, nearly

23

Page 24: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

three-lobed, greenish above and below, never bicoloured, 2.5-4 cm in length, herbaceous or

coriaceous, and ovate or ovate-lanceolate (Mathias & Lincoln 1941). In the axils of the bracts,

branches (paraclades) develop up to a third order, with further flower heads on these. Thus a whorl

develops below the terminal umbel. Fertile seeds develop mainly in the upper flower heads. The

number of flower heads is usually, but not necessarily always, larger in older individuals

(Burmester 2010). The close agglomeration of flowers in a flower head and the coloured bracts

serve to attract insects (Hegi 1975). During the flowering season, cells enclose anthocyanins which

cause the colour and dissipate with drying at the end of the growing season (Eberle 1979).

The ovary is epigynous with an anatropous ovule. Nectar glands, with nectar of high glucose

content (about 2%), occur on a disc at the base of the flowers (Eberle 1979). Flowering starts with

the basal flowers of the inflorescence and procedes upwards (Eberle 1979). The flowers are

protandrous (Bell 1971), and the style is receptive 3-5 days after anthesis (Burmester 2010).

Flowers are usually cross-pollinated but selfing is possible (Klotz, Kühn & Durka 2002).

Pollen

Studies from the Mediterranean to the North Sea demonstrate homogeneity in the size of the pollen

grains (polar axis and equatorial diameter) within one inflorescence but great variation within one

plants and within populations (Van der Pluym & Hideux 1977). Pollen size varies in an individual

plant, depending on the position of the flowers in the inflorescence, and the hierarchical level in the

umbel. (Van der Pluym & Hideux 1977). The pollen is subrectangular, with an endocolpus

(transverse furrow vertical to the equatorial level), distinctly elongated, and sometimes fused into

an endocingulum (describing a pollen grain with a continuous endoaperture around the equator).

The ectocolpus is long, and the costae broad. The mean polar axis (P) (silicone oil/gylcerine jelly)

is 44.5-50.5 µm, and the equatorial diameter (E) is 24.0-25.0 µm, resulting in a P/E ratio mean of

1.96-1.85 (Van der Pluym & Hideux 1977; Punt 1984). Van der Pluym & Hideux (1977) show light

and scanning electron microscopy micrographs.

Eryngium maritimum generally has low pollen production; thus in Turkey the pollen is a regular

but minor component in honey and reaches 4% of the total amount (Silici & Gökceoglu 2007).

Insects probably visit the flowers particularly for nectar (Bell 1971).

Pollinators

Eryngium maritimum is pollinated by generalist insects (Halvorsen 1982; Fitter & Peat 1994). Its

sand-dune habitats are important for bees (e.g. Grace 2010), wasps and ants because they are

mainly thermophilous. Bivoltine insects are especially dependent upon pollen and nectar produced

by plants with long, or such as in the case of E. maritimum, late flowering periods (Howe, Knight &

Clee 2010).

24

Page 25: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Insects visiting E. maritimum include many Hymenoptera. Some species such as Colletes floralis

E. show a preference for Apiaceae pollen, particularly in coastal areas (Westrich 2001). It is visited

by bees such as Megachile maritima Kirby (De Rond 2009) and Sphecodes albilabris F., bumble

bees including Bombus distinguendus Mor., B. lapidarius L., B. lucorum, B. soraensis F., and B.

terrestris L., as well as diggerwasps such as Ammophila sabulosa L. and Cerceris arenaria L.

(Hegi 1975; De Rond 2009). The carpenter bee Ceratina cyanea Kirby was observed only once on

Eryngium maritimum by Terzo, Iserbyt & Rasmont (2007).

Diptera such as Syrphus ribesii L., S. umbellatarum F., and Sarcophaga carnaria L. are long-

tongued and could be pollinators of Eryngium maritimum (Hegi 1975). Among the Lepidoptera, the

butterflies Cynthia cardui L., Lycaena semiargus Rott., Polygommatus phlaeas L., Pyrameis

atalanta L. and Vanessa atalanta L., V. urticae L., and species of the Pieridae, as well as the moth

Autographa gamma L., are pollinators of Eryngium maritimum (Eberle 1979; Hegi 1975).

Coleoptera including Notoxus monoceros L. (Bucciarelli 1977) and Macrosiagon tricuspidatum

Lepechin occur generally on the flowers of Apiaceae, but with preference for Eryngium maritimum

(Zanella et al. 2009). The heteropteran Graphosoma semipunctatum F. also visits the flowers

(Ribes & Sauleda 1979).

(B) HYBRIDS

Many species of the Eryngium are polyploids and thus natural hybrids are probably common

(Calviño, Martínez & Downie 2008), but hybrids of E. maritimum are generally not known.

However, there are records of a hybrid between E. maritimum and E. campestre (= Eryngium x

rocheri Corb. ex Guétrot) in France (Stace 1975; Wörz 1999), and in the region of Valencia, Spain

(Aparicio Rojo 2002).

(C) SEED PRODUCTION AND DISPERSAL

Seed production

The terminal flower heads usually produce c. 35 fruits, each with two mericarps, whereas flower

heads of the second order have c. 17 fruits. Individuals that flower for the first time and with one

inflorescence can produce 100-150 fruits. Older, richly branched individuals with many

inflorescences can produce c. 750 fruits, and rarely up to 4500 fruits (Burmester 2010).

The fruit is a schizocarp consisting of two mericarps containing one seed each. Wings are absent

or weakly developed, but the fruit has hooked bristles (Fig. 4e) (Stace 2010; Liu, van Wyk &

Tilney 2003). In contrast to other species of the Apiaceae, carpophores are missing, and the

mericarps are often dispersed together (Chater 1968; Wołk 1973; Halvorson 1982; Curle,

Stabbetorp & Nordal 2007). As in other species of the subfamily Saniculoideae, the mesocarp

25

Page 26: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

contains scattered druse crystals of calcium oxalate, distuingishing E. maritimum from species of

the Apioideae (Magee et al. 2010).

The average individual mass seed (air-dry) is 17.5 mg (Royal Botanic Gardens Kew 2008) but

dterminations vary between 11.5 mg and 14.4 mg (Fitter & Peat 1994; Hitchmough, Kendle &

Paraskevopoulou 2001) up to 25.8 mg (Barclay & Earle 1974).

Seeds of plants growing on shingle risk destruction in such a high-energy environment, or may

fall through the large voids in the coarsely textured substrate to a depth where germination or

emergence will fail (Davy, Willis & Beerling 2001). Hence, shingle species tend to have

significantly heavier seeds than phylogenetically related, non-shingle species (Salisbury 1974;

Davy, Willis & Beerling 2001). The seed mass of Eryngium maritimum (12.9 mg) was found to be

similar to Honckenya peploides (12.8 mg), but lower than the associated species Crambe maritima

(146.0 mg) and Lathyrus japonicus ssp. maritimus (36.1 mg) (Davy, Willis & Beerling 2001).

Dispersal

The dispersal ecology of Eryngium maritimum has not been studied in detail. One main means of

dispersal is by wind (Eberle 1979; Avižienė, Pakalnis & Senzikaite 2008). This requires the fruits to

stay attached for a relatively long time on the flower head (Hegi 1975). At the end of the growing

period the stems become brittle and break off easily (Curle, Stabbetorp & Nordal 2007). The dry

plants as a whole may roll along the beach and other open areas, as a ‘tumbleweed’ (Curle,

Stabbetorp & Nordal 2007), similarly to Cakile maritima. Seed dispersal may take place by sea

(‘thalassochory’; Rappé 1996; 1997), and so it seems possible that long-distance dispersal occurs

along the coast or between islands. Bouyancy of the fruits of E. maritimum in seawater is aided by

their hooked bristles, soft inner wall with oil-bodies (Stace 2010) and long dry persistent sepals

(Fig. 4e; Calviño, Martínez & Downie 2008). The ability to float lasts up to 14 days (Curle,

Stabbetorp & Nordal 2007), with the mean floating period being between 2 and 4 days (Praeger

1913; Ridley 1930). Cold-treated fruits sank earlier than fruits without cold treatment (Curle,

Stabbetorp & Nordal 2007).

The generally poor buoyancy meants that long-distance dispersal in the sea is more limited than

would be expected from its distribution range; the fragmented distribution of the species suggests

that short-distance dispersal dominates, and that long-distance dispersal is probably unusual (Curle,

Stabbetorp & Nordal 2007). Nevertheless, the geographic distribution of genetic lines indicates that,

sea dispersal is the major means of long distance dispersal (Weising & Freitag 2007).

The ability to float also enables Eryngium maritimum to colonize strandlines (Rappé 1996;

1997), together with similar sea-dispersed species such as Cakile maritima, Calystegia soldanella,

Elytrigia juncea, Euphorbia paralias, E. peplis, Medicago marina, Achillea maritima, Pancratium

maritimum and Salsola kali (García-Mora, Gallego-Fernández & García-Novo 1999). Such species

26

Page 27: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

tolerate exposure to seawater well. When 20 seeds of each species were experimentally floated in

sea water for 40 days, the following germinated: Pancratium maritimum (14), Cakile maritima

(13), Salsola kali (12), and Eryngium maritimum (10) (Praeger 1913; Ridley 1930). Epizoochorous

dispersal by small animals such as mice and birds such as Carduelis carduelis L. (Goldfinch) seems

possible, because of the spiny attachments of the fruit (Lübbe 1909; Ridley 1930; Eberle 1979;

Halvorsen 1982), but it has not been reported.

(D) VIABILITY OF SEEDS: GERMINATION

The percentage of infertile seeds varies from year to year from 11 to 34% (Walmsley & Davy

1997a) and is sometimes up to 60% (Avižienė, Pakalnis & Senzikaite 2008). Seed germination

success is low in comparison to other coastal plant species e.g. Crambe maritima, Glaucium

flavum, Lathyrus japonicus ssp. maritimus, and Rumex crispus and under field conditions achieves

c. 5% (Walmsley & Davy 1997a; Walmsley 2004) or 11% (Jankevičienė 1978).

The low germination rate is probably caused by the sclerenchymatous fruit wall not becoming

moist enough for germination in dry sand (Frisendahl 1926; Curle, Stabbetorp & Nordal 2007).

Cold stratification (8 weeks at 5-6 °C or 6 weeks at 2 °C) softens the pericarp and testa (Walmsley

& Davy 1997a) and raises germination rates to c. 25% under a diurnal day/night temperature

regime of 25/15 °C (Walmsley & Davy 1997a; Kļaviņa, Gailīte & Ievinsh 2006). Germination can

be as high as 50% after warm stratification (2 weeks at 24 °C, and removal of the seeds from the

seed coat) and following cold stratification (8 weeks at 5 °C) (Kļaviņa, Gailīte & Ievinsh 2006).

Walmsley & Davy (1997a) found that further cold stratification up to 14 weeks resulted in a decline

of the germination rate but Necajeva & Ievinsh (2013) reported an increasing rate up to 16 weeks.

Like other shingle and sand-dune species such as Crambe maritima, Glaucium flavum,

Honckenya peploides, Lathyrus japonicus ssp. maritimus and Rumex crispus, Eryngium maritimum

germinates readily in diurnally alternating temperature regimes (Walmsley & Davy 1997a). For

example, the germination rate of cold-stratified (8 weeks at 6 ºC) seeds of E. maritimum increased

from 56% to 83% due to the change from a constant temperature (16 °C) to a diurnal temperature

regime (23/9 °C) (Royal Botanic Gardens Kew 2008). The optimal germination of E. maritimum is

in a diurnal temperature regime of 20/10 °C, which in Britain corresponds with temperatures during

May and June (Walmsley & Davy 1997 a, b). This probably represents a limitation for its northern

distribution (Curle, Stabbetorp & Nordal 2007). Eryngium maritimum, like other shingle and sand

dune species, has innate seed dormancy and germinated in good numbers only in a relatively

narrow temperature range of 15-23 °C (Walmsley & Davy 1997a), whereas Glaucium flavum and

Lathyrus japonicus ssp. maritimus germinated well over a wider temperature range (9-30 °C)

(Walmsley 1995).

27

Page 28: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Germination rate was similar across a range of different substrates (Hitchmough, Kendle &

Paraskevopoulou 2001). Increasing salinity reduced germination (Woodell 1985) and inhibited it at

about 300 mM NaCl, as a result of osmotic effects limiting imbibition or toxic effects of absorption

of ions such as Cl- (Walmsley & Davy 1997a). However, E. maritimum fruits can resist seawater

for long periods, and 55% - 73% of seeds kept in seawater for 36-40 days remained viable (Preuß

1911; Ridley 1930; Calviño, Martínez & Downie 2008).

Seeds collected from the ground on 10 October 2009 on the island of Spiekeroog, Germany,

were stored in moist conditions at 4 °C in a fridge. Four months later they were sown in sand

collected from the field site and left in a greenhouse at c. 20 °C. Four weeks later on 9 March the

first four seedlings sprouted, and five weeks later on eight additional seedlings sprouted; the last

once germinated six weeks after sowing. These results are similar to other studies which found the

first germination 18-28 days after sowing (Hitchmough, Kendle & Paraskevopoulou 2001; Kļaviņa,

Gailīte & Ievinsh 2006; Curle, Stabbetorp & Nordal 2007), a peak at 131 days, and final emergence

after 146 days (Hitchmough, Kendle & Paraskevopoulou 2001). The 19 weeks between the first and

last germination represents the whole summer season in the field and probably represents a trade-

off between the risk of germinating too early and the loss of fecundity by starting too late in an

unpredictable environment (Curle, Stabbetorp & Nordal 2007).

Dry and cold conditions, especially in combination with deep sand burial during the first year,

reduce seedling survival (Weeda 1987). However, moderate sand burial supports the establishment

of seedlings (Bengtsson, Appelqvist & Lindholm 2009). In pot and laboratory experiments,

seedling survival rates during the first 4 months are high, up to 100% of germinated seeds

(Hitchmough, Kendle & Paraskevopoulou 2001; Kļaviņa, Gailīte & Ievinsh 2006).

Eryngium maritimum maintains a persistent seed bank for at least three years, where 36%

germinate in the first year, 11% in the second and 1.5% in the third year (Burmester 2010). Seed

storage at a low temperature (5 °C) in the dark and at constant low humidity for 7 years did not

break dormancy, but the percentage of viable seeds (TTC test) declined with storage time from

about 80% after one year to only 20% after seven years (Walmsley & Davy 1997a; Walmsley

2002).

(E) SEEDLING MORPHOLOGY

Eryngium maritimum has epigeal germination (Erikson 1896). In experiments, seedling

development was variable, probably in response to temperature. The cotyledons developed after 1 -

3 months (Fig. 6 a, b), the primary foliage leaf (Fig. 6 c) at 1.5 - 4 months, the second leaf (Fig. 6 d)

at 2 - 5 months, and the third/fourth (6th) basal leaves within 4 - 7 months. During the first year, the

seedling usually develops 3-4, rarely 5-6, leaves (Burmester 2010). The first internodes are close

28

Page 29: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

together, and the leaves are small (Erikson 1896). The primary foliage leaf has the typical dentate

edge.

The primary root thickens some weeks after germination to develop a rootstock for storing

assimilated substances. Seedlings germinating in autumn probably show a higher mortality, in

contrast to adult plants with a well-developed rootstock (Pütz & Sukkau 2002), because of poor

development of the primary root (Burmester 2010).

IX. Herbivory and disease

(A) ANIMAL FEEDERS OR PARASITES

Invertebrates

A small number of phytophagous insects is associated with Eryngium maritimum (Table 5). Only

the micro-moth Agonopterix cnicella and the noctuid moth Agrotis ripae appear to be specific to E.

maritimum. Caterpillars of the butterfly Papilio machaon have been reported as herbivores on the

leaves in Sweden; however, in laboratory experiments, there was no oviposition and larvae did not

feed on the leaves (Wiklund 1975).

The essential oils in E. maritimum might confer some protection against invertebrates (Hicks 1895),

particularly as agromyzids are absent. The exploitation by a microlepidopteran shows that chemical

barriers are not entirely effective (Lawton & Price 1979). Similarly, the larvae of Papilio machaon

feed on E. maritimum even though it contains the linear furanocoumarin xanthotoxin, which is toxic

to generalist lepidopterous larvae (Crowden, Harborne & Heywood 1969; Berenbaum 1981).

Phyto-ecdysteroids, presumed to be the cause of avoidance by invertebrate predators, occur in the

seeds as well as in the leaves of Eryngium maritimum, and reach high concentrations, above 1 mg

ecdysone equivalents g-1 in roots (Dinan, Savchenko & Whiting 2001).

Although the spiny leaves are seen as defences agianst caterpillars and snails (Hegi 1975), in

Portugal the snail Theba pisana was found on E. maritimum and on other dune species (Clarke &

Beaumont 1992).

Vertebrates

Birds such as the Goldfinch Carduelis carduelis L. eat the seeds of Eryngium maritimum (Lübbe

1909). Some species of small rodents may also eat the seeds (Maike Isermann pers. obs.). The

rootstocks, which are rich in carbohydrates, are also eaten by larger animals, for example by wild

boars (Ursus arctos L.) in Lithuania (Avižienė, Pakalnis & Senzikaite 2008).

(B) PLANT PARASITES

29

Page 30: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Ascomycota

Ascomycete fungi, such as Mycosphaerella eryngii (Fr. ex Duby) Johanson ex Oudem

(Capnodiales), are probably more closely associated with Eryngium maritimum than the

basidiomycetes. Pleospora herbarum (Pers.) Rabenh. (Pleosporales) fruits on E. maritimum leaves

of the previous year (Stoykov & Assyov 2008; Jörg Albers pers. comm.). Another plurivorous

fungus, Diaporthopsis angelicae (Berk.) Wehm. (Diaporthales), is recorded from damaged plants of

E. maritimum (Ellis & Ellis 1997). Many other fungi are host non-specific and occur on various

dead or damaged plants species including E. maritimum (British Mycological Society 2012).

Basidiomycota

Entyloma eryngii (Corda) de Bary (Entylomatales) is rarely found associated with Eryngium

maritimum, but is rare and mainly found in September (Ellis & Ellis 1997). Pleurotus eryngii (DC.)

Quél. (Agaricales), an edible oyster mushroom, is associated with a wide range of genera of

Apiaceae (Bresinsky et al. 1987). Pleurotus eryngii var. eryngii is associated with E. campestre

(Hilber 1982) in Central Europe and, although not recorded on E. maritimum in the wild, it is

grown on it experimentally (Lutz 1925; Hilber 1982; Bengtsson, Appelqvist & Lindholm 2009;

Jörg Albers pers. comm.).

Vascular plants

Orobanche minor ssp. minor is parasitic on the roots of Eryngium maritimum in Britain and Ireland

(Rumsey 1991; Hipkin 1992; O’Mahony 1992; Jackson 1995; Anderson 1997; Rumsey 2007),

where it has a predominantly southern-eastern distribution that extends discontinuously west and

north-west (Hipkin 1992). Despite its wide host range in coastal areas, it occurs nearly exclusively

on E. maritimum in Ammophila arenaria communities on mobile dunes (Hipkin 1992). On

Menorca, O. iammonensis similarly parasitizes E. maritimum (Pujadas-Salvà & Fraga I Arguimbau

2008).

(C) PLANT DISEASES

No diseases on Eryngium maritimum are known.

X. History

Records in the British Isles

In the British Isles Eryngium maritimum was recorded first by W. Turner in The names of herbs

(1548), where he noted that “Eryngium is named in englishe sea Hulver or sea Holly, it groweth

plentuously in Englande by the sea syde” (Britten et al. 1965). Walcott (1861) describes many

historical locations. It disappeared from many sites in north east England and eastern Scotland

30

Page 31: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

before 1930 and declined further up to 1986, with a change index score of -0.8 (Preston, Pearman &

Dines 2002).

Taxonomy

Eryngium L. comprises about 250 species worldwide (Wörz 2005). Most occur in Central and

South America, with 25-26 species in Europe (Stasiak 1986; Wörz 1999; 2004; Küpeli et al. 2006;

Muckensturm et al. 2010); the genus is absent from southern and tropical Africa (Heywood 1971).

Taxonomic relationships within the genus Eryngium were studied by Jarvis et al. (1993) and Wörz

(2004, 2005). Eryngium maritimum was described by Linnaeus in Species Plantarum I: 233 (1753).

The name Eryngium derives from the Greek, probably based on Theophrastus (300 BC) who

described it as a spiny plant, ‘Eryngion’ (Blindow 2006), or the name may have developed from the

Greek ‘eruggarein’ meaning to eructate (belch), because the plant was used against various

disorders (Huxley & Taylor 1989).

Paleobotany

Most pollen diagrams distinguish Apiaceae pollen, but records explicitly for Eryngium maritimum

are not available even though the pollen is a distinctive morphotype together with E. alpinum (Beug

2004). Eryngium-type pollen is mentioned for Crete (Greece) (Bottema & Sarpaki 2003). The

palaeobotanical study of ancient Carthage found Eryngium-type pollen that is possibly E.

maritimum. This dates back to the Roman and Byzantine periods (Van Zeist, Bottema & Van der

Veen 2001).

Phylogeography

Genetic and geographic distances along European coasts are well correlated, reflecting the fact that

dispersal is mainly along the coast (Westberg 2005). Along the Latvian Baltic coast, there was no

such correlation, suggesting little differentiation between populations at this smaller scale (Ievina et

al. 2007). On the 150 km coastline of the Gulf of Gdańsk, genetic diversity is very low and genetic

distance is related to the direction of sea currents influenced by the western winds (Minasiewicz et

al. 2011). Taking the Baltic Coast from Poland to Finland, including the Swedish Islands Gotland

and Öland, on the margin of the distribution range in Northern Europe the genetic diversity between

and within populations is very low (Ievina et al. 2010).

In Europe, the geographical clusters are more or less related to marine basins (Westberg 2005).

There are two main geographical groups: an Atlantic and a Mediterranean one. Populations along

the Atlantic, the North Sea and the Baltic Sea form a distinct group, which can divided into three

subgroups: a southern Atlantic one from La Coruna to Cadiz, Spain; a W. Atlantic one around the

Bay of Biscay and one from Brittany northwards to the Baltic Sea including the British Isles. The

Mediterranean group is also divided into three subgroups: populations of the western Mediterranean

31

Page 32: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Sea, from the strait of Gibraltar to the Adriatic Sea and to the Ionian Sea; the Aegean Sea; and the

Black Sea.

The genetic variation in the Atlantic group is slightly lower than in the Mediterranean group, and

the correlation between genetic and geographic distance are marginally better in the Mediterranean

cluster. The low genetic variation of the Atlantic group was caused by bottleneck events and

founder effects during the colonisation history. Climatic changes during glaciations have played a

major role in determining the present patterns of genetic variation of E. maritimum. During recent

glaciations (115,000-10,000 years ago), the southern limit of permafrost nearly reached Spain at the

Atlantic Coast, and E. maritimum would have retracted from its present-day northern distribution

area (Clausing, Vickers & Kadereit 2000). If E. maritimum disappeared during glaciation from the

Atlantic coast, the post-glacial re-colonisation from the Mediterranean refuge to northern Europe

eventually occurred, stepwise, with a linear dispersal lalong the Atlantic coast. Thus a linear

distribution modal could explain lower genetic diversity in Atlantic populations compared to

Mediterranean populations, and the strong genetic differentiation between them probably reflects

past geographical separation, even though the populations are now spatially continuous and

probably connected by gene exchange (Clausing, Vickers & Kadereit 2000).

The colder climate in the north western Mediterranean during glaciations did not result in

extinction, but probably in a geographical isolation of Eryngium maritimum populations. Recent

phylogenetic relations in the continuous Mediterranean distribution area are explained by the

preferential seed and fruit dispersal by seawater in combination with present-day sea currents. This

applies particularly to the Gibraltar gap, but also to differentiation between Adriatic and

Aegean/Black Sea distributions (Clausing, Vickers & Kadereit 2000; Kadereit et al. 2005;

Westberg 2005; Kadereit & Westberg 2007; Weising & Freitag 2007; Westberg & Kadereit 2009).

Human culture

Eryngium maritimum is often represented in paintings and other art e.g. scientific paintings in the

Libri picturati collection (Vol. 27/folio 51, water-coloured) made in the Netherlands and stored in

the Biblioteka Jagiellońska, Uniwersytet Jagielloński, Kraków, Poland. These paintings are from

the second half of the 16th century and the beginnings of the 17th century and were annotated by

the famous Flemish botanists like Charles de l’Écluse (Carolus Clusius) (1526–1609)

(Zemanek & Zemanek 2006; Zemanek, Ubrzizsy Savoia & Zemanek 2007). Recent examples

include works by the Irish artist Patrick O’Hara, the printed on postage stamps such as the 1967

Belgian one franc stamp (Robyns 1976), and the 1969 twenty five pfennig stamp in the former

German Democratic Republic.

32

Page 33: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Eryngium maritimum is mentioned in plays and poems, notably the ‘The Merry Wives of

Windsor’ by Shakespeare (Bloom 1903), and in the ‘Italian Journey’ by Goethe (Albrecht &

Scheurmann 1997).

Eryngium maritimum has been grown in gardens since medieval times, e.g. the gardens of the

Westminster Abbey (Harvey 1992), in private gardens since at least 1525 (Harvey & Jones 1972;

Harvey 1989), and in botanical gardens, since c. 1683 in the Physic Garden of Edinburgh

(Robertson 2001). It is still used in gardens in the UK (Hamilton, Hart & Simmons 2000).,

In Europe, the roots, young shoots and leaves of Eryngium maritimum were eaten particularly

during the 17th and 18th centuries (Holland 1919; Facciola 1998; Pistrick 2002; Chatterjee 2005;

Blindow 2006; Allen 2007), but they are still in use occasionally in Mediterranean regions (Della

2000). Eryngium maritimum has had numerous medical uses, especially during the medieval period.

The roots in particular, but also the stems and leaves were used as an anti-toxin against various

infections and diseases of humans as well as animals (Salisbury 1816; Woodward 1931; Liscani et

al. 1984; Mathias 1994; Vonarburg 2001; Anderson 2004; Chatterjee 2005; Le Claire et al. 2005;

Azaizeh et al. 2006; Meot-Duros, Le Floch & Magné 2008:258; Popov 2008; Watson & Preedy

2008). Furthermore, it was used in the Mediterranean against snake and scorpion bites (Sezik et al.

1997; Töngel & Ayan 2005; Küpeli et al. 2006; Çelik, Aydınlık & Arslan 2011). The medicinal use

is based on saponins, essential oils, cumarins, flavonoids and organic acids present in the root

(Vonarburg 2001). Dried roots for medicinal use are known as ‘Radix Eryngii maritimi’ (Hegi

1975).

XI. Conservation

In many coastal regions Eryngium maritimum is one of the rarest and most threatened plant species,

and is therefore listed in Red Data Books (e.g. in Lithuania, Estonia, Norway, Israel, along the

Russian Black Sea; Balevičius 1992; Paal 1998; Fremstad & Moen 2001; Sapir, Shmida & Fragman

2003; Seregin & Suslova 2007). However, in Britain it is assessed as not threatened (Leach &

Rusbridge 2006) and its status is ‘least concern’ (Cheffings, Farrell & Dines 2005).

Since the beginning of the 20th century Eryngium maritimum has been threatened with local

extinctions in Europe (Krause 1906; Preuss 1911; Stasiak 1986) and it has been protected by law

(Preuß 1906; Ćwikliński 1979; Avižienė, Pakalnis & Senzikaite 2008). In Germany

(Bundesartenschutzverordnung 2005) and The Netherlands collection has been prohibited since

1973. However, it is not included in the EU Habitats and Species Directive (Council Directive

1992).

In Europe there has been a drastic decline in the number of populations (Halvorsen 1982) as well

as in the number of individuals (Balevičienė, Lazdauskaite & Rasomavicius 1995; Ėringis &

33

Page 34: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Pancekauskienė 1995; Olsson & Tyler 2001; Żółkoś et al. 2007). Herbarium specimens provide

evidence of the loss of many populations in Europe (Barriocanal & Blanché 2002; Skarpaas &

Stabbetorp 2003). Vvarious inventories document the decline, for example in Poland (Ćwikliński

1979; Piotrowska 2002; Łabuz 2007; Żółkoś et al. 2007), at the Curonian Spit (Olšauskas 1996;

Olšauskas & Olšauskaite Urboniene 1999; Olšauskas & Urbonienė 2008), along the German Baltic

coast (Burmester 2007), in Sweden (Bengtsson, Appelqvist & Lindholm 2009; Fröberg 2010), and

in Norway (Halvorsen 1982; Pedersen 2002).

Threats

Eryngium maritimum is threatened in several ways by human impacts. Collection for home

decoration was, and still seems to, be significant in some locations (Liebe 1880; Abromeit, Neuhoff

& Steffen 1898; Preuß 1906; Stichting Duinbehoud 1983; Ćwikliński 1979; Weeda 1987;

Moeslund 1994; Skarpaas & Stabbetorp 2003; Curle, Stabbetorp & Nordal 2007; Avižienė,

Pakalnis & Senzikaite 2008).

Habitat loss, disturbance, fragmentation and decline in habitat quality are the main threats to

Eryngium maritimum. Coastal beaches, shingle and dunes can be destroyed by seaside tourism,

recreational use, construction activities, waste disposal, agriculture, river dams, uncontrolled sand

and gravel exploitation, beach management, afforestation, coastal erosion especially as a

consequence of sea level rise, and coastal protection measures (Ćwikliński 1979; Piotrowska &

Stasiak 1984; Piotrowska 1995; 2002; Urbanski 2001; Kull et al. 2002; Buskovic et al. 2004;

Spanou et al. 2006; Łabuz 2004; 2007; Burmester 2007; Żółkoś et al. 2007; Avižienė, Pakalnis &

Senzikaite 2008; Erginal et al. 2008; Speybroeck et al. 2008; O’Sullivan 2010; Rovira Rojas &

Romagosa Casals 2010).

Tourism and the growth of tourist infrastructure cause habitat loss for Eryngium maritimum

(Goldsmith, Munton & Warren 1970; Łabuz 2007; Rovira Rojas & Romagosa Casals 2010). These

changes often lead to increased trampling and other mechanical damage that threatens the plant

(Eberle 1979; Olšauskas 1996; Olšauskas & Olšauskaite Urboniene 1999).

Land-use changes are important. Stabilisation of dunes promotes older successional stages, for

instance dense grasslands with Carex arenaria and shrublands with Hippophaë rhamnoides in

which E. maritimum is outcompeted ,(Van der Laan 1985). Invasive species, such as Rosa rugosa

(Fig. 3c) in north west Europe (Burmester 2007), Amorpha fruticosa along the Black Sea coast,

Pinus spp. in various regions and Acacia longifolia on the Mediteranean coast have similar adverse

impacts upon species of early successional stages. Woodland and forestry plantations, intended to

stabilise dunes for coastal protection purposes have similar effects (Ćwikliński 1979; Piotrowska &

Stasiak 1984; Stasiak 1986; Piotrowska 2002; Łabuz 2004; 2007). Eryngium maritimum is further

threatened by a decline in livestock grazing (Stephan 2006; Burmester 2007), which supports open

34

Page 35: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

dune vegetation, although high densities of grazers such as rabbits Oryctolagus cuniculus L. are

counter-productive (Burmester 2007; Bengtsson, Appelqvist & Lindholm 2009).

The distribution of Eryngium maritimum will probably be affected by temperature changes

related to projected climate change, extending (Metzing 2005), and increasing in frequency,

northward (Bengtsson, Appelqvist & Lindholm 2009). However, it has declined in the Scotland and

northern England in the last century and, recently, this has been associated with a trend towards

higher rainfall since the 1950s (Ranwell 1972; Tutin 1980; Rich & Woodruff 1996; Preston 2007).

However, it is difficult to distinguish the cause from inof the decline, a complex of environmental

changes, including combined effects of climate and landuse change and as well as habitat loss.

Climate change with concomitant rise in realtive realtive sea level is leading to marine erosion

in many. This may result in habitat loss for Eryngium maritimum. Moreover artificially

reconstructed sea defences rarely allow the establishment of semi-natural dune vegetation it

requires (Łabuz 2004; O’Sullivan 2010).

The fragmented populations of Eryngium maritimum are threatened by their temporal and spatial

variation in their population size (Curle, Stabbetorp & Nordal 2007). On the German Baltic coast,

the two largest populations comprise about 80% of the total individuals (Burmester 2007),

presenting an increased risk from stochastic disturbances and, probably, reduced fitness, effects that

would be more significant at the margins of its range (Bengtsson, Appelqvist & Lindholm 2009;

Tsaliki & Diekmann 2009). The level of genetic variation might affect population sustainability

(Curle, Stabbetorp & Nordal 2007). Frequent suitable locations are necessary, with at least 50

individuals in the short term and at least 500 in the long term at any single site to ensure population

viability. Because the genetic variability of Eryngium maritimum is low, relatively small numbers

of individuals would be sufficient for survival at any one location (Bengtsson, Appelqvist &

Lindholm 2009).

Conservation measures

Conservation measures should include protection against mechanical damage and the

maintainenance of moderate sand accretion achieved through a naturally dynamic dune system

(Bengtsson, Appelqvist & Lindholm 2009) and might embrace stock grazing, provided that this

avoids damage by trampling at overly high stock densities (Weeda 1987). Where management

damages Eryngium maritimum (Nordstrom 2000), it is advisable to collect seed before management

operations for use in re-establishment afterwards, as is practised along parts of the German Baltic

coast (Sonja Leipe pers. comm.). The removal of driftline material as a propagule source and

nutrient supply for the establishment of new populations of Eryngium maritimum may also affect

the maintenance of established populations (Bengtsson, Appelqvist & Lindholm 2009).

35

Page 36: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Restoration measures

Regeneration, based on the natural soil seed bank appears not to be a reliable method for re-

establishment of Eryngium maritimum (Walmsley 1995; Walmsley & Davy 1997b; 2001).

However, in some dune restoration schemes E. maritimum and other typical dune plants are known

to establish spontaneously by natural regeneration from neighbouring sites (De Lillis et al. 2004;

Escaray et al. 2010; Rozé & Lemauviel 2004; Schreck Reis, Antunes do Carmo & Freitas 2008).

The method of sowing seeds in the field appears to be partially effective in re-establishing

shingle and dune species. Eryngium maritimum germinated at Sizewell, Suffolk, UK between April

and June, after over wintering allowed natural stratification. Nevertheless, total seedling emergence

and survival was low, probably because of drought and high temperature stress during the summer,

and salt-spray effects and tidal inundation during winter (Walmsley & Davy 1997b; 2001).

Planting of container-grown plants seems to be the most successful restoration method for

Eryngium maritimum. Plantings of E. maritimum on a sandy shingle beach in Sizewell, Suffolk,

Britain during April/May, have shown that planting location on the beach/dune profile is the most

important factor that affected establishment; neither organic matter nor fertiliser had significant

effects (Walmsley & Davy 1997c; 2001; Walmsley 2004). Eryngium maritimum has also been re-

established from dunes by plantings in Spain (Sanjaume & Pardo 1991; Escaray et al. 2010; Ley

Vega de Seoane 2010). Young plants can be grown from root fragments (about 6 cm long) from the

main root, as well as from offshoots from nursery plants. Root fragments buried horizontally in

sandy soil during the winter, to a depth of 4-40 cm developed a root systems and leaves in a few

months (Ley Vega de Seoane 2010, and pers. comm.). Nevertheless, there are documented

unsuccessful transplantation efforts to re-establish E. maritimum in dunes restored from cultivation

e.g. at Shingle Street, Suffolk, UK (Heath 1981).

For the restoration of shingle vegetation in general, and Eryngium maritimum in particular, a

well mixed shingle matrix with a good sand content, an available water source, and an area large

enough to establish stable populations are important (Scott 1963; Fuller 1987; Walmsley & Davy

2001; Smith 2009). As E. maritimum is one of the more specialist species, occurring in a relatively

narrow niche, habitat protection and management are important (Jukonienė & Stankevičiūtė 2005;

Speybroeck et al. 2008). Therefore, beach, shingle and dune management must maintain, conserve

and restore the natural values of habitats, having a full appreciation of the importance of the

operation of natural processes to long term viability (Van der Meulen & Salman 1996).

Acknowledgements

The authors wish to record their thanks to Tony Davy for his great support, feedback and patience

in the preparation of this paper. For extensive comments on an earlier manuscript, we thank

36

Page 37: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

particularly Chris Preston and Michael Proctor. We would also like to express our sincere gratitude

to Barbara Thiem and Małgorzata Kikowska (K. Marcinkowski University of Medical Sciences in

Poznań, Department of Pharmaceutical Botany and Plant Biotechnology) for rewriting the

biochemical section of this paper. We thank Colin Harrower (Britain and Ireland) and Erik Welk

(Europe) for preparation of the distribution maps. The large number of other people from many

countries who helped is listed in Appendix S2.

37

Page 38: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

References

Abromeit, J., Neuhoff, W. & Steffen, H. (1898) Flora von Ost- und Westpreußen. Gräfe & Unzer,

Königsberg, Germany.

Adrian-Romero, M., Wilson, S.J., Blunden, G., Yang, M.-H., Carabot-Cuervo, A. & Bashir, A.K.

(1998) Betaines in coastal plants. Biochemical Systematics and Ecology, 26, 535-543.

Akalin Uruşak, E., Özhatay, F.N., Güler, N., Ersoy, H., Başak, N., Yeşil, Y., Oral, D. & Demirci, S.

(2013) The flora of Yıldız Mountains (Kırklareli) Biosphere Project area. Turkish Journal of

Botany, 37, 225-269.

Al-Bermani, A.-K.K.A., Al-Shammary, K.I.A., Gornall, R.J. & Bailey, J.P. (1993) Contributions to

a cytological catalogue of the British and Irish flora, 3. Watsonia, 19, 269-278.

Albrecht, W. & Scheurmann, K. (1997) Reise-Tagebuch 1786 (Italiensche Reise). (ed. S.W.K.C.

Arbeitskreis Selbständiger Kultur-Institute Corporation), pp. 1-440. Von Zabern, Mainz,

Germany.

Allen, G. (2007) The Herbalist in the Kitchen. University of Illinois Press, Illinois, USA.

Anderson, R. (1997) Orobanche minor Smith on sea holly at Inishmaan, Aran Islands. Irish

Naturalists' Journal, 25, 456.

Anderson, T. (2004) Dental treatment in medieval England. British Dental Journal, 197, 419-425.

Andersone, U., Druva-Lūsīte, I., Ieviņa, B., Karlsons, A., Ņečajeva, J., Samsone, I. & Ievinsh, G.

(2011) The use of nondestructive methods to assess a physiological status and conservation

perspectives of Eryngium maritimum L. Journal of Coastal Conservation, 15, 509-522.

Aparicio Rojo, J.M. (2002) Aportaciones a la flora de la comunidad Valenciana, I. Flora

Montiberica, 22, 48-74.

Arve, L.E. (2008) Germination and Growth of Beach Plants: Effects of Temperature, Nitrogen and

Grazing. Masters Thesis, University of Oslo, Oslo, Norway.

Aslan, S. & Kartal, M. (2006) GC-MS Analysis of Eryngium maritimum L. volatile oil. Planta

Medica, 72, 340-341.

Attorre, F., Maggini, A., Di Traglia, M., De Sanctis, M. & Vitale, M. (2013) A methodological

approach for assessing the effects of disturbance factors on the conservation status of

Mediterranean coastal dune systems. Applied Vegetation Science, 16, 333-342.

Avižienė, D., Pakalnis, R. & Sendzikaite, J. (2008) Status of red-listed species Eryngium

maritimum L. on the Lithuanian coastal dunes. Environmental Engineering (ed. Vilnius

Gediminas Technical University), pp. 22-28. Vilnius, Lithuania.

Ayoub, N., Al-Azizi, M., König, W. & Kubeczka, K.-H. (2006) Essential oils and a novel

polyacetylene from Eryngium yuccifolium Michaux. (Apiaceae). Flavour and Fragrance

Journal, 21, 864-868.

38

Page 39: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Ayoub, N.A., Kubeczka, K.-H. & Nawwar, M.A.M. (2003) An unique n-propyl sesquiterpene from

Eryngium creticum L. (Apiaceae). Pharmazie, 58, 674-676.

Azaizeh, H., Saad, B., Khalil, K. & Said, O. (2006) The state of the art of traditional Arab herbal

medicine in the eastern region of the Mediterranean: a review. Evidence-Based Complementary

and Alternative Medicine, 3, 229-235.

Bagella, S. (1985) Indagini floristiche e fenologiche sulle coste settentrionali della Sardegna: la

spiaggia del Liscia. Bollettino della Società sarda di Scienze Naturali, 24, 171-206.

Bakkenes, M., De Zwart, D. & Alkemade, J.R.M. (2002) MOVE - nationaal MOdel voor de

VEgetatie versie 3.2. Achtergronden en analyse van modelvarianten. (ed. RIVM), pp. 1-124.

RIVM, Bilthoven, The Netherlands.

Bakker, J.P. (1976) Phytogeographical aspects of the vegetation of the outer dunes in the Atlantic

province of Europe. Journal of Biogeography, 3, 85-104.

Balevičienė, J., Lazdauskaite, Z. & Rasomavicius, V. (1995) Conservation of botanical diversity in

the Lithuanian coastal region. Coastal Conservation and Management in the Baltic Region (eds

V. Gudelis, R. Povilanska & A. Roepstorff), pp. 43-47. EUCC, WWF Riga, Latvia.

Balevičius, K. (1992) Lietuvos raudonoji knyga: retosios ir nykstančios gyvūnų augalų bei grybų

rūšys. p. 204. Lietuvos Respublikos aplinkos apsaugos departamentas, Vilnius, Lithuania.

Barclay, A.S. & Earle, F.R. (1974) Chemical analyses of seeds III: oil and protein content of 1253

species. Economic Botany, 28, 178-236.

Barriocanal, C. & Blanché, C. (2002) Estat de conservació i propostes de gestió per a Stachys

maritima Gouan a la península Ibèrica. Orsis, 17, 7-20.

Bell, C.R. (1971) Breeding systems and floral biology of the Umbelliferae or evidence for

specialization in unspecialized flowers. Botanical Journal of the Linnean Society, 64, 93-107.

Bengtsson, O., Appelqvist, T. & Lindholm, M. (2009) Åtgärdsprogram för martorn 2008-2012

(Eryngium maritimum). Naturvardsverket Rapport 5940, pp. 1-33. Bromma, Sweden.

Berenbaum, M. (1981) Effects of linear furanocoumarins on an adapted specialist insect (Papilio

polyxenes). Ecological Entomology, 6, 345-351.

Beug, H.J. (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete.

Friedrich Pfeil, München, Germany.

Blackman, G.E. (1935) A study by statistical methods of the distribution of species in grassland

associations. Annals of Botany, 49, 749-777.

Błaszkowski, J., Adamska, I. & Czerniawska, B. (2003) Glomus claroideum and G. spurcum,

arbuscular mycorrhizal fungi (Glomeromycota) new for Poland and Europe, respectively. Acta

Societatis Botanicorum Poloniae, 72, 149-156.

39

Page 40: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Blindow, I. (2006) Pflanze des Monats: Die Stranddistel. Inselnachrichten August, pp. 17-18.

Hiddensee.

Bloom, J.H. (1903) Shakespeare's Garden. Methuen & Co, London, UK.

Bodkin, F. (1986) Encyclopaedia Botanica: the Essential Reference Guide to Native and Exotic

Plants in Australia. Angus & Robertson, North Ryde, Australia.

Böhling, N. (1995) Zeigerwerte der Phanerogamen-Flora von Naxos (Griechenland): Ein Beitrag

zur ökologischen Kennzeichnung der mediterranen Pflanzenwelt. Stuttgarter Beiträge zur

Naturkunde Ser. A (Biologie), 533, 1-75.

Börner, C. (1952) Europae centralis Aphides: die Blattläuse Mitteleuropas. Mitteilungen der

Thüringischen Botanischen Gesellschaft, Beihefte, 3, 265-488.

Bottema, S. & Sarpaki, A. (2003) Environmental change in Crete: a 9000-year record of Holocene

vegetation history and the effect of the Santorini eruption. The Holocene, 13, 733-749.

Bournérias, M. & Wattez, J.R. (1990) Esquisse phytogéographique de la Picardie, France. Journal

of Biogeography, 17, 145-161.

Bowden, W.M. (1945) A list of chromosome numbers in higher plants. II. Menispermaceae to

Verbenaceae. American Journal of Botany, 32, 191-201.

Bresinsky, A., Fischer, M., Meixner, B. & Paulus, W. (1987) Speciation in Pleurotus. Mycologia,

79, 234-245.

British Mycological Society (2012) Fungal Records Database of Britain and Ireland. Available at:

http://www.fieldmycology.net/FRDBI/FRDBI.asp (accessed January 2012).

Britten, J., Jackson, B.D. & Stearn, W.T. (1965) William Turner. Libellus de Re Herbaria 1538.

The names of herbs 1548. Ray Society, London.

Britton, N.L. (1881) A Preliminary Catalogue of the Flora of New Jersey. Rutgers College, New

Brunswick, NJ, USA.

Brophy, J.J., Goldsack R.J., Copeland, L.M. & Palá-Paúl, J. (2003) Essential oil of Eryngium L.

species from New South Wales (Australia). Journal of Essential Oil Research, 15, 392-397.

Bruun, H.H. (2005) Rosa rugosa Thunb. ex. Murray. Journal of Ecology, 93, 441-470.

Bucciarelli, I. (1977) I coleotteri anticidi della Laguna di Venezia. Lavori della Societa` Veneziana

di Scienze Naturali, 2, 15-21.

Bundesartenschutzverordnung (2005) Verordnung zum Schutz wild lebender Tier- und

Pflanzenarten. Bundesartenschutzverordnung vom 16. Februar 2005 (BGBl. I S. 258, 896).

Burmester, A. (2007) Zur Bestandssituation von Eryngium maritimum L. an der Ostseeküste

Schleswig-Holsteins. Floristische Rundbriefe, 40, 63-75.

Burmester, A. (2010) Beiträge zur Biologie und Anatomie von Eryngium maritimum L. (Apiaceae).

Abhandlungen des Naturwissenschaftlichen Vereins zu Bremen, 46, 445-456.

40

Page 41: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Buskovic, V., Macic, V., Saveljic, D. & Ivanovic, A. (2004) National Action Plans produced within

the project Strategic Action Programme for the Conservation of Biological Diversity in the

Mediterranean Region (SAP BIO). pp. 1-42. Mediterranean Action Plan, UNEP Regional

Activity Centre for Specially Protected Areas Tunis, Tunisia; The Reupublic of Montenegro

Ministry of Environmental Protection and Physical Planning, Podgorica, Montenegro,

Podgorica, Montenegro.

Çakan, H. & Karataş, Ç. (2006) Interactions between mycorrhizal colonization and plant life forms

along the successional gradient of coastal sand dunes in the eastern Mediterranean, Turkey.

Ecological Research, 21, 301-310.

Calviño, C.I., Martínez, S.G. & Downie, S.R. (2008) The evolutionary history of Eryngium

(Apiaceae, Saniculoideae): rapid radiations, long distance dispersals, and hybridizations.

Molecular Phylogenetics and Evolution, 46, 1129-1150.

Çelik, A., Aydınlık, N. & Arslan, I. (2011) Phytochemical constituents and inhibitory activity

towards methicillin-resistant Staphylococcus aureus strains of Eryngium species (Apiaceae).

Chemistry & Biodiversity, 8, 454-459.

Chater, A.O. (1968) Eryngium. Flora Europaea. vol. 2. Rosaceae to Umbelliferae (eds T.G. Tutin,

V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters & D.A. Webb) pp.

320-324. Cambridge University Press, Cambridge, UK.

Chatterjee, A. (2005) Academic Dictionary of Medicinal Plant. Isha Books, New Dehli, India.

Cheffings, C.M., Farrell, L. & Dines, T.D. (2005) The vascular plant red data list for Great Britain.

(eds T.D. Dines, R.A. Jones, S.J. Leach, D.R. McKean, D.A. Pearman, C.D. Preston, F.J.

Rumsey & I.Taylor), pp. 1-116. Joint Nature Conservation Committee, Peterborough, UK.

Chermezon, H. (1910) Recherches anatomiques sur les plantes littorales. Annales des Sciences

Naturelles, Botanique, 12, 117-313.

Christensen, L.P. & Brandt, K. (2006) Bioactive polyacetylenes in food plants of the Apiaceae

family: occurrence, bioactivity and analysis. Journal of Pharmaceutical and Biomedical

Analysis, 41, 683-693.

Christopher, M. (2006) Late Summer Flowers. Berry & Co. Ltd, London, UK.

Ciccarelli, D., Bacaro, G. & Chiarucci, A. (2012) Coastline dune vegetation dynamics: evidence of

no stability. Folia Geobotanica, 47, 263-275.

Clarke, B.C. & Beaumont, M.A. (1992) Density and frequency dependence: a genetical view.

Genes in Ecology (eds R.J. Berry, T.J. Crawford & G.M. Hewitt), pp. 353-364. Blackwell,

Oxford, UK.

41

Page 42: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Clausing, G., Vickers, K. & Kadereit, J.W. (2000) Historical biogeography in a linear system:

genetic variation of Sea Rocket (Cakile maritima) and Sea Holly (Eryngium maritimum) along

European coasts. Molecular Ecology, 9, 1823-1833.

Council Directive (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of

natural habitats and of wild fauna and flora. Official Journal L, 206, 22/07/1992 P, 0007-0050.

Crowden, R.K., Harborne, J.B. & Heywood, V.H. (1969) Chemosystematics of the Umbelliferae - a

general survey. Phytochemistry, 8, 1963-1984.

Csurhes, S. & Edwards, R. (1998) Potential Environmental Weeds in Australia. National Parks and

Wildlife. Biodiversity Group, Environment Australia, Canberra, Australia.

Curle, C.M., Stabbetorp, O.E. & Nordal, I. (2007) Eryngium maritimum, biology of a plant at its

northernmost localities. Nordic Journal of Botany, 24, 617-628.

Ćwikliński, E. (1972) Rozmieszczenie mikołajka nadmorskiego Eryngium maritimum na wybrzeżu

szczecińskim. Chronmy Przyrode Ojczysta, 28, 21-29.

Ćwikliński, E. (1979) Problem ochrony mikołajka nadmorskiego Eryngium maritimum na polskim

wybrzeżu. Chronmy Przyrode Ojczysta, 35, 5-14.

Davidson, N.C., Laffoley, D. d’A., Doody, J.P., Way, L.S., Gordon, J., Key, R., Pienkowski, M.W.,

Mitchell, R. & Duff, K.L. (1991) Nature Conservation and Estuaries in Great Britain. Nature

Conservancy Council Peterborough, Peterborough, UK.

Davy, A. J., Willis, A.J. & Beerling, D.J. (2001) The plant environment: aspects of the

ecophysiology of shingle species. Ecology and Geomorphology of Coastal Shingle (eds J.R.

Packham, R.E. Randall, R.S.K. Barnes & A.Neal), pp. 191-201. Westbury Publishing, Otley,

UK.

De Lillis, M., Costanzo, L., Bianco, P.M. & Tinelli, A. (2004) Sustainability of sand dune

restoration along the coast of the Tyrrhenian Sea. Journal of Coastal Conservation, 10, 93-100.

De Rond, J. (2009) Nulmeting entomofauna van de Noordwestelijke natuurkern in Nationaal Park

Zuid-Kennemerland. Rapportage 2008-2009, pp. 1-50. Lelystad, The Netherlands.

Delf, E.M. (1912) Transpiration in succulent plants. Annals of Botany, 26, 409-442.

Della, A. (2000) Minor crops in the Mediterranean region. Report of a Network Coordinating

Group on Minor Crops (ed. L. Maggioni), pp. 28-34. International Plant Genetic Resources

Institute, Turku, Finland.

Dinan, L., Savchenko, T. & Whiting, P. (2001) On the distribution of phytoecdysteroids in plants.

Cellular and Molecular Life Sciences, 58, 1121-1132.

Djarri, L., Medjroubi, K., Akkal, S., Elomri, A., Seguin, E., Groult, M.-L. & Vérité, P. (2008)

Variability of two essential oils of Kundmannia sicula (L.) DC., a traditional Algerian medicinal

plant. Molecules, 13, 812-817.

42

Page 43: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Doody, J.P. & Randall, R. (2003) Guidance for the Management of Coastal Vegetated Shingle. pp.

1-121. English Nature, Peterborough, UK.

Doody, J.P. (2001) Coastal Conservation and Management. An Ecological Perspective. Kluwer

Academic Publishers, London.

Doody, J.P. (2008) Sand Dune Inventory of Europe. National Coastal Consultants, EUCC, IGU

Coastal Commission, PLACE, COUNTRY.

Eberle, G. (1979) Unsere Stranddistel (Eryngium maritimum). Zur Lebensgeschichte einer stark

gefährdeten Pflanze. Verhandlungen Natur und Heimat und Naturhistorisches Museum, 16, 73-

94.

eFloraSA (1999+) Electronic Flora of South Australia. State Herbarium of South Australia:

Adelaide. www.flora.sa.gov.au [Accessed: 21.10.2013].

Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W. & Paulißen, D. (1991) Zeigerwerte von

Pflanzen in Mitteleuropa. Scripta Geobotanica, 18, 1-248.

Ellis, M.B. & Ellis, J.P. (1997) Microfungi on Land Plants. Richmond Publishing, Slough, UK.

Emmet, A.M. & Langmaid, J.R. (2002) The Moths and Butterflies of Great Britain and Ireland. vol

4, part 1 (Oecophoridae to Scythrididae, excluding Gelechiidae). Harley Books, Colchester, UK.

Erdelmeier, C. & Sticher, O. (1985) Coumarin derivatives from Eryngium campestre L. Planta

Medica, 51, 407-409.

Erginal, A.E., Akbulak, C., Gönüz, A. & Doğan, M. (2008) Investigation of human induced coastal

degradation on the Kepez Delta (NW Turkey) using aerial photo interpretation, remote sensing

and field data. pp. 1-6. BALWOIS-Water Observation and Information System for Balkan

Countries Conference Proceedings 2008. Ohrid, Republic of Macedonia.

Erikson, J. (1896) Studier öfver sandfloran i östra Skåne. Meddelanden från Stockholms Högskola,

158, 1-77.

Ėringis, K. & Pancekauskienė, D. (1995) Eryngium maritimum L. population dynamics in the

Kuršių Nerija national park of Lithuania and total population inventory method. Coastal

Conservation and Management in the Baltic Region. (eds V. Gudelis, R. Povilanskas & A.

Roepstorff), pp. 49-53. Klaipėda University Publishers, Rīga, Latvia.

Escaray, F.J., Rosique, F.J.C., Scambato, A.A., Bilenca, D., Carrasco, P., Matarredona, A.V., Ruiz,

O.A. & Menéndez, A.B. (2010) Evaluation of a technical revegetation action performed on

foredunes at Devesa de la Albufera, Valencia, Spain. Land Degradation & Development, 21,

239-247.

Facciola, S. (1998) Cornucopia II: A Source Book of Edible Plants. Kampong Publications, Viasta,

USA.

43

Page 44: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Favennec, J. (1998) Guide de la Flore des Dunes Littorales non boisées de la Bretagne au Sud des

Landes. Editions Sud Ouest, Bordeaux, France.

Fitter, A.H. & Peat, H.J. (1994) The ecological flora database. Journal of Ecology, 82, 415-425.

Available at: http://www.ecoflora.co.uk (accessed January 2012).

Forey, E., Chapelet, B., Vitasse, Y., Tilquin, M., Touzard, B. & Michalet, R. (2008) The relative

importance of disturbance and environmental stress at local and regional scales in French coastal

sand dunes. Journal of Vegetation Science, 19, 493-502.

Fremstad, E. & Moen, A. (2001) Truete vegetasjonstyper i Norge. pp. 1-231. Norges teknisk-

naturvitenskapelige universitet, Vitenskapsmuseet, Trondheim, Norway.

Fries, H., Carlsson, E., Eliasson, Y. & Ohlander, M. (1971) Göteborgs och Bohusläns fanerogamer

och ormbunkar: förteckning med fyndorter. Bohusläningens AB, Uddevalla, Sweden.

Frisendahl, A. (1926) Biologiska och morfologiska iakttagelser över Eryngium maritimum L. Acta

Horti Gothoburgensis, 2, 123-142.

Fröberg, L. (2010) Eryngium L. Flora Nordica. Volume 6 Thymelaeaceae to Apiaceae (Jonsell, B.,

ed.), pp. 218-221. Swedish Museum of Natural History, Stockholm, Sweden.

Fröhlich, D. & Barthlott, W. (1988) Mikromorphologie der epicuticularen Wachse und das System

der Monokotylen. Tropische und subtropische Pflanzenwelt, 63, 279-409.

Fröman, I. (1930) Phyllitis, Helichrysum och Eryngium på Gotland. Botaniska Notiser, 1930, 225-

232.

Fuller, R.M. (1987) Vegetation establishment on shingle beaches. Journal of Ecology, 75, 1077-

1089.

Gallego-Fernández, J.B., García Mora, M.R. & Ley Vega de Seoane, C. (2003) Restauración de

ecosistemas dunares costeros. Restauración de Ecosistemas Mediterráneos (eds J.M.N. Ibarra,

J.M.R. Benayas & T. Espigares Pinilla), pp. 157-172. Universidad de Alcalá de Henares,

Henares, Spain.

García-Mora, M.R., Gallego-Fernández, J.B. & García-Novo, F. (1999) Plant functional types in

coastal foredunes in relation to environmental stress and disturbance. Journal of Vegetation

Science, 10, 27-34.

García-Mora, M.R., Gallego-Fernández, J.B. & García-Novo, F. (2000) Plant diversity as a suitable

tool for coastal dune vulnerability assessment. Journal of Coastal Research, 16, 990-995.

Giovannetti, M. & Avio, L. (1983) Endogonaceae spores in marine sand dunes in Italy. Annali di

Microbiologia ed Enzimologia, 33, 129-135.

Giovannetti, M. & Nicolson, T.H. (1983) Vesicular-arbuscular mycorrhizas in Italian sand dunes.

Transactions of the British Mycological Society, 80, 552-557.

44

Page 45: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Giovannetti, M. (1985) Seasonal variations of vesicular-arbuscular mycorrhizas and endogonaceous

spores in a maritime sand dune. Transactions of the British Mycological Society, 84, 679-684.

Goldsmith, F.B., Munton, R.J.C. & Warren, A. (1970) The impact of recreation on the ecology and

amenity of semi-natural areas: methods of investigation used in the Isles of Scilly. Biological

Journal of the Linnean Society, 2, 287-306.

Grace, A. (2010) Introductory Biogeography to Bees of the Eastern Mediterranean and Near East.

Bexhill Museum, Sussex, UK.

Gratani, L. & Fiorentino, E. (1988) Estimation of leaf area index in Eryngium maritimum L. and

Pancratium maritimum L. Photosynthetica, 22, 567-568.

Gratani, L., Fiorentino, E. & Fida, C. (1986) Phenological behaviour as a function of temperature

for several species of psammophilous vegetation. Anales del Jardín Botánico de Madrid, 43,

125-135.

Gratani, L., Varone, L. & Crescente, M.F. (2009) Photosynthetic activity and water use efficiency

of dune species: the influence of air temperature on functioning. Photosynthetica, 47, 575-585.

Greiß, T., Heinzelbecker, S., Kiffmeyer, J. & Schimanski, G. (1995) Vegetationskundliche

Untersuchungen der Küstendünen bei Houstrup Strand, Westjütland, September 1994. Bericht

über das Projekt Dünenökologie (eds G. Weidemann & H. Koehler), pp. 17-79. University of

Bremen, Bremen, Germany.

Grigore, M.-N. & Toma, C. (2008) A histo-anatomical study on some halophylous species of the

Lepidium genus. Studia Universitatis "Vasile Goldis", Seria Ştiintele Vieţii, 18, 27-31.

Grime, J.P. (1979) Plant Strategies and Vegetation Processes. Wiley, Chichester, UK

Halvorsen, R. & Lima, O.G. (1984) Bidrag til floraen i Rogaland II. Blyttia, 42, 6-12.

Halvorsen, R. (1982) Sjeldne og sårbare plantearter i Sør-Norge. V. Strandtistel (Eryngium

maritimum). Blyttia, 40, 163-173.

Hamel, J.-L. (1955) Étude caryologique de quelques Eryngium. Bulletin de la Société Botanique de

France, 102, 488-502.

Hamilton, J.D.H., Hart, P. & Simmons, J. (2000) English Plants for your Garden. Frances Lincoln,

London.

Hanifi, N., Kadik, L. & Guittonneau, G.-G. (2007) Analyse de la végétation des dunes littorales de

Zemmouri (Boumerdès, Algérie). Acta Botanica Gallica, 154, 235-249.

Hanson, H.C. (1950) Ecology of the grassland. II. The Botanical Review, 16, 283-360.

Harley, J.L. & Harley, E.L. (1987) A check-list of mycorrhiza in the British flora. New Phytologist,

105, 1-102.

Harley, J.L. & Harley, E.L. (1990) A check-list of mycorrhiza in the British flora - second addenda

and errata. New Phytologist, 115, 699-711.

45

Page 46: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Harvey, J.H. (1989) Garden Plants of around 1525: The Fromond List. Garden History, 17, 122-

134.

Harvey, J.H. (1992) Westminster Abbey: The Infirmarer's Garden. Garden History, 20, 97-115.

Harvey, J.H. & Jones, N.F. (1972) Early Gardening Catalogues with Complete Reprints of Lists

and Accounts of the 16th-19th Centuries. Phillimore, London, UK.

Heath, S.E. (1981) A brief survey of the botany at Shingle Street, Suffolk. Transactions of the

Suffolk Naturalists' Society, 18, 249-253.

Hegi, G. (1975) Illustrierte Flora von Mitteleuropa. V.2, Parey, Berlin, Germany.

Hegnauer, R. (1973) Chemotaxonomie der Pflanzen. Birkhäuser, Basel, Switzerland.

Heukels, P. (2000) Wild Flowers of Britain and Europe: a photographic guide to the flowers of

Britain and Northern Europe. Harper Collins, London, UK.

Heywood, V.H. (1971) Systematic survey of old world Umbelliferae. Botanical Journal of the

Linnean Society, 64, 31-41.

Hicks, G.H. (1895) The littoral flora of Belgium. Botanical Gazette, 20, 454-458.

Hilber, O. (1982) Die Gattung Pleurotus (Fr.) Kummer unter besonderer Berücksichtigung des

Pleurotus eryngii-Formenkomplexes. Bibliotheca Mycologica, 87, 1-448.

Hill, M.O., Mountford, J.O., Roy, D.B. & Bunce, R.G.H. (1999) Ellenberg's Indicator Values for

British Plants. ECOFACT, Institute of Terrestrial Ecology, Huntingdon, UK.

Hill, M.O., Preston, C.D. & Roy, D.B. (2004) PLANTATT Attributes of British and Irish plants:

status, size, life history, geography and habitats. Centre for Ecology and Hydrology,

Huntingdon, UK.

Hiller, K. (1971) Chemosystematics of the Saniculoideae. Botanical Journal of the Linnean Society,

64, 369-384.

Hiller, K., Pohl, B. & Franke, P. (1980) Beiträge zur Kenntnis des Flavonoidspektrums von

Eryngium maritimum L. 35. Mitteilung: Zur Kenntnis der Inhaltsstoffe einiger Saniculoideae.

Pharmazie, 35, 451-452.

Hiller, K., von Mach, B. & Franke, P. (1976) Über die Saponine von Eryngium maritimum L. 25.

Mitteilung: Zur Kenntnis der Inhaltsstoffe einiger Saniculoideae. Pharmazie, 31, 53.

Hipkin, C.R. (1992) Host range and specificity of Orobanche minor Sm. on Crymlyn Burrows.

Watsonia, 19, 113-120.

Hitchmough, J., Kendle, T. & Paraskevopoulou, A.T. (2001) Seedling emergence, survival and

initial growth of forbs and grasses native to Britain and central/southern Europe in low

productivity urban “waste” substrates. Urban Ecosystems, 5, 285-308.

Hnatiuk, R.J. (1990) Census of Australian vascular plants. Australian Flora and Fauna Series. pp.

1-650. Australian Government Publishing Service (AGPS), Canberra, Australia.

46

Page 47: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Hohmann, J., Páll, Z., Günther, G. & Máthé, I. (1997) Flavonolacyl glycosides of the aerial parts of

Eryngium campestre. Planta Medica, 63, 96.

Holland, J.H. (1919) Food and fodder plants. Bulletin of Miscellaneous Information 1919, 1-84.

Hopkins, J. & Radley, G. (2001) Sand dunes and the habitats directive: preparation of the UK

national list. Coastal Dune Management: Shared Experience of European Conservation Practice

(eds J.A. Houston, S.E. Edmondson & P.J. Rooney), pp. 283-301. Liverpool University Press,

Liverpool, UK.

Howe, M.A., Knight, G.T. & Clee, C. (2010) The importance of coastal sand dunes for terrestrial

invertebrates in Wales and the UK, with particular reference to aculeate Hymenoptera (bees,

wasps & ants). Journal of Coastal Conservation, 14, 91-102.

Huisman, K.J., Koster, J.C., Muus, T.S.T., van Nieukerken, E.J. (2013) Microlepidoptera in

Nederland, vooral in 2007-2010 met een terugblik op 30 jaar faunistisch onderzoek.

Entomologische Berichten, 73, 91-117.

Huiting, H.F., Moraal, L.G., Griepink, F.C. & Ester, A. (2006) Biology, control and luring of the

cockchafer, Melolontha melolontha. Applied Plant Research, pp. 1-34, Alterra, Wageningen,

The Netherlands.

Hultén, E. & Fries, M. (1986) Atlas of North European Vascular Plants (North of the Tropic of

Cancer). Koeltz Scientific Books, Königstein, Germany.

Huxley, A. & Taylor, W. (1989) Flowers of Greece and the Aegean. Hogarth Press, London, UK.

Ievina, B., Keisa, A., Kokina, A., Ievinsh, G. & Rostok, N. (2007) Genetic diversity in Latvian

populations of highly endangered plant sea holly (Eryngium maritimum L.). Research and

Conservation of Biological Diversity in the Baltic Region, pp. 1-43

Ievina, B., Syed, N.H., Flavell, A.J., Ievinsh, G. & Rostoks, N. (2010) Development of

retrotransposon-based SSAP molecular marker system for study of genetic diversity in sea holly

(Eryngium maritimum L.). Plant Genetic Resources: Characterization and Utilization, 8, 258-

266.

Iversen, J. (1936) Biologische Pflanzentypen als Hilfsmittel in der Vegetationsforschung: Ein

Beitrag zur ökologischen Charakterisierung und Anordnung der Pflanzengesellschaften.

Meddelser fra Skalling-Laboratoriet, 4, 1-224.

Jackson, M.B.W. (1995) Annotated records for rare, critical or under-recorded vascular plant taxa

from Ireland. The Irish Naturalists' Journal, 25, 44-57.

Jäger, E.J. & Werner, K. (2005) Rothmaler. Exkursionsflora von Deutschland. Bd. 4.

Gefäßpflanzen: Kritischer Band. pp. 1-980. Spektrum, Heidelberg, Germany.

Jankevičienė, R. (1978) Retieji Globotini Augalai. Mokslas, Vilnius, Lithuania.

47

Page 48: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Jarvis, C.E., Barrie, F.R., Allan, D.M. & Reveal, J.L. (1993) A list of Linnaean generic names and

their types. Regnum Vegetabile, 127, 1-100.

Jawdat, D., Al-Faoury, H., Ayyoubi, Z. & Al-Safadi, B. (2010) Molecular and ecological study of

Eryngium species in Syria. Biologia, 65, 796-804.

Jukonienė, I. & Stankevičiūtė, J. (2005) Botanical investigations in LTER sites of Lithuania. Acta

Zoologica Lituanica, 15, 127-130.

Kadereit, J.W. & Westberg, E. (2007) Determinants of phylogeographic structure: a comparative

study of seven coastal flowering plant species across their European range. Watsonia, 26, 229-

238.

Kadereit, J.W., Arafeh, R., Somogyi, G. & Westberg, E. (2005) Terrestrial growth and marine

dispersal? Comparative phylogeography of five coastal plant species at a European scale. Taxon,

54, 861-876.

Kadereit, J.W., Repplinger, M., Schmalz, N., Uhink, C.H. & Wörz, A. (2008) The phylogeny and

biogeography of Apiaceae subf. Saniculoideae tribe Saniculeae: from south to north and south

again. Taxon, 57, 365-382.

Kartal, M., Mitaine-Offer, A.-C., Abu-Asaker, M., Miyamoto, T., Calis, I., Wagner, H. & Lacaille-

Dubois, M.-A. (2005) Two new triterpene saponins from Eryngium campestre. Chemical and

Pharmaceutical Bulletin, 53, 1318-1320.

Kartal, M., Mitaine-Offer, A.-C., Paululat, T., Abu-Asaker, M., Wagner, H., Mirjolet, J.-F.,

Guilbaud, N. & Lacaille-Dubois, M.-A. (2006) Triterpene saponins from Eryngium campestre.

Journal of Natural Products, 69, 1105-1108.

Kartnig, T. & Wolf, J. (1993) Flavonoids from the aboveground parts of Eryngium campestre.

Planta Medica, 59, 285.

Katona, K., Bíró, Z., Hahn, I., Kertész, M. & Altbäcker, V. (2004) Competition between European

hare and European rabbit in a lowland area, Hungary: a long-term ecological study in the period

of rabbit extinction. Folia Zoologica, 53, 255-268.

Kikowska, M., Thiem, B. & Krawczyk, A. (2009) Rosmarinic acid accumulation in the cell

suspension culture of Eryngium planum L. Acta Biochimica Polonica, 52, 71-73.

Kimber, I. (2013) UK moths. Guide to the moths of Great Britain and Ireland. Available at:

http://ukmoths.org.uk/ (accessed January 2013).

Kļaviņa, D., Gailīte, A. & Ievinsh, G. (2006) Initial responses of explants from rare and endangered

coastal plant species during initiation of tissue culture. Acta Universitatis Latviensis, Biology,

710, 81-91.

48

Page 49: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Klotz, S., Kühn, I. & Durka, W. (2002) (eds.): BIOLFLOR - Eine Datenbank mit biologisch-

ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe für Vegetationskunde.

Bonn. Available at: http://www.biolflor.de (assecced October 2013).

Korhonen, A. (2011) Bohusläns Strandtyper som Växtkompositioner. Göteborgs Universitet

Göteborg, Sweden.

Krause, H.E. (1906) Stranddistel und Pflanzenschutz. Zeitschrift des Heimatbundes Mecklenburg,

3, 59-62.

Kull, T., Kukk, T., Leht, M., Krall, H., Kukk, Ü., Kull, K. & Kuusk, V. (2002) Distribution trends

of rare vascular plant species in Estonia. Biodiversity and Conservation, 11, 171-196.

Küpeli, E., Kartal, M., Aslan, S. & Yesilada, E. (2006) Comparative evaluation of the anti-

inflammatory and antinociceptive activity of Turkish Eryngium species. Journal of

Ethnopharmacology, 107, 32-37.

Łabuz, T.A. (2004) Coastal dune development under natural and human influence on Swina Gate

Barrier (Polish coast of Pomeranian Bay). Coastline Reports, 2, 129-138.

Łabuz, T.A. (2007) Evaluation of past and present sea holly (Eryngium maritimum) habitats on

Polish coastal dunes. Acta Universitatis Latviensis, 723, 99-114.

Lakkis, S., Bitar, G., Novel-Lakkis, V. & Zeidane, R. (1996) Etude de la diversité biologique du

Liban. Flore et faune marines. UNEP-Min Agric. Beyrouth Liban Publication, 6, 1-123.

Lam, J., Christensen, L.P. & Thomasen, T. (1992) Acetylenes from roots of Eryngium bourgatii.

Phytochemistry, 31, 2881-2882.

Lawton, J.H. & Price, P.W. (1979) Species richness of parasites on hosts: agromyzid flies on the

British Umbelliferae. Journal of Animal Ecology, 48, 619-637.

Le Claire, E., Schwaiger, S., Banaigs, B., Stuppner, H. & Gafner, F. (2005) Distribution of a new

rosmarinic acid derivative in Eryngium alpinum L. and other Apiaceae. Journal of Agricultural

and Food Chemistry, 53, 4367-4372.

Leach, S.J. & Rusbridge, D.J. (2006) A Tool for Assessing the Current Conservation Status of

Vascular Plants on SSSIs in England. Research Reports, No 690. English Nature, Peterborough,

UK.

Ley Vega de Seoane, C. (2010) Eryngium maritimum (Sea Holly). Cultivation and use in Spanish

dune ecosystems restoration, pp. 1-4. Unpublished report.

Liebe, T. (1880) Über die Flora der ostfriesischen Inseln Wangerooge und Spiekeroog.

Verhandlungen des Botanischen Vereins Brandenburg, 22, 58-62.

Lieberman, A.S. & O'Neill, C.R. (1988) Vegetation use in coastal ecosystems. Information Bulletin

(Cornell Cooperative Extension Publication), 198, 1-31.

49

Page 50: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Lisciani, R., Fattorusso, E., Surano, V., Cozzolino, S., Giannattasio, M. & Sorrentino, L. (1984)

Anti-inflammatory activity of Eryngium maritimum L. rhizome extracts in intact rats. Journal of

Ethnopharmacology, 12, 263-270.

Liu, M., Wyk, B.-E. van & Tilney, P.M. (2003) The taxonomic value of fruit structure in the

subfamily Saniculoideae and related African genera (Apiaceae). Taxon, 52, 261-270.

Lübbe (1909) Eryngium maritimum, Meerstrands-Männertreu. Zeitschrift des Heimatbundes

Mecklenburg, 5, 46.

Łukasiewicz, A. (1985) Die Eigenschaftsvalorisation bei Bestimmung der Lebensformen der

Pflanzen am Beispiel psammophiler Gattungen. Feddes Repertorium, 96, 145-156.

Lutz, M.L. (1925) Sur la spécificité de quelques Hyménomycétes épiphytes vis-à-vis de leurs

supports. Bulletin de la Société Mycologique de France, 41, 345-357.

Machado, M., Santoro, G., Sousa, M.C., Salgueiro, L. & Cavaleiro, C. (2010) Activity of essential

oils on the growth of Leishmania infantum promastigotes. Flavour and Fragrance Journal, 25,

156-160.

Magee, A.R., Calviño, C.I., Liu, M., Downie, S.R., Tilney, P.M. & Wyk, B.-E. van (2010) New

tribal delimitations for the early diverging lineages of Apiaceae subfamily Apioideae. Taxon, 59,

567-580.

Malheiros-Gardé, N. & Gardé, A. (1951) Contribuiçao para o estudo cariológico da familia

Umbelliferae. II. Genética Ibérica, 3, 23-35.

Maremmani, A., Bedini, S., Matoševic, I., Tomei, P.E. & Giovannetti, M. (2003) Type of

mycorrhizal associations in two coastal nature reserves of the Mediterranean basin. Mycorrhiza,

13, 33-40.

Mathias, M.E. & Lincoln, C. (1941) A synopsis of the North American species of Eryngium.

American Midland Naturalist, 25, 361-387.

Mathias, M.E. (1994) Magic, myth and medicine. Economic Botany, 48, 3-7.

Maude, P.F. (1939) The Merton Catalogue. A list of the chromosome numerals of species of British

flowering plants. New Phytologist, 38, 1-31.

Meot-Duros, L., Le Floch, G. & Magné, C. (2008) Radical scavenging, antioxidant and

antimicrobial activities of halophytic species. Journal of Ethnopharmacology, 116, 258-262.

Metzing, D. (2005) Küstenflora und Klimawandel - der Einfluss der globalen Erwärmung auf die

Gefäßpflanzenflora des deutschen Küstengebietes von Nord- und Ostsee. PhD Thesis,

Universität Oldenburg, Germany.

Meusel, H., Jäger, E.J., Rauschert, S.W., Weiner, E. (1978): Vergleichende Chorologie der

zentraleuropäischen Flora. Fischer, Jena, Germany.

50

Page 51: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Meyer, W. & Van Dieken, J. (1947) Pflanzenbestimmungsbuch für die Landschaften Osnabrück,

Oldenburg-Ostfriesland und ihre Inseln. Friedrich Trüjen, Bremen, Germany.

Minasiewicz, J., Borzyszkowska, S., Żøłkoś, K., Bloch-Orłowska, J. & Afranowicz, R. (2011)

Population genetic structure of the rare species Eryngium maritimum L. (Apiaceae) in the Gulf

of Gdańsk: implications for conservation and management. Biodiversity Research and

Conservation, 24, 39-48.

Mir-Gual, M., Pons, G.X., & Ángel Martín-Prieto, J., Roig-Munar, F.X., Rodríguez-Perea, A.

(2013) Geomorphological and ecological features of blowouts in a western Mediterranean

coastal dune complex: a case study of the Es Comú de Muro beach-dune system on the island of

Mallorca, Spain. Geo-Marine Letters, 33,129-141.

Moeslund, S. (1994) Truer turismen de vilde danske planter – med Høje Møn som eksempel. Flora

og Fauna, 100, 7-12.

Moore, D. & Wilson, F. (1999) National shingle beach survey of Ireland 1999. Synoptic Report, pp.

1-51.

Moore, E.J. (1931) The ecology of the Ayreland of Bride, Isle of Man. Journal of Ecology, 19, 115-

136.

Mucina, L. (1997) Conspectus of classes of European vegetation. Folia Geobotanica, 32, 117-172.

Muckensturm, B., Boulanger, A., Farahi, M. & Reduron, J.P. (2010) Secondary metabolites from

Eryngium species. Natural Product Research, 24, 391-397.

Necajeva, J. & Ievinsh, G. (2013) Seed dormancy and germination of an endangered coastal plant

Eryngium maritimum (Apiaceae). Estonian Journal of Ecology, 62, 150-161.

Neinhuis, C. & Barthlott, W. (1997) Characterization and distribution of water-repellent, self-

cleaning plant surfaces. Annals of Botany, 79, 667-677.

New Jersey Invasive Species Council (2009) New Jersey Strategic Management Plan for Invasive

Species. pp. 1-110. Trenton, NJ, USA.

Nikopoulos, D., Nikopoulou, D., Papadopoulou, K. & Alexopoulos, A.A. (2006) Pancratium

maritimum ecosystems in Greece. Sustainable Management and Development of Mountainous

and Island Areas, pp. 333-340. Naxos Greece.

Nordstrom, K.F. (2000) Beaches and Dunes on Developed Coasts. Cambridge University Press,

Cambridge, UK.

Olšauskas, A. (1996) Influence of Recreation on Plant Cover in West Lithuania. Kleipeda

University, Kleipeda, Lithuania.

Olšauskas, A.M. & Olšauskaite Urbonienė, R. (1999) Influence of recreation for Eryngium

maritimum L. habitats on the Lithuanian coastal dunes. Connecting Science and Management in

the Coastal Zone (ed. K. Rabski), pp. 64-71. EUCC-Poland, Miedzyzdroje, Poland.

51

Page 52: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Olšauskas, A.M. & Urbonienė, R. (2008) State of Eryngium maritimum L. population on the

Curonian Spit coastal dunes. Environmental Research, Engineering and Management, 2, 69-74.

Olsson, K.A. & Tyler, T. (2001). Skånes rödlistade kärlväxter i ett historiskt perspektiv II.

Botaniska Notiser, 134, 1-35.

O'Mahony, T. (1992) A report on the flora of Cork. Irish Botanical News, 2, 26-28.

O'Sullivan, M. (2010) An ecosystem in distress, South Kerry. Irish Botanical News, 20, 5-6.

Özcan, H., Erginal, A.E., Akbulak, C., Sungur, A.& Bozcu, M. (2010) Physico-chemical

characteristics of coastal dunes on the Saros Gulf, Turkey. Journal of Coastal Research, 26, 132-

142.

Paal, J. (1998) Rare and threatened plant communities of Estonia. Biodiversity and Conservation, 7,

1027-1049.

Palá-Paúl, J. (2002) Contribución al conocimiento de los aceites esenciales del género Eryngium

L., en la península Ibérica. Tesis Doctoral (Biología), Universidad Complutense de Madrid,

Madrid, Spain.

Palá-Paúl, J., Copeland, L.M., Brophy, J.J. & Goldsack, R.J. (2006) Essential oil composition of

Eryngium rosulatum P.W. Michael ined.: A new undescribed species from eastern Australia.

Biochemical Systematics and Ecology, 34, 796-801.

Palá-Paúl, J., Pérez-Alonso, M.J., Velasco-Negueruela, A., Varadé, J., Villa, M.A., Sanz, J. &

Brophy, J.J. (2005a) Essential oil composition of the different parts of Eryngium bourgatii

Gouan from Spain. Journal of Chromatography A, 1074, 235-239.

Palá-Paúl, J., Pérez-Alonso, M.J., Velasco-Negueruela, A., Varadé, J., Villa, M.A., Sanz, J. &

Brophy, J.J. (2005b) Analysis of the essential oil composition of the different parts of Eryngium

glaciale Boiss. from Spain. Journal of Chromatography A, 1094, 179-182.

Pancekauskienė, D. (2003) Pajurines zundos paplitimas ir jos apsaugos problemos Kuršių nerijos

nacionaliniame parke. Jūra ir Aplinka, 9, 18-25.

Pedersen, B. (1990) Distributional patterns of vascular plants in Fennoscandia: a numerical

approach. Nordic Journal of Botany, 10, 163-189.

Pedersen, O. & Høiland, K. (1989) Økologiske studier av strandtorn (Eryngium maritimum L.) på

Lista, Vest-Agder. Det Kongelige Norske Videnskabers Selskab Museet Rapport Botanisk Serie,

1989-2, 76-87.

Pedersen, O. (2002) Karplanteherbariene-hva har samlet seg der? Blyttia, 60, 103-116.

Perdigó Arisó, M.T. & Llauradó Miravall, M. (1985) Números cromosomáticos de plantas

occidentales. Anales del Jardín Botánico de Madrid, 42, 322-328.

Pignatti, S. & Ubrizsy Savoia, A. (1989) Early use of the succession concept by G.M. Lancisi in

1714. Vegetatio, 84, 113-115.

52

Page 53: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Piotrowska, H. & Stasiak, J. (1984) Naturalne i anthropogeniczne zmiany strefowe flory

naczyniowej bezlesnych wydm nadmorskich. Fragmenta Floristica et Geobotanica, 28, 371-

396.

Piotrowska, H. (1995) Forest and man on the Polish Baltic coast. Mangement and Preservation of

Coastal Habitats (ed. H.W.J. van Dijk), pp. 121-132. Proceedings of multidisciplinary workshop

in Jastrzębia Góra, Poland September 1-5 1993. EUCC, Leiden, The Netherlands.

Piotrowska, H. (2002) Zbiorowiska psammofilne ny wydmach polskiego brzegu Baltyku. Acta

Botanica Cassubica, 3, 5-47.

Pistrick, K. (2002) Notes on neglected and underutilized crops. Current taxonomical overview of

cultivated plants in the families Umbelliferae and Labiatae. Genetic Resources and Crop

Evolution, 49, 211-221.

Popov, P.L. (2008) Plant species, using against virous infections of man and animals: regularities of

the distribution in the phylogenetic classification system. Journal of Stress Physiology &

Biochemistry, 4, 17-64.

Praeger, R.L. (1913) On the buoyancy of the seeds of some Britannic plants. Scientific Proceedings

of the Royal Dublin Society, 14, 13–62.

Prat, M.C. & Salomon, J.N. (1997) L'évolution récente du littoral charentais. Lignes de rivage et

systèmes dunaires. Quaternaire, 8, 21-37.

Preston, C.D. & Hill, M.O. (1997) The geographical relationships of British and Irish vascular

plants. Botanical Journal of the Linnean Society, 124, 1-120.

Preston, C.D. (2007) Which vascular plants are found at the northern or southern edges of their

European range in the British Isles? Watsonia, 26, 253-269.

Preston, C.D., Hill, M.O., Harrower, C.A. & Dines, T.D. (2013) Biogeographical patterns in the

British and Irish flora. New Journal of Botany, 3, 96-116.

Preston, C.D., Pearman, D.A. & Dines, T.D. (2002) New Atlas of the British & Irish Flora: An

Atlas of the Vascular Plants of Britain, Ireland, the Isle of Man and the Channel Isles. Oxford

University Press, Oxford, UK.

Preuß, H. (1906) Die Vegetationsverhältnisse der Frischen Nehrung westpreußischen Anteils. A.W.

Katemann, Danzig, Germany.

Preuß, H. (1911) Die Vegetationsverhältnisse der deutschen Ostseeküste. Inaugural Dissertation

Albertus-Universität zu Königsberg. Danzig, Germany.

Prisco, I., Acosta, A.T.R. & Ercole, S. (2012) An overview of the Italian coastal dune EU habitats.

Annali di Botanica, 2012,2, 39-48.

53

Page 54: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Pucheta, E., Cabido, M., Díaz, S. & Funes, G. (1998) Floristic composition, biomass, and

aboveground net plant production in grazed and protected sites in a mountain grassland of

central Argentina. Acta Oecologica, 19, 97-105.

Pujadas-Salvà, A.J. & Fraga I Arguimbau, P. (2008) A new species of Orobanche (Orobanchaceae)

from the Balearic Islands. Botanical Journal of the Linnean Society, 158, 722-729.

Punt, W. (1984) Umbelliferae. The Northwest European Pollen Flora 37 (eds W. Punt & G.C.S.

Clarke), pp. 155-363. Elsevier, Amsterdam, The Netherlands..

Puppi, G. & Riess, S. (1987) Role and ecology of VA mycorrhizae in sand dunes. Angewandte

Botanik, 61, 115-126.

Pütz, N. & Sukkau, I. (2002) Seedling establishment, bud movement, and subterranean diversity of

geophilous systems in Apiaceae. Flora, 197, 385-393.

Ramensky, L.G., Tsatsenkin, I.A., Čižikov, O.N. & Antipov, N.A. (1956) Экологическая оценка

кормовых угодий по растительному покрову. Moskva, Russia. 

Ranwell, D.S. (1972) Ecology of Salt Marshes and Sand Dunes. Chapman & Hall, London, UK.

Rappé, G. (1996) Verspreiding en populatiedynamiek van thalassochore zaadplanten aan de

Belgische kust. Dumortiera, 64, 8-13.

Rappé, G. (1997) Vloedmerken. Punten en Lijnen in het Landschap (eds M. Hermy & G. De Blust),

pp. 48-49. Marc van de Wiele, Brugge, Belgium.

Razowski, J. (1970) Cochylidae. Microlepidoptera (eds H.G. Amsel, F. Gregor & H. Reisser), pp.

1-528. Georg Fromme & Co., Wien, Austria.

Read, D.J. (1989) Mycorrhizas and nutrient cycling in sand dune ecosystems. Proceedings of the

Royal Society of Edinburgh, 96B, 89-110.

Rebassoo, H.-E. (1975) Sea-shore Plant Communities of the Estonian Islands. Academy of

Sciences of the Estonian S.S.R., Institute of Zoology and Botany Tartu, Finland.

Rhind, P.M. & Jones, P.S. (1999) The floristics and conservation status of sand-dune communities

in Wales. Journal of Coastal Conservation, 5, 31-42.

Ribes, K. & Sauleda, N. (1979) Heteropteros de Alicante y zonas adyacentes. Mediterránea, 3, 123-

158.

Rich, T.C.G. & Woodruff, E.R. (1996) Changes in the vascular plant floras of England and

Scotland between 1930-1960 and 1987-1988: The BSBI Monitoring Scheme. Biological

Conservation, 75, 217-229.

Ridley, H.N. (1930) (1990 reprint) The Dispersal of Plants Throughout the World. L. Reeve & Co.,

Ltd., Ashford, UK.

Roberg, M. (1937) Über das Vorkommen und die Verteilung von Saponinen in Kräuterdrogen. II.

Archiv der Pharmazie, 275, 145-166.

54

Page 55: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Robertson, F.W. (2001) James Sutherland's " Hortus Medicus Edinburgensis" (1683). Garden

History, 29, 121-151.

Robyns, A. (1976) Eryngium maritimum en het domaniaal natuurreservaat van de Westhoek.

Dumortiera, 4, 16-17.

Rodwell, J.S. ed. (2000) British Plant Communities. vol. 5. Maritime Communities and Vegetation

of Open Habitats. Cambridge University Press, Cambridge, UK.

Rovira Rojas, E. & Romagosa Casals, F. (2010) Diagnosi socioambiental del litoral de

Torredembarra, Creixell i Roda de Berà. Projecte Final de Carrera de Ciències Ambientals, pp.

1-133. Universitat Autònoma de Barcelona, Barcelona, Spain.

Royal Botanic Gardens Kew (2008) Seed Information Database (SID). Version 7.1. Available at:

http://data.kew.org/sid/ (accessed January 2012).

Rozé, F. & Lemauviel, S. (2004) Sand dune restoration in North Brittany, France: a 10-year

monitoring study. Restoration Ecology, 12, 29-35.

Rumsey, F. (1991) Pedicellate flowers in Orobanche and the status of Orobanche maritima. BSBI

News, 57, 8-9.

Rumsey, F.J. & Jury, S.L. (1991) An account of Orobanche L. in Britain and Ireland. Watsonia, 18,

257-295.

Rumsey, F.J. (2007) A reconsideration of Orobanche maritima Pugsley (Orobanchaceae) and

related taxa in southern England and the Channel Islands. Watsonia, 26, 473-476.

Salisbury, E.J. (1952) Downs and Dunes: their Plant Life and its Environment. Bells & Sons,

London, UK.

Salisbury, E.J. (1974) Seed size and mass in relation to environment. Proceedings of the Royal

Society of London. Series B. Biological Sciences, 186, 83-88.

Salisbury, W. (1816) The Botanist's Companion, or an Introduction to the Knowledge of Practical

Botany, and the Uses of Plants, either Growing Wild in Great Britain or Cultivated for the

Purposes of Agriculture, Medicine, Rural Economy, or the Arts. Vol. I. Taylor, London, UK.

Samsone, I., Andersone, U., Vikmane, M., Ieviņa, B., Pakarna, G. & Ievinsh, G. (2007)

Nondestructive methods in plant biology: an accurate measurement of chlorophyll content by a

chlorophyll meter. Acta Universitatis Latviensis, 723, 145-154.

Sanjaume, E. & Pardo, J. (1991) The possible influence of sea level rise on the precarious dunes of

Devesa del Saler Beach, Valencia, Spain. Landscape Ecology, 6, 57-64.

Sapir, Y., Shmida, A. & Fragman, O. (2003) Constructing Red Numbers for setting conservation

priorities of endangered plant species: Israeli flora as a test case. Journal for Nature

Conservation, 11, 91-107.

55

Page 56: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Scapini, F. ed. (2002) Baseline Research for the Integrated Sustainable Management of

Mediterranean Sensitive Coastal Ecosystems. Ministry of Foreign Affairs, Istituto Agronomico

per l’Oltremare, Florence, Italy.

Schreck Reis, C., Antunes do Carmo, J. & Freitas, H. (2008) Learning with nature: a sand dune

system case study (Portugal). Journal of Coastal Research, 24, 1506-1515.

Scott, G.A.M. (1963) The ecology of shingle beach plants. Journal of Ecology, 51, 517-527.

Scott, W. (2011) Some Aspects of the Botany of the Shetland Islands. Privately published,

Scalloway, UK.

Sell, P. & Murrell, G. (2009) Flora of Great Britain and Ireland. vol. 3 Mimosaceae–

Lentibulariaceae. Cambridge University Press, Cambridge, UK.

Seregin, A.P. & Suslova, E.G. (2007) Contribution to the vascular plant flora of the Utrish area, a

relic sub-Mediterranean ecosystem of the Russian Black Sea Coast. Willdenowia, 37, 451-463.

Sezik, E., Yeşİlada, E., Tabata, M., Honda, G., Takaishi, Y., Fujita, T., Tanaka, T. & Takeda, Y.

(1997) Traditional medicine in Turkey VIII. Folk medicine in East Anatolia; Erzurum, Erzíncan,

Ağri, Kars, Iğdir provinces. Economic Botany, 51, 195-211.

Silici, S. & Gökceoglu, M. (2007) Pollen analysis of honeys from Mediterranean region of

Anatolia. Grana, 46, 57-64.

Skalińska, M., Piotrowicz, M., Małecka, J., Jaworska, H. & Czapik, R. (1964) Additions to

chromosome numbers of Polish Angiosperms (fifth contribution). Acta Societatis Botanicorum

Poloniae, 33, 45-76.

Skarpaas, O. & Stabbetorp, O.E. (2003) Long-term metapopulation trends and extinction risk:

statistical assessment using scientific collections. Plant population dynamics in fragmented

landscapes (ed. O. Skarpaas) pp. 176-203. PhD thesis, University of Oslo, Norway.

Smith, T. (2009) East Sussex Vegetated Shingle Management Plan. pp. 1-85.

Spanou, S., Verroios, G., Dimitrellos, G., Tiniakou, A. & Georgiadis, T. (2006) Notes on flora and

vegetation of the sand dunes of western Greece. Willdenowia, 36, 235-246.

Speybroeck, J., Bonte, D., Courtens, W., Gheskiere, T., Grootaert, P., Maelfait, J.-P., Provoost, S.,

Sabbe, K., Stienen, E.W.M., Van Lancker, V., Van Landuyt, W., Vincx, M. & Degraer, S.

(2008) The Belgian sandy beach ecosystem: a review. Marine Ecology, 29, 171-185.

Stace, C.A. (1975) Hybridization and the Flora of the British Isles. Academic Press, London, UK.

Stace, C.A. (2010) New Flora of the British Isles. 3rd edn. Cambridge University Press, Cambridge,

UK.

Stankevičiūtė, J. (2006) The succession of sand vegetation at the Lithuanian seacoast. Botanica

Lithuanica, 12, 139-156.

56

Page 57: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Stasiak, J. (1986) The population size of Eryngium maritimum L. on the Polish Baltic Sea coast.

Biologia, 7, 65-75.

Stasiak, J. (1988) Eryngium maritimum L. Fragmenta Floristica Geobotanica, 33, 355-368.

Stephan, W.-R. (2006) Die Stranddistel (Eryngium maritimum). Jahrbuch der Heimatgemeinschaft

Eckernförde, 64, 205-210.

Stoykov, D.Y. & Assyov, B.G. (2008) New data on pyrenomycetous fungi of Bulgaria. Anniversary

Scientific Conference of Ecology (eds I.G. Velcheva & A.G. Tsekov), pp. 11-20. Plovdiv,

Bulgaria.

Suehs, C.M., Médail, F. & Affre, L. (2003) Invasion by South African Carpobrotus (Aizoaceae)

taxa in the Mediterranean Basin: the effects of islands on plant reproductive systems. Plant

Invasions: Ecological Threats and Management Solutions (eds L. Child, J.H. Brock, G. Brundu,

K. Prach, K. Pyse ̆k, P. Wade & M. Williamson), pp. 247-263. Backhuys Publishers,

Loughborough, UK.

Tansley, A.G. (1911) The international phytogeographical excursion in the British Isles. II. Details

of the Excursion. New Phytologist, 10, 276-291.

Terzo, M., Iserbyt, S. & Rasmont, P. (2007) Révision des Xylocopinae (Hymenoptera: Apidae) de

France et de Belgique. Annales de la Société Entomologique de France, 43, 445-491.

Thiem, B. & Kikowska, M. (2009) Hairy roots and untransformed root culture of Eryngium L.

species. Acta Biochimica Polonica, 52, 78-79.

Thiem, B. & Wiatrowska, I. (2007) Eryngium campestre L. (mikołajek polny) i inne gatunki

Eryngium L. - mało znane rośliny lecznicze. Kerba Polonica, 53, 93-102.

Töngel, M.Ö & Ayan, İ. (2005) Samsun İli Çayır ve Meralarında Yetişen Bazı Zararlı Bitkiler ve

Hayvanlar Üzerindeki Etkileri. OMÜ Zir. Fak. Dergisi, 20, 84-93.

Tsaliki, M. & Diekmann, M. (2009) Fitness and survival in fragmented populations of Narthecium

ossifragum at the species' range margin. Acta Oecologica, 35, 415-421.

Turmel, J.-M. (1947) Multiplication végétative des Eryngium. II. Bouturage de l'Eryngium

maritimum L. Bulletin de la Société Botanique de France, 94, 138-142.

Turmel, J.-M. (1948) Répartition géographique des Eryngium. I. Ancien Monde. Bulletin Museum

National d'Histoire Naturelle, 21, 395-401.

Tutin, T.G. (1980) Umbellifers of the British Isles. BSBI Handbook 2. Botanical Society of the

British Isles, London, UK.

Tyler, G. (1969) Regional aspects of Baltic shore-meadow vegetation. Vegetatio, 19, 60-86.

Tzatzanis, M., Wrbka, T. & Sauberer, N. (2003) Landscape and vegetation responses to human

impact in sandy coasts of Western Crete, Greece. Journal for Nature Conservation, 11, 187-195.

Uphof, J.C.T. (1941) Halophytes. The Botanical Review, 7, 1-58.

57

Page 58: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Urbanski, J.A. (2001) The impact of sea-level rise along the Polish Baltic coast. Journal of Coastal

Conservation, 7, 155-162.

USDA, ARS National Genetic Resources Program (2010) Germplasm Resources Information

Network -(GRIN). National Germplasm Resources Laboratory, Beltsville, Maryland. Available

at: http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?317518 (accessed May 2010).

USDA, NRCS (2012) The PLANTS Database. National Plant Data Team, Greensboro, NC 27401-

4901 USA. Available at: http://plants.usda.gov/java/profile?symbol=ERMA7 (accessed

December 2012).

Valdés-Bermojo, E. (1979) Números cromosomaticos de plantas occidentals 1-34. Anales del

Jardín Botánico de Madrid, 36, 373-389.

Van der Laan, D. (1985) Changes in the flora and vegetation of the coastal dunes of Voorne (The

Netherlands) in relation to environmental changes. Vegetatio, 61, 87-95.

Van der Maarel, E. & Van der Maarel-Versluys, M. (1996) Distribution and conservation status of

littoral vascular plant species along the European coasts. Journal of Coastal Conservation, 2, 73-

92.

Van der Meulen, F. & Salman, A.H.P.M. (1996) Management of Mediterranean coastal dunes.

Ocean & Coastal Management, 30, 177-195.

Van der Pluym, A. & Hideux, M. (1977) Numerical analysis study of pollen grain populations of

Eryngium maritimum L. (Umbelliferae). Review of Palaeobotany and Palnyology, 24, 119-139.

Van Zeist, W., Bottema, S. & Van der Veen, M. (2001) Diet and Vegetation at Ancient Carthage:

the Archaeobotanical Evidence. Institute of Archaeology, Groningen, The Netherlands.

Veer, M.A.C. & Kooijman, A.M. (1997): Effects of grass-encroachment on vegetation and soil in

Dutch dry dune grasslands. Plant and Soil, 192, 119-128.

Vidal, E., Médail, F., Tatoni, T., Roche, P. & Vidal, P. (1998) Impact of gull colonies on the flora

of the Riou archipelago (Mediterranean islands of south-east France). Biological Conservation,

84, 235-243.

Vökler, F. (1992) Zum Vorkommen des Gemeinen Meerkohls und der Stranddistel im Kreis Bad

Doberan. Naturschutzarbeit in Mecklenburg-Vorpommern, 35, 53-56.

Vonarburg, B. (2001) Homöotanik. Vol. 4. Extravagante Exoten. K.F.Haug, Heidelberg, Germany.

Walcott, M.E.C (1861) The East Coast of England from the Thames to the Tweed. Spottiswoode &

Co., London, UK.

Walmsley, C.A. (1995) The Ecology of Shingle Beach Vegetation in Relation to its Restoration.

PhD thesis, University of East Anglia, Norwich, UK.

58

Page 59: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Walmsley, C.A. (2002) Beaches. Handbook of Ecological Restoration. Vol. 2. Restoration in

Practice (eds M.R. Perrow & A.J. Davy), pp. 197-213. Cambridge University Press, Cambridge,

UK.

Walmsley, C.A. & Davy, A.J. (1997a) Germination characteristics of shingle beach species, effects

of seed ageing and their implications for vegetation restoration. Journal of Applied Ecology, 34,

131-142.

Walmsley, C.A. & Davy, A.J. (1997b) The restoration of coastal shingle vegetation: effects of

substrate composition on the establishment of seedlings. Journal of Applied Ecology, 34, 143-

153.

Walmsley, C.A. & Davy, A.J. (1997c) The restoration of coastal shingle vegetation: effects of

substrate composition on the establishment of container grown plants. Journal of Applied

Ecology, 34, 154-165.

Walmsley, C.A. & Davy, A.J. (2001) Habitat creation and restoration of damaged shingle

communities. Ecology and Geomorphology of Coastal Shingle (eds J.R. Packham, R.E. Randall,

R.S.K. Barnes & A. Neal), pp. 409-420. Westbury Publishing, Otley, UK.

Waring, P. & Townsend, M. (2003) Field Guide to the Moths of Great Britain and Ireland. British

Wildlife Publishing, Rotherwick, UK .

Watson, R.R. & Preedy, V.R. (2008) Botanical Medicine in Clinical Practice. CABI, Wallingford,

UK.

Weber, H.C. & Kendzior, B. (2006) Flora of the Maltese Islands. A Field Guide. Margraf

Publishers, Weikersheim, Germany.

Weeda, E. J. (1987) Nederlandse oecologische flora. Wilde planten en hun relaties. IVN, Haarlem,

Amsterdam, The Netherlands.

Weising, K. & Freitag, H. (2007) Phylogeography of halophytes from European coastal and inland

habitats. Zoologischer Anzeiger, 246, 279-292.

Westberg, E. & Kadereit, J.W. (2009) The influence of sea currents, past disruption of gene flow

and species biology on the phylogeographical structure of coastal flowering plants. Journal of

Biogeography, 26, 1398-1410.

Westberg, E. (2005) European phylogeography of the coastal plants Cakile maritima Scop.

(Brassicaceae) and Eryngium maritimum L. (Apiaceae). PhD thesis, Johannes Gutenberg-

Universität Mainz, Germany.

Westrich, P. (2001) Zum Pollensammelverhalten der Seidenbiene Colletes floralis Eversmann 1852

(Hymenoptera, Apidae). Linzer biologische Beiträge, 33, 519-525.

Wiklund, C. (1975) The evolutionary relationship between adult oviposition preferences and larval

host plant range in Papilio machaon L. Oecologia, 18, 185-197.

59

Page 60: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Wolff, H. (1968) Umbelliferae - Saniculoideae. Das Pflanzenreich. Regni Vegetabilis Conspectus

(ed. A. Engler), pp. 1-305. Engelmann, Leipzig, Germany.

Wołk, K. (1973) The directive tendency of dispersion of the Sea-holly (Eryngium maritimum L.).

Specimens Bulletin de l’Academie Polonaise des Sciences, Biologiques, 21, 589-591.

Woodell, S.R.J. (1985) Salinity and seed germination patterns in coastal plants. Vegetatio, 61, 223-

229.

Woodward, M. (1931) Leaves from Gerard's Herball. Houghton Mifflin Company, Boston, USA.

Wörz, A. (1999) A taxonomic index of the species of Eryngium L. (Apiaceae: Saniculoideae).

Stuttgarter Beiträge zur Naturkunde. Serie A (Biologie), 596, 1-48.

Wörz, A. (2004) On the distribution and relationships of the South-West Asian species of Eryngium

L. (Apiaceae-Saniculoideae). Turkish Journal of Botany, 28, 85-92.

Wörz, A. (2005) A new subgeneric classification of the genus Eryngium L. (Apiaceae,

Saniculoideae). Botanische Jahrbücher für Systematik, Pflanzengeschichte und

Pflanzengeographie, 126, 253-259.

Wörz, A. (2006) Systematics and distribution patterns of the Balkan species of Eryngium

(Apiaceae, Saniculoideae). Phytologia Balcanica, 12, 221-230.

Wulff, H.D. (1937) Karyologische Untersuchungen an der Halophytenflora Schleswig-Holsteins.

Jahrbücher für Wissenschaftliche Botanik, 84, 812-840.

Zanella, L., Uliana, M., Scarton, F., Barbieri, F. & Ratti, E. (2009) Valutazione ambientale die

alcuni arenili Veneti con formazioni a dune mediante lo studio della coleotterofauna

specializzata (Insecta, Coleptera). Bollettino del Museo civico di Storia Naturale di Venezia, 60,

41-88.

Zemanek, A. & Zemanek, B. (2006) Methodology of Renaissance botany and the ‘Libri picturati’

(A. 18–30) watercolour collection. The Global and the Local: The History of Science and the

Cultural Integration of Europe (ed. M. Kokowski), pp. 631-636. ICESHS, Cracow, Poland.

Zemanek, A., Ubrzizsy Savoia, A. & Zemanek, B. (2007) The beginnings of ecological thought in

the Renaissance: an account based on the Libri picturati A. 18–30 collection of water-colours.

Archives of Natural History, 34, 87-108.

Zhang, Z.Z., Li, S.Y. Ownby S, Wang, P., Yuan, W., Zhang, W. & Beasley, R.S. (2008) Phenolic

compounds and rare polyhydroxylated triterpenoid saponins from Eryngium yuccifolium.

Phytochemistry, 69, 2070-2080.

Żółkoś, K., Afranowicz, R., Bloch-Orłowska, J. & Kozieł, K. (2007) Distribution and the resources

of Sea Holly (Eryngium maritimum L.) on the western shore of the Gulf of Gdańsk. Biodversity:

Research and Conservation, 5-8, 55-60.

60

Page 61: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Supporting information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Sources for Table 2: Biogeographical species-groups distinguished by TWINSPAN

classification of species frequency in 8 biogeographic regions from Europe and adjacent countries.

Appendix S2. Additional acknowledgements.

61

Page 62: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Table 1. Indicator values for Eryngium maritimum for light (L), temperature (T), continentality (K),

moisture (F), soil pH (R), nitrogen (N) and salinity (S) in different parts of its range. UK (range 1-9,

except F 1-12; Hill et al. 1999); N.W. Europe (range 1-9, except F 1-12; Ellenberg et al. 1991).

Cerain Indicator values for the eastern parts of its distribution are missing (Ramensky et al. 1956).

Values of The Netherlands (Bakkenes et al. 2002) are recalibrated on the basis of the Dutch

vegetation database, giving mean, minimum and maximum values. Values for Greece (Böhling

1995) range 1-4 or 5

Indicator UK N.W. Europe Netherlands GreeceL - light 9 9 full lightT - temperature 6 6 moderate to warm 4 extreme warmK - continentality 3 3 oceanic to suboceanicF - moisture 4 4 dry to moderate fresh 4.52 (3.00-6.48) 2 very dry habitatsR - soil pH 6 7 slightly acid to basic 6.44 (4.00-7.50) 5 calcifugeN - nitrogen 5 4 poor to moderate 4.54 (2.50-7.20)S - salinity 3+ ? 3 facultative halophyte

62

Page 63: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Table 2. Biogeographical species-groups distinguished by TWINSPAN classification of species frequency (%) in 8 biogeographic regions. It includes

3605 relevés from Europe and adjacent countries. Names of syntaxa follow Mucina (1997). Sources are given in Appendix S1

Biogeographic region

Bla

ck S

ea, M

edit.

Sea

, SW

A

tlant

ic

NW

Atla

ntic

, Nor

th S

ea,

Bal

tic S

ea

Bla

ck S

ea

S Eu

r. A

tlant

ic a

nd

Med

iter.

Sea

NW

Eur

. Atla

ntic

and

N

orth

Sea

N N

orth

Sea

and

B

altic

Sea

NE

Bla

ck S

ea

SW B

lack

Sea

NE

and

cent

ral N

Med

it

S Eu

r. A

tlant

ic, N

W a

nd S

M

edit.

Sea

NW

Atla

ntic

-S N

orth

Sea

, SW

Bal

tic

Nor

th S

ea

NE

and

cent

ral S

Bal

tic S

ea

N N

orth

Sea

and

N

W B

altic

Sea

Twinspan step 1 2 1,1 1,2 2,1 2,2 1,11 1,12 1,21 1,22 2,11 2,12 2,21 2,22Number of relevés 2250 1355 240 2010 1219 136 155 85 1496 514 953 266 132 4Eryngium maritimum 100 100 100 100 100 100 100 100 100 100 100 100 100 100Black Sea, Mediterranean Sea, S.W. AtlanticPolygonum maritimum 13 1 13 13 1 . 6 26 12 15 1 . . .Salsola kali 23 9 30 22 9 4 28 32 25 11 10 5 4 .Euphorbia peplis 11 1 12 11 1 . 10 16 13 4 1 0 . .Xanthium strumarium 18 0 36 16 . 3 35 39 20 2 . . 3 .Cakile maritima 31 14 28 32 15 5 36 13 35 23 18 5 5 .Elytrigia juncea 62 33 11 68 37 2 6 21 69 64 31 58 2 .Euphorbia paralias 32 14 4 36 16 . 4 5 32 46 13 25 . .Medicago marina L. 36 1 3 39 2 . 3 5 42 33 2 . . .Pancratium maritimum 31 1 2 34 1 . 1 2 34 35 1 . . .Echinophora spinosa L. 28 1 . 31 1 . . . 36 15 1 . . .Sporobolus pungens (Schreb.) Kunth 27 1 . 30 1 . . . 35 17 1 . . .Achillea maritima 23 2 1 25 3 . 2 . 26 24 2 6 . .Ammophila arenaria (L.) Link ssp. arundinacea H.Lindb. 22 . . 24 . . . . 21 35 . . . .Cyperus capitatus Vand. 21 0 1 23 0 . . 2 27 11 0 . . .Crucianella maritima L. 10 0 . 11 0 . . . 5 26 0 . . .Black SeaCrambe maritima 4 3 41 0 3 1 46 32 . 0 4 0 . 25

Page 64: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Lactuca tatarica 4 3 38 0 3 . 34 44 0 . 4 . . .Euphorbia seguieriana Neck. 2 . 19 . . . 15 26 . . . . . .Linaria dalmatica 2 0 16 0 . 2 7 33 0 . . . 2 .Alyssum hirsutum M.Bieb. 1 . 12 . . . 14 8 . . . . . .Cynanchum acutum L. 2 . 11 1 . . 10 12 1 0 . . . .Artemisia tschernieviana Besser 3 . 25 . . . 38 2 . . . . . .Gypsophila perfoliata L. 2 . 18 . . . 27 2 . . . . . .Melilotus albus 3 1 17 1 1 . 21 9 2 . 1 1 . .Artemisia santonicum L. 2 . 14 . . . 22 . . . . . . .Carex ligerica J.Gay 1 0 13 . . 1 16 7 . . . . 1 .Phragmites australis 4 2 11 3 2 . 15 4 3 1 3 . . .Seseli tortuosum L. 4 . 10 3 . . 16 . 3 3 . . . .Elymus elongatus (Host) Runemark 2 . 10 2 . . 14 1 2 . . . . .Centaurea arenaria M.Bieb. ex Willd. 3 . 30 . . . 15 59 . . . . . .Medicago sativa 2 1 19 0 1 . 5 44 0 . 1 . . .Secale sylvestre Host 1 . 13 0 . . 6 26 0 . . . . .Silene thymifolia Sm. 2 . 11 0 . . . 31 1 . . . . .Chondrilla juncea L. 2 2 10 1 3 . 5 18 2 1 3 . . .N.E. Black SeaGlycyrrhiza glabra L. 1 . 9 1 . . 14 . 1 . . . . .Bromus squarrosus 1 . 9 0 . . 14 . 0 . . . . .Astrodaucus littoralis (M.Bieb.) Drude 1 . 9 . . . 14 . . . . . . .Galium humifusum M.Bieb. 1 . 8 . . . 13 . . . . . . .Polygonum arenarium 1 . 8 0 . . 12 . 0 . . . . .Salsola soda L. 1 0 8 0 0 . 12 . 1 . 0 . . .Argusia sibirica (L.) Dandy 1 . 8 0 . . 12 . 0 . . . . .Suaeda maritima 1 1 7 0 1 . 10 . 1 0 1 . . .Cynodon dactylon 7 3 6 8 3 . 10 . 9 2 4 . . .S.W. Black SeaSilene conica 1 2 6 0 2 . 2 13 0 . 3 . . .S. European Atlantic and Mediterranean SeaCalystegia soldanella 27 18 . 30 21 . . . 26 43 19 27 . .Lotus cytisoides L. 8 . . 10 . . . . 9 10 . . . .Cutandia maritima (L.) Barbey 8 . . 9 . . . . 10 9 . . . .S. European Atlantic, N.W. and S. Mediterranean SeaLotus creticus L. 6 . . 7 . . . . 3 17 . . . .Malcolmia littorea (L.) R.Br. 3 . . 4 . . . . 0 13 . . . .

64

Page 65: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Aetheorhiza bulbosa 5 . . 6 . . . . 4 12 . . . .Helichrysum stoechas (L.) Moench 4 2 . 4 2 . . . 2 12 2 . . .N.W. Atlantic, North Sea, Baltic SeaAmmophila arenaria 17 67 16 17 68 60 . 45 17 16 69 65 60 50Festuca rubra . 63 . . 63 57 . . . . 65 56 56 100Carex arenaria 1 43 . 1 44 32 . . . 5 46 36 31 75Honckenya peploides 1 29 . 1 29 25 . . . 6 26 42 25 25Leymus arenarius 0 24 3 . 24 23 . 9 . . 29 5 20 100X Calammophila baltica . 10 . . 10 15 . . . . 12 0 16 .Galium album . 10 . . 10 8 . . . . 13 2 8 .N.W. European Atlantic and North SeaHypochaeris radicata 3 25 . 3 28 1 . . 4 1 24 42 2 .Sedum acre 0 25 . 0 27 7 . . 0 0 30 14 5 50Taraxacum sect. Ruderalia . 19 . . 21 2 . . . . 20 27 2 25Lotus corniculatus 1 18 . 1 20 1 . . 1 . 14 39 . 25Sonchus arvensis 0 16 1 . 18 1 . 2 . . 21 6 . 50Galium verum . 16 . . 18 3 . . . . 16 25 2 50Cerastium semidecandrum 0 16 0 . 17 2 1 . . . 20 8 2 .Leontodon saxatilis 1 15 . 2 16 2 . . . 6 16 17 2 .Phleum arenarium 1 14 . 2 16 . . . 2 . 18 9 . .Plantago lanceolata 1 14 . 1 15 . . . 1 0 13 25 . .Hippophae rhamnoides 0 12 . 0 13 3 . . 0 . 16 1 3 .Poa pratensis . 11 . . 12 3 . . . . 11 18 2 50Ononis repens . 9 . . 10 . . . . . 9 12 . .Senecio jacobaea L. . 10 . . 11 . . . . . 8 23 . .S North SeaCerastium diffusum 0 8 . 0 8 . . . . 1 6 16 . .Tripleurospermum maritimum 0 7 . 0 8 . . . . 1 6 12 . .North Sea and Baltic SeaHieracium umbellatum . 31 . . 26 78 . . . . 34 . 80 25Corynephorus canescens 1 20 . 1 18 40 . . . 4 22 2 42 .Jasione montana 0 16 . 0 14 32 . . 0 0 17 2 33 .Viola tricolor . 12 . . 10 26 . . . . 12 4 27 .Artemisia campestris 4 12 3 4 6 59 1 6 1 11 8 . 61 .Lathyrus japonicus ssp. maritimus . 7 . . 5 28 . . . . 6 1 27 50Festuca polesica Zapall. . 3 . . 0 23 . . . . 1 . 23 .Linaria odora (M.Bieb.) Fisch. 0 2 . 0 . 18 . . 0 . . . 19 .

65

Page 66: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Helichrysum arenarium (L.) Moench . 3 . . 2 18 . . . . 2 . 18 .Calamagrostis epigejos 1 4 7 . 3 13 6 8 . . 3 . 13 .N.E. and central S. Baltic SeaThymus serpyllum . 3 . . 2 9 . . . . 3 . 9 .Festuca lemanii . 1 . . . 9 . . . . . . 9 .Salix daphnoides . 1 . . . 9 . . . . . . 9 .Tragopogon floccosus Waldst. & Kit. . 1 . . . 9 . . . . . . 9 .N. North Sea and N.W. Baltic SeaPotentilla anserina . 4 . . 4 2 . . . . 3 7 . 75Elytrigia repens 0 7 2 0 7 3 3 . 0 . 9 . 2 50Atriplex prostrata 1 5 3 1 5 2 4 . 1 1 6 2 1 50Arrhenatherum elatius . 1 . . 1 1 . . . . 2 . . 50Plantago maritima 0 2 3 . 2 1 4 . . . 2 2 1 25Linaria vulgaris 0 3 2 . 3 1 3 . . . 4 . 1 25Atriplex littoralis . 2 . . 2 1 . . . . 3 . 1 25Sedum telephium . 1 . . 1 1 . . . . 1 . . 25Vicia cracca 0 1 . 0 1 1 . . 0 . 1 . . 25

66

Page 67: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Table 3. Comparison of leaf traits of Eryngium maritimum and Pancratium maritimum. The mean

and the standard deviation (SD) for 25 plants is shown. From Gratani & Fiorentino (1988)

Eryngium maritimum Pancratium maritimumMean SD Mean SD

Leaf area per plant (m²) 0.00463 0.00136 0.00253 0.00019Dry mass (kg m-2) 0.161 0.060 0.15119 0.06314Number of leaves per plant 42.0 31.1 48.0 37.2Height (m) 0.196 0.0927 0.237 0.0682Leaf area index 2.63 0.87 0.61 0.27

Page 68: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Table 4. Timing and duration of flowering season in Eryngium maritimum in different areas of its

distribution (based on Frisendahl 1926; Eberle 1979; Chater 1980; Bagella 1985; Gratani,

Fiorentino & Fida 1986; Fitter & Peat 1994; Favennec 1998; Olšauskas & Olšauskaite Urboniene

1999; Heukels 2000; Hitchmough, Kendle & Paraskevopoulou 2001; Curle, Stabbetorp & Nordal

2007; Avižienė, Pakalnis & Senzikaite 2008; Korhonen 2011)

Flowering start Flowering end Duration (months)South Mediterranean coast April June 2North-east Mediterranean coast May August 3North-west Mediterranean coast June August 3South Atlantic coast June August 3Southern North Sea, W. Baltic Sea July August-September 1-2North Atlantic, Irish Sea, Baltic Sea July August 1

68

Page 69: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Table 5. Invertebrate animals recorded as feeding on Eryngium maritimum

Taxon Ecological notes Plant part Country Reference

ARTHROPODA, InsectaHemipteraAphididaeCavariella aegopodii (Scopoli) Oligophagous on Apiaceae;

overwinters as eggs on Salix spp. 1

ColeopteraScarabaeidaePolyphylla fullo L. Larvae Roots Netherlands 2

LepidopteraOecophoridaeAgonopterix cnicella Treitschke Larvae; monophagous on

Eryngium maritimum; causes rolling, webbing and brown discolouration

Shoots, leaves UK, Netherlands 3, 4

TortricidaeAethes margarotana Duponchel Larvae boring, webbing and

mining. Causes brown discolouration

Roots, upper stems, flowers

Now extinct in UK 5

Aethes williana Brahm larvae boring; feeds mainly on Daucus carota

Roots, lower stems

UK 6, 7

NoctuidaeAgrotis ripae Hübner Larvae; monophagous Shoots, leaves UK 8PapilionidaePapilio machaon L. Caterpillar Leaves, roots Sweden 9

MOLLUSCA, GastropodaHelicidaeTheba pisana O.F. Müller Leaves, stems? Portugal 10

References: 1, Börner (1952); 2, Huiting et al. (2006); 3, Emmet & Langmaid (2002); 4, Huisman et al. (2013); 5, Davidson et al. (1991); 6, Kimber (2013); 7, Razowski (1970); 8, Waring & Townsend (2003); 9, Wiklund (1975); 10, Clarke & Beaumont (1992).

69

Page 70: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Fig. 1. The distribution of Eryngium maritimum in the British Isles. Each dot represents at least one

record in a 10-km square of the National Grid. (●) native 1970 onwards; (o) native pre-1970; (+)

non-native 1970 onwards; (x) non-native pre-1970. Mapped by Colin Harrower, Biological Records

Centre, Centre for Ecology and Hydrology, mainly from records collected by members of the

Botanical Society of the British Isles, using Dr A. Morton’s DMAP software.

70

Page 71: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Fig. 2. The distribution of Eryngium maritimum in Europe and adjacent areas; compiled and

mapped by E. Welk (AG Chorology, Departement Geobotany, Institute for Biology, Martin-Luther-

University Halle Germany). Black dots represent recorded single occurrences; the dark grey line

indicates coastal regions as mapped by Weinert in Meusel et al. (1978).

71

Page 72: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Fig. 3. Eryngium maritimum (a) on shingle, Shoreham Beach, West Sussex, UK (Photo: Dee

Christensen, 2006), (b) on a yellow-dune with relatively high sand accumulation at the German

island of Spiekeroog, (c) and threatened by Rosa rugosa on Spiekeroog (Photos: Maike Isermann,

2009). (d) Taproot of Eryngium maritimum on an eroding dune, Connemara, Galway, Republic of

Ireland (Photo: Maike Isermann, 1991).

(d)(a)

(b)

(c)

72

Page 73: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Fig. 4. Morphology of Eryngium maritimum: (a) Habit of an adult plant; details of (b) leaf, (c)

shoot, (d) flower with bract, and (e) fruit (Drawings by Roland Spohn).

(a)

(b)

(e)

(d)

(c)

73

Page 74: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

(a)

(c)

(b)

74

Page 75: BIOLOGICAL FLORA OF THE BRITISH ISLES* maritimum... · Web view2014/02/24  · BIOLOGICAL FLORA OF THE BRITISH ISLES*No. 274 List Vasc. Pl. Br. Isles (1992) no. 107, 4, 3 Biological

Fig. 5. Scanning EM micrographs of leaf surface structure with epicuticular waxes: (a) lower

surface (b, c) upper surface (W. Barthlott).

Fig. 6. Germination and developmment of Eryngium maritimum: (a) and (b) 2-cotyledon stage, at 4

weeks; (c) with primary foliage leaf, at 6 weeks; (d) with a small second foliage leaf, at 8 weeks;

and (e) with four leaves, at c.12 weeks. Seeds collected from the German island of Spiekeroog,

sown on the 9 March 2010 and maintained at c. 16 °C. (Drawings: Roland Spohn).

(a) (b) (c) (d) (e)

75