78
Ernst-Detlef Schulze Biological Control of the Terrestrial Carbon Sink - The Vernadsky Medal Lecture 2004 Max-Planck Institute for Biogeochemistry, Jena, Germany Design: Annett Börner, MPI-BGC

Biological Control of the Terrestrial Carbon Sink · Ernst-Detlef Schulze Biological Control of the Terrestrial Carbon Sink Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Ernst-Detlef Schulze

Biological Control of the Terrestrial Carbon Sink

-The Vernadsky Medal Lecture 2004

Max-Planck Institute for Biogeochemistry, Jena, Germany

Design: Annett Börner, MPI-BGC

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108: 583-595.

Ciais P, Janssens I, Shvidenko A, Wirth C, Malhi Y, Grace J, Schulze ED, Heimann M (2004) The potential for rising CO2 to account for the observed uptake of carbon by tropical, temperate and boreal forest biomes. In: HJ Giffith (ed) BIOS Monographs Series (in press).

Field C, Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: TJ Givnish (ed) On the economy of plant form and function. Cambridge University Press. Cambridge, pp 25-56.

Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O’Neill KP, Kasischke ES (2000) The role of fire in the boreal carbon budget. Global Change Biology 6:174-184.

Harrison AF, Schulze ED, Gebauer G, Bruckner G (2000) Canopy uptake and utilization of atmospheric pollutant nitrogen. Ecol. Studies 142: 171-188.

Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Reas DJ, Scherer-Lorenzen M, Schulze E-D, Siamantziouras A-SD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123-1127.

Kelliher FM, Leuning R, Schulze E-D (1993) Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia 95:153-163.

Lange OL, Heber U, Schulze ED, Ziegler H (1989) Atmospheric pollutants and plant metabolism. Ecol Studies 77: 238-276.

Lange OL, Lösch R, Schulze E-D, Kappen L (1971) Responses of stomata to changes in humidity. Planta 100: 76 - 86.

Lange OL, Zellner H, Gebel J, Schramel P, Köstner B, Czygan FC (1987) Photosynthetic capacity, chloroplast pigments and mineral content of previous year’s spruce needles with and without the new flush: analysis of the forest-decline phenomenon of needle bleaching. Oecologia 73: 351-357.

Prentice IC, Farquhar GD, Fashham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, LeQéré C, Scholes RJ, Wallace DWR et al (2001) The carbon cycle and atmospheric carbon dioxide. Climate Change 2001: The scientific basis. Cambridge University Press, Cambridge pp 183-238.

Rebmann C (2003) Kohlendioxid-, Wasserdampf- und Energieaustausch eines Fichtenwaldes in Mittelgebirgslage in Nordostbayern. Dissertation Bayreuth, 140 pp.

Roscher C, Schumacher J, Baade J, Wilcke W, Gleixner G, Weisser W, Schmid B, Schulze ED (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic and applied ecology 5: 107-121.

Schimel DS, House JI, Hibbard KA et al (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414: 169-172.

Schulze E-D (1970) Der CO2-Gaswechsel der Buche (Fagus silvatica L.) in Abhängigkeit von den Klimafaktoren im Freiland. Flora 159: 177 - 232.

Schulze E-D (1986) Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Ann. Rev. Plant Physiol. 37: 247 - 274.

Schulze E-D (2000) Der Einfluß des Menschen auf die biogeochemischen Kreisläufe der Erde. Max Planck Forschung JV/2000: 77-89.

Schulze E-D (ed.) Flux Control in Biological Systems. Academic Press, 594 pp, 1994.Schulze E-D, Beck E, Müller Hohenstein K (2002) Pflanzenökologie, Spektrum Verlag,

Heidelberg, 846 pp.Schulze E-D, Hall AE (1982) Stomatal responses, water loss and CO2 assimilation

rates of plants in contrasting environments. In: OL Lange, PS Nobel, CB Osmond, H Ziegler (eds.) Encyclopedia of Plant Physiology. Physiological Plant Ecology II. Vol. 12B. Water relations and photosynthetic productivity, Berlin, Heidelberg pp. 181 - 230.

Schulze E-D, Kelliher FM, Körner Ch, Lloyd J, Leuning R (1994) Relationships among maximum stomatal conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Ann. Rev. Ecol. System. 25: 629-660.

Schulze E-D, Lloyd J, Kelliher FM, Wirth C, Rebmann C, Lühker B, Mund M, Knohl A, Milykova I, Schulze W, Ziegler W, Varlagin A, Valentini R, Sogachov A, Valentini R, Dore S, Grigoriev S, Kolle O, Tchebakova N, Vygodskaya NN (1999) Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink – A synthesis. Global Change Biology 6: 703-722.

Schulze E-D, Wirth C, Heimann M (2000) Managing forests after Kyoto. Science 289: 2058-2059.

Schulze WX, Gleixner G, Kaiser K, Guggenberger G, Mann M, Schulze ED (2004) A proteomic fingerprint of biodiversity. Oecologia (in press).

Valentini R, Matteucchi G, Dolman H, Schulze E-D, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilgaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Lousteau D, Gudmundsson J, Thorgairsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404: 861-865.

Vygodskaya NN, Milukova I, Varlagin A, Tatarinov F, Sorgachev A, Kobak KI, Desyatkin R, Bauer G, Hollinger DY, Kelliher FM, Schulze E-D (1996) Leaf conductance and CO2 assimilation of Larix gmelinii growing in an eastern Siberian boreal forest. Tree Physiology 17: 607-615.

WBGU (2004) World in transition: Towards sustainable energy systems. German Advisory Council on Global Change (WBGU). Earthscan, London, 242 pp.

Wirth, C, Schulze E-D, Schwalbe G, Tomczyk S, Weber G, Weller G (2003) Dynamik der Kohlenstoffvorräte in den Wäldern Thüringens. BMBF Bericht zu „Modelluntersuchungen zur Umsetzung des Kyoto Protokolls“ Förderkennzeichen 01LK9901, 302 pp.

References

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

The Human Impact

Schulze, MPG-Yearbook (2000): 77-89

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

CO2Concentration Trends

PTB – Point Barrow, Alaska

MLO – Mauna Loa, Hawai

FAN/CHR –Christmas Islands

NZD – New Zealand

Dave Keeling

Roger Francey

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Variability of Atmospheric CO2 Concen-trations

Prentice, IPCC (2001): 204

Heimann, pers. communication

Colin Prentice

Martin Heimann

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Causes for Natural Variability

→ Natural sinks

→ Natural sources

→ Disturbances

→ Fossil fuel emissions

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Natural Sinks(Photosynthesis)

How was the past?

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Pioneer Time:

Hal Mooney

William D. Billings

Otto Lange

Ralph Slatyer

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

We were busy constructing cuvettes:

Alpine (Pinus aristata)

Solling (Fagus sylvatica)

Avdat (Prunus armeniaca)

Soil cuvette

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

CO2 assimilation operates at about 50 % of Amax

Schulze, Flora 159 (1970): 177-232

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

CO2 assimilation operates at about 50 % of Amax

Schulze and Hall, Encycl. Plant Physiol. 12B (1982): 181-224

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

CO2 assimilation operates at about 50 % of Amax

Vygodskaya et al., Tree Physiol. 17 (1996): 607-615

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

We were totally surprised when we discovered, using photosynthetic mutants, that RuBisCo, the main enzyme of CO2 assimilation, can be reduced by about 50% before affecting photosynthesis.

Schulze: Flux Control in Biological Systems (1994): 66

RuBisCo

Nitrogen storage

Photosynthesis

Protection against variable light

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

What were the highlights of this pioneer time?

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Humidity effect: to twinkle with stomata

Lange et al., Planta 100 (1971): 76-86

Humid air

Dry air

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Water stress: soil not leaf water status is important

after Schulze, Ann. Rev. Plant Physiol. 37 (1986): 247-274

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Predicting Amax and gmaxremained the big challenge

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Amax / N

Field and Mooney, In: Givnish (1986): 25-56

Chris Field

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Gmax/LAI

Kelliher et al., Oecologia 95 (1993): 153-163

Francis M. Kelliher

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

gmax / N

Schulze et al., Ann. Rev. Ecol. Syst. 25 (1994): 629-660

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Gmax/gmax

Schulze et al., Ann. Rev. Ecol. Syst. 25 (1994): 629-660

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Amax/Gmax

Schulze et al., Ann. Rev. Ecol. Syst. 25 (1994): 629-660

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Geographic distribution of Amax

Schulze et al., Ann. Rev. Ecol. Syst. 25 (1994): 629-660

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

What did we learn?

→ Natural environments are always stressfull.

→ There is a lot of compensation or balance -if light limitation is released, humidity anddrought catch.

→ A first assessment of community carbon balances emerged, which are still the basis for many of our present models.

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

What did we learn?→ Natural environments are always stressfull.

→ There is a lot of compensation or balance -if light limitation is released, humidity and drought catch.

→ A first assessment of community carbon balances emerged, which are still the basis for many of our present models.

0.0

0.0

0.0

0.0

2.2

4.4

6.6 (80 %)

0.2

0.0

1.5

1.7 (20 %)

8.3 (100 %)

20

2.0

1.5

0.7

4.2 (28 %)

1.7

1.2

2.9 (20 %)

0.4

1.0

6.4

7.8 (52 %)

14.9 (100 %)

5

1.3

1.4

0.4

3.0 (35 %)

1.4

1.8

3.2 (37 %)

0.7

0.4

1.3

2.4 (28 %)

8.6 (100 %)

10

Stem

Branches

Coarse roots

Growth

Fine roots

Leaves

Litter

Stem and roots

Buds

Leaves

Respiration

GPP (t C ha-1 a-1)

Amax (mg CO2 g-1 h-1)

Barley (1975)Spruce (1971)Beech (1968)

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Two things happened at the end of the period of „gatherers and hunters“:

→ Photosynthesis research collapsed in the mid 1980‘s:

All leaf types had been enclosed at least once into a porometer.

→ Forest decline made ecophysiologists aware that there is more than photosynthesis.

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

European forests showed widespread symptoms of yellowing

Picea abies in the Fichtelgebirge,

Germany

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

European forests showed widespread symptoms of yellowing

Lange et al., Ecol. Studies 77 (1989): 238-276

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Atmospheric transport became important

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Canopy uptake of Nitrogen

Harrison et al., Ecol. Studies 142 (2000): 171-188

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Soils became utterly important

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Interaction of Mg deficiency and N surplus

Lange et al., Oecologia 73 (1987): 351-357

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

The main effects of acid rain research was

→ the birth of ecosystem science in Europe.

→ the awareness of cross boundary transport and effects of pollutants.

Roof experiment in Sweden

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

The main effects of acid rain research was

→ the birth of ecosystem science in Europe.

→ the awareness of cross boundary transport and effects of pollutants.

→ the awareness that these processes are important at global scale

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Start of IGBP-GCTE

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

IGBP was the basis for initiation of global networks

→ CO2 network

→ Fluxnetwork

→ Continental transects

These networks remain the basis of our research today (CarboEurope).

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Natural Sources

(Respiration and Disturbance)

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Respiration, not photosyn-thesis drives the global Carbon Budget

Valentini et al., Nature 404 (2000): 861-865

Ricardo Valentini

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Ecosystem sites in the CarboEurope IP

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Flux partinioning became important→ Girdling experiment at the Wetzstein,

Germany

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Respiration sums of different compartments

Rebmann (2003)

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Flux Components During the Course of theGirdling – 13C Litter Experiment at the Wetzstein

Buchmann (2003), Forcast project

Nina Buchmann

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Investigating Roots

Shoot-root ratio of spruce in a petri dish Trying to find the root tips in boreal Pinus

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

However, some pushed the frontiers utilizing the newest technology established by the Chinese over a thousand years ago…

courtesy: H. Mooney

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

However, some pushed the frontiers utilizing the newest technology established by the Chinese over a thousand years ago…

courtesy: H. Mooney

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

However, some pushed the frontiers utilizing the newest technology established by the Chinese over a thousand years ago…

courtesy: H. Mooney

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Maximum rooting depth of vegetation types at the global scale

after Canadell et al., Oecologia 108 (1996): 583-595

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Disturbances override Photosyntesis and Respiration → Windbreak

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Hot spots distribution April – November 2003

Disturbances override Photosyntesis and Respiration → Fire

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Disturbances override Photosyntesis and Respiration → Logging

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Not NPP, not NEP, but NBP drives the Global Carbon Budget

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Not NPP, not NEP, but NBP drives the Global Carbon Budget

Schulze et al., Science 289 (2000): 2058-2059

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Carbon accumulation follows the principle „Slow in, Fast out“

Ec

osy

ste

m C

arb

on

Po

ol

time

disturbance

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Disturbance intensity and export

Harden et al., Global Change Biology 6 (2000): 174-184

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Disturbance intensity and export

Wirth et al., Mitteilungen der TLWJF 23 (2004)

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Carbon definitions of disturbance

Schulze et al., Global Change Biology 5 (1999): 703-722

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Global Carbon Budget 1990 to 2000

Schimel et al., Nature 414 (2001): 169-172

170.5Tropics

431.3Siberia

130.4Europe

270.8USA

3.0Assilmilation by vegetation

1.6 ± 0.8Emissions due to land-use change

1.4 ± 0.7Net uptake of the continents

1.7 ± 0.5Net uptake of the oceans

3.2 ± 0.1Atmospheric CO2 increase

4.80.3Germany

130.8Russia

171.1EU-15

251.6USA

6.3 ± 0.4Fossil fuel emissions

(%)(Gt C a-1)

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Siberia re-assimilates 90 % of European fossil fuel emissions

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Siberian carbon sink

Ciais et al., Southhampton Proceedings (2003)

β: CO2 fertilizationfactor

Philippe Ciais

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Can we single out the effects of climate change, N deposition and human management?

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Estimation of different effects for Thuringia

Wirth et al., Mitteilungen der TLWJF 23 (2004): 8

Christian Wirth

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Can we enhance the natural sink?

→ Fast growing plantations

→ Long rotation

→ Hardwood vs. softwood

→ Selective cutting, shelter

→ Protection

no

buying for time

limited

limited

long-term

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Biodiversity

Schulze, MPG-Yearbook (2000): 77-89

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

The „Jena Biodiversity Experiment“ in the Saaleaue

ph

oto

: J. B

aa

de

Roscher et al., Basic and Applied Ecology 5 (2004): 107-121

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Biodiversity

Hector et al., Science 286 (1999): 1123-1127

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Identification of organism groups by enzymes in water samples

W. Schulze, Oecologia, submitted

Lake Hohlohsurface water

Hainich

soil water 5cm 10cm 20cm

74 4528

148

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

The Future

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Relation between mean income and energy consumption in 1997

WBGU: Towards Sustainable Energy Systems (2004)

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Availability of electricity

WBGU: Towards Sustainable Energy Systems (2004)

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

WBGU climate window and temperature development

2000-2100 period for two scenarios

WBGU: Towards Sustainable Energy Systems (2004)

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Energy use in the MIND modela) BAU (business as usual)

b) UmBAU (‘transformation’)

WBGU: Towards Sustainable Energy Systems (2004)

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Contributions of energy carriers to energy demand

WBGU: Towards Sustainable Energy Systems (2004)

Energy efficiency enhancement

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Temperature Change Relative to Pre-industrial Mean

Nakicenovic and Riahi, 2001

Resulting Sea-level Rise Relative to 2000 Assuming a Climate Sensitivity of 2.5°C

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Summary

→ There is hope to solve the problem of energy demand technically.

→ The contribution of sinks is relatively small.

→ There remains the danger that by land-use and land-use change the biological pools in biomass and soils become activated.

→ Protection of C pools becomes more important than enhancement of sinks.

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Variability of Atmospheric CO2 Concen-trations

Heimann, pers. communication

Biological Control of the Terrestrial Carbon SinkErnst-Detlef Schulze

Variability of Atmospheric CO2 Concen-trations

Heimann, pers. communication

Thanks!