Biolix Calco a Distintas Temp

Embed Size (px)

Citation preview

  • 8/18/2019 Biolix Calco a Distintas Temp.

    1/14

    E L S E V I E R

    Hydrometallurgy 43 (1996) 331-344

    h y d r o m e t l l u r g y

    Electrochemistry of chalcopyri te

    C . G 6 m e z

    a , ,

    M . F i g u e r o a b ,1 , j . M u f i o z a , M . L . B l f iz q u e z

    a ,

    A . B a l l e s t e r a

    a Departamento de Cienc ia de M ater ia les e lngenier la Metal ~rgica , Facul tad d e Cienc ias Qulmicas ,

    Univers idad Complutense de Madrid , 28040 Madrid , Spain

    b Departamento d e Q ulmica lnorg6nica , F acul tad de Qulmica , Pont i f ic ia Univers idad Cat61ica de Chi le ,

    Casil la 306, correo 22, Santiago, Chile

    Received 30 November 1995; accepted 21 January 1996

    A b s t r a c t

    The electrochemical response of a massive chalcopyrite electrode at two different temperatures,

    25°C and 68°C, were compared. The electrolyte used in the experiments was an acidic medium

    (0.4 g -I -t (NH4)2SO 4, 0.5 g .1 -I MgSO4- 7H20, 0.2 g-1- 1 K2HPO 4 at pH = 2 ) which is

    suitable for the growth of the microorganisms involved in the bioleaching process. The chosen

    temperatures were optimum for the growth of the mesophilic T h i o b a c i ll u s f e r r o o x i d a n s ) and

    thermophilic

    S u l f o l o b u s )

    microorganisms. The experimental results at both temperatures were

    similar and confirmed that, during the anodic dissolution of chalcopyrite, a passive film is formed

    on the surface which restricts the oxidation reactions in the medium by diffusional control of the

    film. The different responses at the temperatures tested were due to the differing physical structure

    of the complex films of the electrochemically formed sulphides, polysulphides and elemental

    sulphur.

    1 . I n t r o d u c t i o n

    C h a l c o p y r i t e (C u F e S 2 ) is t h e m o s t a b u n d a n t o r e o f t h e s u l p h i d e m i n e r a ls o f c o p p e r .

    Howeve r , t h i s m i ne r a l i s t he m os t r e ca l c i t r an t t o hyd r om e t a l l u r g i ca l p r oces s e s . Fo r t h i s

    r ea s on p y r om e t a l l u r g i ca l p r oces s e s i nvo l v i ng t he s m e l t i ng o f concen t r a t e s [ 1 a r e s t il l the

    m o s t e f f e c t iv e w a y o f e x t r a c ti n g t h e c o p p e r f r o m t h i s m i n e r a l. U n f o r t u n a t e l y , th e

    e x t r a c t io n p r o c e s s e s p r e s e n t s e r io u s p o l l u ti o n p r o b l e m s , d u e t o S O 2 e m i s s i o n s d u r i n g

    * Corresponding author. Fax: + 34 1 394 43 57. E-mail: [email protected]

    i Fax: 56 2 552 56 92. E-mail: [email protected]

    0304-386X/96/$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved.

    P H

    S0304-3 86X(96)00010- 2

  • 8/18/2019 Biolix Calco a Distintas Temp.

    2/14

    332 C. Gdmez et al. / Hydrometallurgy 43 1996) 331-344

    pyr om e t a l l u r g i ca l r e ac t i ons . The s t r i c t env i r onm en t a l r e s t r i c t i ons i m pos ed on s uch

    ope r a t i ons i nvo l ve a g r ea t dea l o f i nves t m en t , wh i ch i nc r ea s e s p r oduc t i ons cos t s . To

    t ack l e s uch p r ob l em s , hyd r om e t a l l u r gy , wh i ch i s l e s s con t am i na t i ng [ 2, 3] , o f f e r s chea pe r

    ways t o ex t r ac t t he coppe r , de s p i t e t he d i f f i cu l t i e s o f t h i s p r oces s e s even i n s t r ong l y

    ox i dan t m ed i a [ 4 ] .

    A m o n g t h e h y d r o m e t a l l u r g i c a l p r o c e s s e s , o n e p o s s ib l e e c o n o m i c a l l y p r o f it a b le p r o -

    ce s s cou l d be t o d i s s o l ve t he coppe r by b i o l each i ng , t ha t i s t o s ay , t o u s e m i c r oo r gan -

    i s m s t ha t c a t a l y s e t he m i ne r a l d i s s o l u t i on . Such m i c r oo r gan i s m s a r e u s ua l l y c l a s s i f i ed

    acco r d i ng t o t he t em pe r a t u r e s t hey need t o g r ow, s o t ha t t he s o - ca l l ed m es oph i l i c

    m i c r o o r g a n i s m s

    Thiobacillus errooxidans, Thiobacillus thiooxidans, Leptospirilum fer-

    rooxidans,

    e t c . ) d e v e l o p a t a m b i e n t t e m p e r a t u r e s , w h e r e a s t h e r m o p h i l ic m i c r o o r g a n i s m s

    Sulfolobus)

    n e e d h i g h e r t e m p e r a t u r e s.

    The m a i n d i s advan t age o f u s i ng b i o l each i ng t r ea t m en t s wi t h s u l ph i de m i ne r a l s i s t he

    s l ow d i s s o l u t i on k i ne t i c s and , i n t he ca s e o f cha l copyr i t e , t he l ow y i e l d s , wh i ch a r e

    a t t r i bu t ed t o t he f o r m a t i on o f a s o l i d r eac t i on p r oduc t on t he s u r f ace [ 5 ] . Th i s l aye r

    wou l d ac t a s a d i f f u s i ona l ba r r i e r and h i nde r con t ac t be t ween t he l e ach i ng s o l u t i on and

    t he cha i copyr i t e , t hus s l owi ng down any s ubs equen t d i s s o l u t i on .

    P r e v i o u s b i o l e a c h i n g e x p e r i m e n t s c a r r i e d o u t w i t h t h e r m o p h i l i c m i c r o o r g a n i s m s

    ( p r i nc i pa l l y Sulfulobus) r epo r t ed i n t he l i t e r a tu r e [ 6 , 7 ] r epo r t h i g he r d i s s o l u t i on r a t e s and

    be t t e r y i e l d s t han us i ng m es oph i l i c m i c r oo r gan i s m s ( p r i nc i pa l l y Thioba cillus ferrooxi-

    dans)

    i n t he l e ach i ng o f t he cha l copyr i t e .

    I t ha s been dem ons t r a t ed t ha t cha l copyr i t e and m os t o t he r m e t a l l i c s u l ph i des a r e

    d i s s o l ved by m eans o f an e l ec t r ochem i ca l m echan i s m [ 8 ] . Fu r t he r m or e , i n t he l i t e r a t u r e

    t he r e a r e a l a r ge num ber o f s t ud i e s wh i ch exp l a i n t he anod i c d i s s o l u t i on o f cha l copyr i t e

    i n d if f e r e n t m e d i a [ 9 - 1 4 ] ; h o w e v e r w e h a v e f o u n d n o i n f o r m a t i o n o n th e e x p e r i m e n t a l

    c o n d i t i o n s f o r g r o w i n g m i c r o o r g a n i s m s ( t e m p e r a t u r e a n d c u l t u r e m e d i u m ) . F o r t h i s

    r ea s on , t he a i m o f t h is wo r k i s to s t udy t he e l ec t r och em i ca l r e s pons e o f a m as s i ve

    cha l co pyr i t e e l ec t r ode i n a bac t e r i a l cu lt u r e m ed i um a t tw o t em pe r a t u r e s : 25° C ( a t wh i ch

    t e m p e r a t u r e m e s o p h i l i c m i c r o o r g a n i s m s g r o w ) a n d 6 8 ° C ( t h e o p t i m u m g r o w t h t e m p e r a -

    t u r e o f Sulfolobus) i n o r de r t o unde r s t and t he d i f f e r ences i n t he d i s s o l u t i on k i ne t i c and

    n a t u r e o f t h e p r o d u c t s f o r m e d d u r i n g t h e b i o l e a c h i n g p r o c e s s u s i n g b o t h k i n d s o f

    m i c r o o r g a n i s m s .

    2 .

    Exper imental

    M e a s u r e m e n t s w e r e m a d e w i t h a c o n v e n t i o n a l t h r e e - c o m p a r t m e n t g l as s e l e c t ro l y s i s

    ce l l to l odge t he w or k i ng e l ec t r ode ( s pec i m en) , t he co un t e r e l ec t r ode ( p l a t inum s p i ra l

    w i r e ) a n d th e re f e r e n c e e l e c t ro d e (A g / A g C 1 ) , w h i c h w a s p r o v i d e d w i th a L u g g i n - H a b e r

    cap i l l a r y t i p . The ce l l was kep t a t cons t an t t em pe r a t u r e by connec t i ng i t t o a c i r cu l a t i ng ,

    t he r m o s t a t i c a l ly con t r o l l ed w a t e r l oop . T he t em p e r a t u r e was f i xed a t 25 ° o r 68 ° + 0 . 1° C.

    E a c h w o r k i n g e l e c t r o d e w a s p r e p a r e d f r o m a n a t u r a l s p e c i m e n o f m a s s i v e c h a l c o p y r i t e

    f r o m T r a n s v a a l , S o u th A f r i c a (3 5 . 3 % C u , 3 0 . 1 % F e a n d 3 4 . 7 % S ) .

    T h e s p e c im e n s w e r e c u b e s h ap e d ( - - 4 - 6 m m e d g e ) a nd w e r e c o n n e c t e d t o a c o p p e r

    w i r e b y m e a n s o f a c o n d u c t i v e s il v e r r e si n . F i n a ll y , s a m p l e a n d w i r e w e r e e m b e d d e d i n

  • 8/18/2019 Biolix Calco a Distintas Temp.

    3/14

    C . G dm e z e t a l . / H y drom e ta l lu rgy 43 1996 ) 331 - 344 333

    a n e p o x y r e s i n t o o b t a i n a r e a s o f 0 . 4 - 0 . 5 c m 2 e x p o s e d t o t h e e l e c t r o l y t e . B e f o r e e a c h

    t e s t , t h e w o r k i n g e l e c t r o d e s u r f a c e s w e r e p o l i s h e d w i t h 6 0 0 s i l i c o n c a r b i d e p a p e r ,

    f o l l o w e d b y u l t r a so n i c c l e a n i n g a n d r i n s in g w i t h d i s ti ll e d w a t e r . T h e e l e c t r o l y t e c o m p o -

    s i ti o n , p r e p a r e d f r o m A . R . c h e m i c a l s a n d d i s t il le d w a t e r , w a s a s f o ll o w s : 0 . 4 g . 1-

    (NH4)2SO4, 0 . 5 g " 1-1 M g S O 4 • 7 H 2 0 , 0 .2 g " 1 - l K 2 H P O 4 " T h e p H w a s k e p t a t 2 .0

    b y t h e a d d i t i o n o f H2 SO 4. B e f o r e e a c h e x p e r i m e n t w a s p e r f o r m e d , 0 . 1 3 1 o f t h is

    e l e c t r o l y te w a s p u r g e d i n s id e t h e c e l l w i t h n it r o g e n ( 9 9 . 9 5 % ) f o r 1 5 m i n . A f t e r th a t , a n d

    b e f o r e s t a r t i n g e a c h t e s t , e l e c t r o d e a n d e l e c t r o l y t e w e r e p u r g e d a g a i n f o r 2 0 m i n .

    T h e e l e c tr o c h e m i c a l e x p e r i m e n t s w e r e c a rr ie d o u t a t c o n st a n t o r p r o g r a m m e d p o t e n -

    t i a l s u s i n g a W e n k i n g p o t e n t i o s t a t ( M o d e l L B 8 1 M ) a n d a W e n k i n g v o l t a g e s c a n n e r

    ( M o d e l M V S 8 7 ). D a t a w e r e a c q u i r e d b y a n a n a l o g u e b o a r d i n s t a ll e d i n a P C . W h e n

    n e c e s s a r y , s t i r r i n g w a s a c c o m p l i s h e d w i t h a m a g n e t i c s t i r r e r , t h e w o r k i n g e l e c t r o d e

    r e m a i n i n g s t a ti o n a r y . P o t e n t i a l s i n t h e t ex t r e f e r to t h e A g / A g C 1 e l e c t r o d e ( + 0 . 2 0 7 v s

    S H E a t 2 5 ° C ) . T w o t y p e s o f e l e c t r o c h e m i c a l e x p e r i m e n t s w e r e p e r f o r m e d , p o t e n t i o d y -

    n a m i c p o l a r i z a t io n c u r v e s a n d c y c l i c v o l t a m m e t r y . T h e s e c u r v e s w e r e i n i ti a te d f r o m t h e

    r e s t po t en t i a l un l e s s o the rwi se s t a t ed .

    3 . R e s u l t s

    3 .1 . E / j c u r v e a t 2 5 ° C

    P o l a r i z a t io n c u r v e s ( a p p a r e n t c u r r e n t d e n s i ty , j , v e r s u s p o t e n t ia l , E ) w e r e o b t a i n e d b y

    a p p l y i n g t o t h e c h a l c o p y r i t e e l e c t r o d e s a s i n g l e t r i a n g u l a r p o t e n t i a l s w e e p ( S T P S )

    be tw een t he r e s t po t en t i a l (E R) and t he anod i c (Es , a ) sw i t ch ing po t en t i a l a t t h r ee

    d i f f e re n t s w e e p r a t e s ( v ): 2 0 , 5 a n d 2 m V s - ~ . I m m e d i a t e l y a f t e r t h e a n o d i c s c a n a

    c a t h o d i c s c a n w a s c a r r i e d o u t f r o m t h e Es, a to the E~.c ( ca thod i c sw i t ch ing p o t en t i a l ).

    F i g . l a s h o w s t h e i n i ti a l S T P S a t 2 m V s - i b e t w e e n E R a n d E s . a a t 2 5 °C , w h i c h

    p r e s e n t s a n a n o d i c c u r r e n t r e s p o n s e w h i c h c a n b e a r b i t r a r i l y d i v i d e d i n t w o p o t e n t i a l

    z o n e s f o r th e d i s c u s s i o n o f th e r e s u l ts . Z o n e I ra n g e s f r o m E R t o 0 . 7 V p o t e n t i a l r a n g e

    a n d z o n e I I f r o m 0 . 7 V t o h i g h e r p o t e n ti a l s. T h e c u r r e n t r e s p o n s e i n z o n e I p r e s e n ts a

    s m a l l b r o a d p e a k ( A 1 ) , l o c a t e d a t a b o u t 0 . 4 V . I n z o n e I I , a l a r g e i n c r e a s e i n c u r r e n t w a s

    r e c o r d e d ( A l l ) a n d a l i m i t i n g c u r r e n t c l o s e t o 0 . 8 5 V w a s r e a c h e d ( A m ) . T h e s w i t c h i n g

    p o t e n t i a l s c a n f r o m E s. a p r e s e n t s t h re e c a t h o d i c p e a k s a t 0 .4 V ( C I ) , a t 0 . 2 V ( C l l ) a n d a

    l a r g e p e a k s t a r ti n g a t - 0 . 1 5 V ( C l ll ) .

    T h i s e l e c t r o c h e m i c a l b e h a v i o u r o f t h e c h a l c o p y r i t e i n t h e n u t r i e n t m e d i u m u s e d a s

    e l e c t r o l y t e a t 2 5 ° C w a s s i m i l a r t o t h a t d e s c r i b e d b y W a r r e n e t a l . [ 1 1 ] f o r t h e s a m e

    m i n e r a l e l e c t r o d e s i n t h e p r e s e n c e o f H2S O 4. Thus, A l r e p r e s e n t s t he ' p r e w a v e ' , i n

    w h i c h c h a l c o p y r i t e i s t r a n s f o r m e d t o C u S , t h r o u g h a n i n t e r m e d i a t e n o n - s t o c h i o m e t r i c

    p h a s e ( C u ~ _ x F e l _ y S 2 _ z ), p r o d u c i n g S O a n d C u ( I I ) a n d F e ( I I ) i o n s . I n t h is z o n e o n l y a

    s m a l l p o r t i o n o f t h e m i n e r a l i s p r o b a b l y t r a n s f o r m e d . I n r e g i o n I I , a t p o t e n t i a l s m o r e

    p o s i t i v e t h a n 0 .7 V ( t r a n s p a s s i v e z o n e ) , t h e o v e r a l l d i s s o l u ti o n o f c h a l c o p y r i t e t a k e s

    p l a c e t h r o u g h t h e f o l l o w i n g r e a c t i o n s :

    C u F e S 2 ~ C u 2 ÷ + F e 3 ÷ + 2 S ° + 5 e - ( 1 )

    C u F e S 2 + 8 H 2 0 ~ C u 2÷ + F e 3÷ + 2 S O ~ - + 1 6 H ÷ + 1 7 e - ( 2 )

  • 8/18/2019 Biolix Calco a Distintas Temp.

    4/14

    3 3 4 C. Gdmez et al. / Hydrometallurgy 43 1996) 331-344

    3.2. Influence o f temperature on E / j prof i le

    Si m i l a r t e s ts t o t hos e ca r r i ed ou t on t he cha i copy r i t e a t 25°C we r e pe r f o r m ed a t 68°C.

    As i n t he l ow t em pe r a t u r e expe r i m en t , zones I and I I a r e a l s o p r e s en t i n t he po t en t i ody -

    n a m i c c u r v e ( F i g . l b ) . H o w e v e r , z o n e I i s m o v e d t o w a r d s m o r e p o s i t i v e p o t e n t i a l s a t

    h i ghes t t em pe r a t u r e and peaks C I and CI [ , p r oduc ed i n a s w eep f r o m Es .a = 1.0 to

    e l ec t r oneg a t i ve po t en t i a l s and obs e r ved a t 25° C ( F i g . l a ) , d i d no t s eem t o appea r a t

    68° C, a l t hough t hey becam e ev i den t when t he s ca l e was s u i t ab l y i nc r ea s ed ( i n s e r t , F i g .

    l b ) .

    3.3. Influence o f swee p rate v)

    Fi g . 2 s hows t he i n f l uence o f s weep r a t e a t 25° C ( F i g . 2a ) and 68° C ( F i g . 2b ) . At t he

    l o w e s t t e m p e r a t u r e , c h a l c o p y r i t e o x i d a t i o n d id n o t d e p e n d o n v , b u t a t t h e h i g h e s t

    t em pe r a t u r e t he r e was a l i nea r r e l a t i ons h i p be t ween t he l i m i t i ng cu r r en t dens i t y ( J L) and

    v l / 2 ( F i g . 3 ) .

    F i g . 4 s h o w s t h e d e p e n d e n c i e s o f m a x i m u m p e a k i n te n s i ty ( I v ) a n d i ts c o r r e s p o n d i n g

    poten t i a l (Ep ) wi th v 1 /2 and log v 1 /2 a t 25°C for the C l l peak . A s can b e seen , Ip wa s a

    l i nea r f unc t i on o f v ] / 2 , wh i ch i nd i ca t ed t ha t the e l ec t r oac t i ve s ubs t ance w as d i s s o l ve d i n

    t he e l eca 'o l y t e and r eached t he i n t e r f ace by d i f f u s i on . Mor eove r , t he f ac t t ha t Ep was

    dep end en t on t he l og v 1 /2 s how ed t ha t t h is r e ac t i on was no t r ap i d [ 15 ]. T he s m a l l

    cu r r en t dens i ti e s de t ec t ed in t he CI peak a t 68°C d i d no t a l low s i m i l a r ana l ys e s .

    3.4 . In fluence o f pH on the E / j pro f il e

    F i g . 5 s h o w s t h e i n f l u e n c e o f p H o n t h e a n o d i c p o t e n t i o d y n a m i c s o f c h a l c o p y r i t e a t

    2 5 ° C a n d 6 8 ° C , r e s p e c ti v e l y . T h e p H h a s n o e f f e c t a t t he l o w e r t e m p e r a t u re , b u t a c l e a r

    ~,,

    E

    ?

    E

    , , . . .

    I

    0

    0

    ,,,i

    0

    2 .0

    1 .5

    1 .0

    0 ,5

    0 . 0

    - 0 . 5

    - 1 . 0

    - 1 . 5

    3 0

    2 . I 0 - ' 0 :2

    o : , * . , :

    0 . 0

    . . .

    1 .0

    / ~ ~ - - - ~

    ~ -2.0

    - 3 .0

    a )

    - 4 0 v

    b )

    I l r I T ~ I I 1 1 1 1 I 1 I I l J l l 1 [ 1 1 1 t i I r T l l r ~

    - 0 .6 ,0 .4 - 0 .2 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0 - 0 .6 - 0 .4 - 0 .2 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

    p o t e n t la l I V A g /A g C l ) p o t e n t la l I V A g /A g C l )

    F i g . 1 . V o l t a m m o g r a m o f c h a l c o p y r i t e a t ( a ) 2 5 ° C a n d ( b ) 68 ° C . v = 2 m V s i . D e t a il o f c u r r e n t p e a k s

    C l

    a n d

    C . a t t h e h i g h e s t t e m p e r a t u r e a r e g i v e n i n t h e i n se r t .

  • 8/18/2019 Biolix Calco a Distintas Temp.

    5/14

    C. G6mez et al./Hydrometallurgy 43 1996) 331-344 335

    2.0

    1.8

    ~. 1.6

    E

    ? 1 . 4

    <

    E 1 . 2

    -~ 1.0

    C

    0

    -o 0 . 8

    ~ 0 . 6

    u 0 . 4

    0.2

    0 . 0

    2 6 o c

    20 mvs 1

    . . . . . . . . 6 m v s 1

    . . . . . 2 m v s 1

    I :

    5 °

    .0 68°C

    I - - 8 m V s 1

    3 . 0 ~

    t

    1 . 0

    I ' [

    mV 1

    ; ;

    2 m v s 1 I;'

    a) 0.0 _ L ~ , , E b)

    b ' ' ' I

    0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0A 0.6 0.8 1.0

    potential

    I V ( A g / A g C i ) p o t e n t i a l I V ( A g / A g C I )

    Fig. 2. E ffect of sweep rate (v) on an odic potentiodynamic curves o f chalcopyrite at: (a) 25°C and (b) 68°C.

    i n f l u e n c e a t 6 8 ° C . F i g . 6 s h o w s t h e p o t e n t i a l a t w h i c h t h e m a s s i v e d i s s o l u t i o n o f t h e

    c h a l c o p y r i t e b e g a n ( E b ) a s a f u n c t i o n o f t h e p H a t t h is t e m p e r a t u r e , t h e o n e b e c o m i n g

    m o r e e l e c t r o p o s i t i v e as th e o t h e r d e c r e a s e d , w h i c h m e a n s t h a t a n in c r e a s e i n a c i d i ty

    h a m p e r e d m i n e r a l e l e c t r o o x i d a t i o n .

    F i g . 7 s h o w s t h e i n f l u e n c e o f p H o n t h e C , 1 r e d u c t i o n p e a k w h e n t h e s c a n w a s

    r e v e r s e d f r o m E s, a t o w a r d s m o r e e l e c t r o n e g a t i v e v a l u e s a t 2 5 ° C . A s h i ft o f 0 . 1 5 V i n th e

    i n i t ia l p o t e n t i a l o f th e C . ~ r e a c t i o n t o w a r d s t h e m o r e e l e c t r o p o s i t i v e z o n e f o r a d e c r e a s e

    o f 1 p H u n i t w a s o b s e r v e d .

    1 . 4

    ~ . 1 . 2

    9

    E 1.0 /

    , ~ 0 . 8

    u 0 . 6

    o

    4 6 8 10 12 14 16

    v 1 / 2 1 0 2 1 ( V s ' t ) 1 / 2

    Fig. 3. L imiting current density (JL) of zon e I versus v 1/2 at 68°C.

  • 8/18/2019 Biolix Calco a Distintas Temp.

    6/14

    336

    C. Gdmez et a l. / Hydrometallurgy 43 1996) 331-344

    . <

    E

    - 1 . 8 0

    0 . 2 5

    0 . 2 0

    0 . 1 5

    0 . 1 0

    3

    l o g ( v ) 1 / 2

    - 1 . 2 0 - 0 . 8 0

    I ~ ~ 0 . 1 8 8

    L

    I

    ~__ ~-

    0 . 1 8 6

    ~ 0 .182 ~

    0 .180 ~

    0 . 1 7 8

    I ~ I 0 . 1 7 6

    6 0 1 2 1 5

    v 1 /2 1 0 2 1 ( V s I ) 1 1 2

    Fig. 4. Two plots of maximum intensity ( lp) and m aximum Ell peak potential (Er,) versus v ~/2 at 25°C.

    3 . 5. I n f l u e n c e o f t he e l e c t r o l y t e s t i r ri n g o n t h e E / j p r o f i l e

    A t 2 5 ° C e l e c t r o l y t e s t ir r in g i n f l u e n c e d b o t h t h e a n o d i c p o t e n t i o d y n a m i c c u r v e a n d t h e

    i n v e r s e r e d u c t i o n c y c l e o f t h e c h a l c o p y r i t e , F i g . 8 a . I n z o n e I t h e c u r r e n t i n i t i a l l y

    i n c r e a s e s l i n e a r l y w h e n t h e p o t e n t i a l i s i n c r e a s e d f r o m 0 . 2 5 t o 0 . 4 0 V , a l t h o u g h t h e s l o p e

    1 . 8 5 . 0

    p H 1 . 0 r - -

    1 .6 2 5 ° C / / p H 1 I 6 8 ° C ~ ,

    1 .4 S I / p H 2 .0 4 . 0 P H i / / i

    E ° . 5 /

    • I

    1 . 2 t , ~

    / [ 3 . 0

    ,~ 1.0

    w /

    = 0 8 / l

    - o 2 . 0

    0 . 6

    E

    / 1 . 0

    0 . 2 a )

    0 . 0 l ; I 0 . 0 . . . . . . . .

    0 . 0 0 . 2 O A t 0 . 6 0 . 8 1 . 0 1 . 2 0 , 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

    p o t e n t i a l

    ; V ( A g / A g C I ) p o t e n t i a l I V ( A g / A g C I )

    Fig. 5. Effect of pH on the anodic potentiodynamic curves of chalcopyrite at: (a) 25°C and (b) 68°C. v = 5

    mVs ~.

  • 8/18/2019 Biolix Calco a Distintas Temp.

    7/14

    C. G6mez et al . / Hydrometallurgy 43 1996) 331-344 337

    2 . 0

    1 . 6

    1 . 0

    I

    0 . 4 5 0 . 5 0

    \

    \

    \

    ©

    0 . 5 5 0 . 6 0 0 . 6 5 0 . 7 0

    E b V A g / A g C I )

    Fig. 6. Relationship between chalcopyrite electrodissolution potential (E b) and the pH at 68°C. v = 5 m V s- 1.

    t h e n c h a n g e s a n d t e n d s t o w a r d s a l im i t i n g c u r r e n t u n t i l t h e b e g i n n i n g o f z o n e I I ( E = 0 . 7

    V ) . I n t h is s e c o n d z o n e , n o s i g n i f i c a n t i n f l u e n c e o f s t ir r in g o n t h e l i m i t i n g c u r r e n t

    r e a c h e d w a s o b s e r v e d . D u r i n g th e r e d u c t i o n c y c le p e a k C . w a s d i s p l a c e d t o w a r d s m o r e

    e l e c t r o n e g a t i v e v a l u e s , i n c r e a s i n g th e c u r r e n t d e n s i t y . F ig . 8 b s h o w s t h e s a m e e x p e r i -

    m e n t a t 6 8 ° C , w h e n a s l ig h t i n f l u e n c e o f s t i r ri n g o n t h e e l e c t ro c h e m i c a l b e h a v i o u r o f

    c h a l c o p y r i t e i s o b s e r v e d .

    0 . 0

    - 0 . 2

    ~ ' : : S

    0 . 4

    p H : 2 . 0 /

    E - 0 . 6 t

    ' ~ '

    - 0 . 8

    ~ C I I I

    C

    • - 1 . 0 ~

    ~ p H 1 0

    U

    - 1 . 4 t

    - 1 . 6 ~ ~ - r ~ t ~

    - 0 . 6 - 0 . 5 - 0 . 4 - 0 . 3 -0 . 2 - 0 .1 0 . 0

    p o t e n t ia l I V A g / A o C I )

    Fig. 7. Effect o f pH on the reduction peak CH~ in the cathodic scan from Es,a = 1.0 V at 25°C. v = 5 m V s- J.

  • 8/18/2019 Biolix Calco a Distintas Temp.

    8/14

    338

    C. G6m ez e t a l . / Hydrom etal lurgy 43 1996) 33 1- 34 4

    i - - w i t h e t lr r l n g - - - - w i t h

    stirring

    1 . 0 2 1 ~ .% , A | j i l

    3 0 6 8 o C

    ~ O.g

    1 ° 1

    0.0 0.0 +

    - 2 . 0

    - 1 . 0 - 3 . 0

    (a ) , ,4 .0

    - 0 . 6 - 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 - 0 .4 - 0 .2 0 . 0 0 .2 0 . 4 0 . 6 0 . 8 1 .0

    p o t e n t i a l / V ( A g / A g C I ) p o t e n t i a l / V ( A g / A g C I )

    Fig. 8. Effect of electrolyte stirring on voltammogram of the chalcopyrite at (a) 25°C and (b) 68°C. v = 2

    mWs- i .

    3 .6 . I n f l u e n c e o f C u 2 + a n d F e ~ + a d d i t i o n

    I n F i g . 9 a t h e i n f l u e n c e o f t h e a d d i t i o n o f 1 . 0 g • 1 - l o f C u 2 ÷ t o t h e e l e c t r o l y t e a t

    2 5 ° C c a n b e o b s e r v e d . T h e a d d i t i o n o f t h is i o n t o t h e e l e c t r o l y t e p r o d u c e d a l a r g e

    i n c r e a s e i n th e c u r r e n t d e n s i t y o f t h e w a v e C I i, c o n f i r m i n g t h a t i t d e p e n d s o n t h e c o p p e r

    c o n c e n t r a t i o n i n so l u t i o n . F i g . 9 b s h o w s t h e re s u l t o f t h e s a m e s t u d y a t 6 8 ° C a n d , i n t h is

    c a s e , a n i n t e n s e c a t h o d i c p e a k C H a p p e a r s , w h i c h i s n o t o b s e r v e d w h e n C u 2 + i s n o t

    0 . 0 0 7 , ~ 0 . 0 0 . . . . . . = := : '~ b )

    < > I o

    m / I I

    :

    i 1 0 0 ~ _ i'_ : : ° C

    - 1 . 2 0 - 3 . 2 0

    . . . . . C~

    W n h o u t C u 2 +

    -1 .4 0 ~ , , 7 l g 'L 'IC u : [ - 4 . 0 0 j - - . , i - - i - 1 g 'L 'IC u 2 +

    - 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6 - 0 . 3 4 ) .1 0 . 1 0 . 3 0 . 5 0 . 7

    p o t e n t i a l I V ( A g / A g C I ) p o t e n t i a l I V ( A g l A g C I )

    Fig. 9. Effect of the addition of

    Cu 2+

    ions on the reduction peak C , in the cathodic scan from Es, a = 1.0 V at

    (a) 25°C and (b) 68°C. v = 2 mVs-

    1

  • 8/18/2019 Biolix Calco a Distintas Temp.

    9/14

    C . G Sm e z e t a l . / H y drom e ta l lu rgy 43 1996 ) 331 - 34 4 3 3 9

    0 .00

    - 0 . 0 5 -

    - 0 . t 0 -

    ~ 41.15 -

    C

    0

    ~ .o .2o~

    - 0 .25 -

    -0 .30 1

    -0 .2

    -0 ,80

    ~ / 1 2 0 ~ /

    / 2 5 o c 1 6 0 i / 6 8 o c

    - v w ~ o u t F e I I Cl l

    . . . . . . W m o u t

    Fe + j

    2 0 0 . Z ~

    - - 1 g-L-1Fe3 + ~ 1 g - L ' l F e 3 +

    c . (a ) 1 ( b )

    - 2 . 4 0 - ~ - - ~ - - ~ - - - - ~ . . . . . . :r

    0 1 0 0 1 2 0 1 4 0 , 6 - 0 . 2 0 . 0 0 . 2 0 1 4 0 . 6

    p o t e n t i a l I V A g / A g C I ) p o t e n t l a l I V A g / A g C I )

    F i g . 1 0. E f f e c t o f t h e a d d i t io n o f F e 3 + i o n s o n t h e r e d u c t i o n p e a k C ][ ffl_ h e c a t h o d i c s c a n f r o m E s .a = 1.0 V at

    ( a ) 2 5 ° C a n d ( b ) 6 8 ° C . v = 5 m V s - ] .

    pre sen t . F ig . 10 sho ws t he e f f e c t o f add ing 1 .0 g • 1 - ] o f Fe 3+ t o t he so lu t i on a t bo th

    2 5 ° C a n d 6 8 ° C . A t t h e l o w e r t e m p e r a t u r e s th e r e w a s a n i n c r e a s e i n c a t h o d i c c o n t r i b u ti o n

    o f C ~ a n d C l l . A t 6 8 ° C t h e a d d i t io n o f t h e s a m e a m o u n t o f F e 3 + i n c r e a s e d t h e c u r re n t s

    i n v o l v e d a n d s h i f te d th e C . p e a k t o w a r d s m o r e e l e c t r o n e g a t i v e p o t e n t i a l v a l u e s .

    3.7. Electrochemical reduction of chalcopyrite

    I n t h i s s e r ie s o f e x p e r i m e n t s , t h e c h a l c o p y r i t e e l e c tr o d e u n d e r w e n t p o t e n t ia l s c a n s

    f r o m E R up to t he ca thod i c l im i t , Esx , a f t e r wh ich t he d i r ec t i on was changed un t i l t he

    0 . 4

    0 . 2 ~

    ~ ' 0 . 0 ~

    ~ .o.41

    = - 0 . 6

    - 1 .0 ~

    - 1 . 2 ~

    - 1 . 4 I

    - 0 . 6

    A I V A V

    2 5 C

    ( a )

    . o =

    o l o o . =

    p o t e n U a t / V (A g /A gC l )

    0 . S

    0.0 -1

    - 0 . 5

    - 1 . 0 -

    - t . 5

    - 2 . 0

    - 2 . 5

    - 3 . 0

    - 3 . 5

    - 4 . 0

    -0 .6

    6 8 ° C

    (b)

    - 0 . 4 -O .2 O f 0 . 2

    p o t e n t i a l I V (A g /A gC I )

    F i g . 1 1 . V o l t a m m o g r a m o f c h a l c o p y r it e a t ( a ) 2 5 °C a n d ( b ) 6 8 °C , v = 5 m V s - ] .

  • 8/18/2019 Biolix Calco a Distintas Temp.

    10/14

    340 C. Grmez et al. / Hydrometallurgy 43 1996) 331-344

    1.8

    1 .4

    A V I

    1.0

    A t ~ v / ~ f ~

    ?

    0 , 6

    ~ 0 . 2

    ~ - 0 . 2

    -o

    - 0 . 6

    - 1 . 0

    - 1 . 4

    -1.8

    I 1 t I I

    - 0 . 6 - 0 . 4 - 0 . 2 0 .0 0 .2 0 .4 0 .6

    potenUal I V Ag /AgC I )

    Fig. 12. Cyclic voltamm ogram sbetween -0 .5 V and 0.6 V at 25°C. v = 20 mV s- J.

    a n o d i c l i m i t (E s, a ) w a s r e a c h e d . T h e e x p e r i m e n t s w e r e c a r r i e d o u t a t 2 5 °C a n d 6 8 ° C .

    F i g . 11 s h o w s t h e E / j p r o f i l e s o f c h a l c o p y r i t e a t b o t h t e m p e r a t u r e s f r o m E R t o

    Es, c = - 0 . 5 V and t he r eve r se s can u p t o Es , a = i n i ti a l E R . N o te t ha t t he ca thod i c cu r r en t

    i n c r e a s e d s h a r p l y a b o v e a p o t e n t i a l o f a r o u n d - 0 . 1 V . T h e a n o d i c c o n t r ib u t i o n s , A j v

    a n d A v , a p p e a r in t h e r e v e r s e o x i d a t i o n s c a n o n l y w h e n t h e c a t h o d i c l i m i t is l e s s t h an

    - 0 . 4 0 V . T h e p r o f i le E / j a t 6 8 °C ( F i g . 1 l b ) s h o w s a s i m i l a r c a t ho d i c b e h a v i o u r to t h at

    o b s e r v e d a t 2 5 ° C ( F i g . l l a ) , a l t h o u g h t h e c u r r e n t d e n s i t i e s w e r e h i g h e r . I n c y c l i c

    v o l t a m m e t r y e x p e r i m e n t s a t 2 5 ° C ( F ig . 1 2), w h e n t h e p o t e n t ia l s w e e p s b e t w e e n E s, a ~-

    - 0 . 5 V a n d E s . a w e r e c a r r ie d o u t f o r th e l a t te r v a r y i n g b e t w e e n 0 .1 V a n d 0 . 6 V , t h e C I I

    p e a k o n l y d e v e l o p e d w h e n E ~ , a w a s g r e a t e r th a n 0 .5 V a n d w h e n t h e a n o d i c p e a k , A l v ,

    h a d b e e n p r o d u c e d p r e v i o u s l y ,

    4 . D i s c u s s i o n

    T h e r e s u l t s c o n f i r m e d t h a t , f o r t h e e x p e r i m e n t a l c o n d i t i o n s m e n t i o n e d a b o v e , t w o

    t y p e s o f c h a l c o p y r i t e o x i d a t i o n p r o c e s s e s o c c u r r e d a t 2 5 ° C a n d 6 8 ° C , d e p e n d i n g o n t h e

    a n o d i c p o t en t i al : z o n e I ( E < 0 . 7 V ) a n d z o n e I I ( E > 0 .7 V ) . O v e r a l o w r a n g e o f

    po t en t i a l s and a t 25° C (F ig . l a ) , t he r e spo nse w as s imi l a r to t ha t o f me t a l s du r ing t he

    f o r m a t i o n o f p a s s i v e f i lm s o n t h e i r s u rf a c e ( A I ) , w h i c h i n c r e a s e s w i th t h e p o t e n t ia l . A t

    6 8 ° C ( F i g . l b ) , i n t h e s a m e z o n e , a d i f f u s i o n a l l i m i t i n g c u r r e n t a p p e a r e d b e c a u s e t h e

    f i l m h i n d e r e d t h e p a s s a g e o f i o n s f r o m t h e c h a l c o p y r i t e s u r f a c e t o t h e s o l u t i o n . T h i s

    p h e n o m e n o n m i g h t b e d u e t o a l o w e r d e g r e e o f h y d r at io n o f th e e l e c t ro f o r m e d f i l m a t

    t h i s t e m p e r a t u r e . T h e o n l y v a r i a b l e w h i c h h a d a n i n f l u e n c e i n z o n e I a t 2 5 ° C w a s

    e l ec t ro ly t e s t i r r i ng (F ig . 8a ) , i n t he absence o f wh ich t he e l ec t rode ox ida t i on was

    c o n t r o l l e d o h m i c a l l y b y t h e p h e n o m e n o n o f f i l m g r o w t h . S t i r r i n g r e s u l t e d i n a l i m i t i n g

    cu r r en t be ing r eached , wh ich con f i rmed t he d i f fu s iona l con t ro l i n t he f i lm .

  • 8/18/2019 Biolix Calco a Distintas Temp.

    11/14

    C. G6mez et al. / Hydrornetallurgy 43 1996) 331-344 341

    I n a n a t t e m p t t o e x p l a i n t h e f o r m a t i o n o f t h i s f i l m i n t h e prewave or passive zone

    ( z o n e I ) a t E < 0 . 7 V t h e c h a l c o p y r i t e o x i d a t io n m e c h a n i s m h a s b e e n e x t e n s i v e l y

    s t u d i e d b y s e v e r a l i n v e s t i g a t o r s . B i e g l e r a n d H o m e [ 1 6 ] , f o r e x a m p l e , u s e d c y c l i c

    v o l t a m m e t r y t o p r o p o s e t h e f o l l o w i n g r e a c t i o n :

    Cu Fe S 2 ---* 0 .75 Cu S + 0 .25 Cu 2+ + Fe z+ + 1 .25 S o + 2 .5 e - ( 3 )

    w h e r e C u S ( c o v e l l i n e ) a n d S o w o u l d b e i n a r a ti o o f 3 / 5 a n d F e ( I I ) / C u ( I I ) i n th e

    s o l u t i o n w a s 4 / 1 .

    S t a n k o v i c [ 1 2 ] , u s i n g g a l v a n o s t a t i c p u l s e c h r o n o p o t e n t i o m e t r i c t e c h n i q u e s i n s o l u -

    t io n s o f F e U D a n d C u ( I I ) , p r o p o s e d a t w o - s t a g e o x i d a t i o n p r o c e s s . T h e f i r s t s t a g e w o u l d

    invo lve t he l i be r a t i on o f Cu 2+ an d ac t a s the l im i t i ng s t ep o f the r eac t i on r a t e , whe rea s

    t h e s e c o n d w o u l d i n v o l v e t h e l i b e r a ti o n o f F e 2 + , in a c c o r d a n c e w i t h t h e f o l l o w i n g

    s c h e m e :

    nC uFeS 2 ~ Cu 2+ + Cu n_ iFenS2n q-- 2 e - ( s l o w ) (4 )

    Cu n_ iFenS2n --* Fe 3+ + C u n_ iFen - iS2n q'- 3 e - ( 5 )

    A c c o r d i n g t o t h is s c h e m e , t h e d i s s o l u ti o n o f c h a l c o p y r i t e w o u l d l e a d t o t h e f o r m a t i o n o f

    a c o p p e r a n d i r o n p o l y s u l p h i d e :

    nC uFeS 2 ~ Cu 2+ + Fe 3+ + Cu n_ iFen_ iS2n + 5 e - ( 6 )

    H o l l i d a y a n d R i c h m o n d [ 1 7 ] , o n t h e o t h e r h a n d , h a v e s u g g e s t e d t h a t t h e a n o d i c

    d i s s o l u ti o n o f c h a l c o p y r i t e in z o n e I o c c u r s s e q u e n t ia l l y a c c o r d i n g t o E q s . ( 7 ) - ( 9 ) , t h e

    d e t e r m i n i n g s t e p b e i n g E q . ( 8 ) :

    CuF2S 2 ~ C u 2 + -['-F e S 2 + 2 e -

    Cu 2+ _ ... ) x / " , . 2+ x~ f '~ . 2+

    ~ t l ( a d s ) " l- ( 1 - - / ~ U ( a q )

    2 +

    Cu~aos + FeS 2 ~ C uS + Fe 2+ + S o

    (7)

    (8 )

    (9)

    A n y o f t h e a b o v e s o l u t i o n s c o u l d e x p l a i n t h e r e s u lt s w e o b t a i n e d i n t h is s t u d y , i n

    wh ich we conc lude t ha t Fe i s d i s so lved i n p r e f e r ence t o Cu [16 ,17 ] ; and t ha t t he

    c h a l c o p y r i t e s u r f a c e i s c o a t e d w i t h a l a y e r w h i c h d e c r e a s e s t h e s p e e d o f e l e c t r o n t r a n s f e r

    t o ox idan t s , such a s Fe 3÷ , and i on t r anspo r t . The add i t i on o f C u 2÷ and Fe 3÷ t o t he

    e l e c t r o l y t e a t 2 5 ° C a n d 6 8 ° C , i n o u r e x p e r i m e n t s , c o n f i r m e d t h e e l e c t r o n c o n d u c t i n g

    c h a r a c te r i st i c o f t h e f i l m f o r m e d a t l o w p o t e n t i a l s; s in c e , i n t h e r e s p e c t i v e s c a n s t o w a r d s

    m o r e e l e c t r o n e g a t i v e p o t e n t i a l s f r o m E s, a = 1 .0 V , t h e c u r r e n t i n c r e a s e d f o r p e a k s C ,

    and C~ (F ig s . 9 and 10 ) , wh ich we re r e l a t ed t o r eac t i ons whe re coppe r and i r on ,

    r e s p e c t i v e l y , t o o k p a r t .

    T h e i n f lu e n c e o f th e s w e e p r a t e a t h i g h t e m p e r a t u r e s in t h i s p o te n t i a l z o n e a n d t h e

    l i nea r r e l a t i onsh ip be tw een t he l im i t i ng cu r r en t ( JL ) and v 1 /2 (F ig . 3 ) i nd i ca t e s t ha t i n

    t h i s z o n e a n d a t 6 8 ° C a f i l m w a s f o r m e d w h i c h l i m i t e d t h e o x i d a t i o n r e a c t i o n s w i t h t h e

    m e d i u m b y s o l i d s t a t e d i f f u s i o n .

    A t 68° C , t he pH p l ay ed a r o l e i n the pa s s ive zon e (F ig . 5b ) and i n t he po t en t i a l (E b )

    a t w h i c h m a s s i v e d i s s o l u t io n o f c h a l c o p y r i t e s t a rt e d t o b e o b s e r v e d ( F i g . 6 ) , i n d i c a t in g

    t h a t m i n e r a l e l e c t r o o x i d a t i o n w a s h a m p e r e d b y i n c r e a s i n g a c i d i t y .

  • 8/18/2019 Biolix Calco a Distintas Temp.

    12/14

    342

    C. Gdmez et al. / Hydrometallurgy 43 1996) 331-344

    I n zone I I , o r t he t r ans pas s i ve ox i da t i on zone , i n wh i ch t he cu r r en t i nc r ea s ed

    s ubs t an t i a ll y ( F i g . 1 ), the cha l co pyr i t e beh ave d i n a s i m i l a r way t o o t he r s u l ph i de

    m i ne r a l s , s uch a s py r i t e and a r s en opyr i t e [ 18 ], wi t h S o and SO ~- be i ng p r od uced , i n

    acco r dance wi t h Eq . ( 1 ) and Eq . ( 2 ) . Th i s l a r ge i nc r ea s e i n cu r r en t wi t h an i nc r ea s e i n

    t e m p e r a t u r e c o u l d b e e x p l a i n e d b y t h e i n c r e a s e d i o n i c c o n d u c t i v i t y at t h e c h a l c o p y r i t e -

    f i l m - s o l u t i o n i n t e rf a c e , w h i ch w o u l d f a v o u r t he a n o d i c d i s s o l u ti o n o f t h e m i n e ra l . T h e

    m a x i m u m v a l u e o f c u r r e n t d e n si ty i n z o n e I I d i d n o t d e p e n d o n e l e c t r o l y te s ti rr in g ( F i g .

    8 ) , and t hus we can conc l ude t ha t , du r i ng t he r eac t i on , a l aye r , pos s i b l y e l em en t a l

    s u l phur , i s ads o r bed on t he e l ec t r ode l aye r .

    I n t he r eve r s e s can , t he i n f l uence o f s t ir r ing , t he s w eep r a t e and t he add i t i on o f i on i c

    s pec i e s r e l a t ed t o t he e l ec t r ode ' s na t u r e , m ade pos s i b l e cha r ac t e r i za t i on o f t he r eac t i ons

    i nvo l ved i n t he ca t hod i c con t r i bu t i ons o f C I , CII and C m . The add i t i on o f Fe 3÷

    f und am en t a l l y m od i f i ed t he zone o f C~ and CI~ (F i g . 10 ), w h i ch w ou l d be r e l a t ed t o the

    r educ t i on r eac t i on :

    F e 3 + + l e - ~ F e 2÷ E ' = 0 . 4 V ( 1 0 )

    T h i s r e a c t i o n c o u l d o n l y b e d e t e c t e d b e c a u s e i t t o o k p l a c e o n a n e l e c t r o c h e m i c a l l y

    o x i d i z e d c h a l c o p y r i t e . O n a f r e s h l y p r e p a r e d s u r f a c e o f c h a l c o p y r i t e t h e r e w a s n o

    r eac t i on , due t o t he s l ow k i ne t i c s and t he i r r eve r s i b i li t y o f t he Fe 2 + / F e 3÷ co up l e on t h i s

    m i ne r a l [10 ]. K ucek i [ 19 ] a l s o reg i s t e r ed t h is r e ac t i on w hen t he cha l cop yr i t e was

    a n o d i c a l l y o x i d i z e d u p t o 1 .4 V v s S H E ( - - 1 .2 V v s A g / A g C 1 ) . A s e x p l a i n e d b e f o r e ,

    t he C H peak w as r e l a t ed t o C u 2+ i ons , a c co r d i n g t o Eqs . ( 11 ) and ( 12 ) , and n o t t o t he

    Fe 3÷ co ncen t r a t i on . How eve r , t he i nc r ea s e i n cu r r en t dens i t y obs e r ved i n t he CII peak

    ( F i g . 10 ) cou l d be ex p l a i ned by t he f ac t t ha t Fe 3+ was ab l e t o ox i d i ze t he CuS f i lm

    f o r m ed on t he cha l co pyr i t e s u r f ace in t he p r ev i o us ano d i c s can and t o p r odu ce Cu 2+

    i ons , v i a t he r eac t i on in Eq . ( 3 ) , wh i ch i nc r ea s e s the cu r r en t dens i t y i n th i s C , peak .

    A t 2 5 ° C , t h e C H p e a k w a s m o r e p r o n o u n c e d i n t h e c a t h o d i c s c a n , p r o b a b l y d u e t o t h e

    s o l i d p r oduc t s f o r m e d on t he ch a l copy r i t e du r i ng t he ano d i c s can t o 1 .0 V ( F i g . l a )

    ( r eac t i ons i n Eqs . ( 3 ) , ( 6 ) - ( 9 ) ) , a l t hough t h i s was m or e d i f f i cu l t t o obs e r ve a t the h i ghes t

    t em pe r a t u r e . M or eo ve r , t he l i nea r dep end ence o f t he he i gh t o f peak Cxl ( I p ) ve r s us v 1 /2

    and o f the po t en t i a l ( Ep ) ve r s us l og v t / 2 ( F i g . 4 ) , a s w e l l a s t he depen denc e o f th i s peak

    on s t ir r ing o f t he s o l u t i on (F i g . 8a ) , i nd i ca t e the e l ec t r o f o r m a t i on o f t he t h r ee - d i m en -

    s i ona l t h i ck Cu2S(s ) l aye r und e r oh m i c con t r o l , a cc o r d i ng to :

    S O+ C u 2÷ + 2 e - ~ C u S ( 1 1 )

    C u S + C u 2+ + 2 e - ~ C u 2 S + H 2 0 ( 1 2 )

    S t i r r ing t he s o l u t i on , coppe r i on add i t i on and pH had an i n f l uenc e i n t he ca t hod i c

    zone t h r ough t he r eac t i ons i n Eq . ( 13 ) and Eq . ( 14 ) , t r ans po r t i ng t he e l ec t r oac t i ve

    s pec i e s i n t he s o l u t i on ( Cu 2÷ and H ÷ ) and c on t r i bu t i ng t o t he f o r m a t i on o f t he Cu 2S

    acco r d i ng t o :

    2 C u 2 + H 2 S + 2 e - ~ C u 2 S + 2 H ÷ ( 1 3 )

    Ho l l i day [ 17 ] and Tor m a [ 13 ] r eached s i m i l a r conc l us i ons .

  • 8/18/2019 Biolix Calco a Distintas Temp.

    13/14

    C. Gdmez et al. / Hydrometallurgy 43 1996) 331-344 343

    T h e p H a l s o i n f l u e n c e d t h e C

    | If peak

    a n d t h e r e i s a c l e a r c o r r e l a t io n b e t w e e n a c i d i ty

    a n d t h e p o t e n t i a l a t w h i c h t h e r e a c t i o n C ill b e g a n , s o t h a t w h e n p H d e c r e a s e d f r o m 2 t o

    1 , t h e s t a r t in g p o t e n t i a l w a s d i s p l a c e d t o w a r d s m o r e e l e c t r o p o s i t i v e v a l u e s ( F i g . 7 ) . P e a k

    f i l l , t herefo re ,

    m u s t h a v e b e e n p r o d u c e d b y t h e f o l l o w i n g r e a c t i o n s :

    2 Cu S + 2H + + 2 e - ~ C u 2S + H 2 S

    S o + 2 H + + 2 e - ~ H 2 S

    ( 1 4 )

    ( 1 5 )

    i n w h i c h t h e E - p H d e p e n d e n c e c a n b e e x p r e s s e d as : E = E ' - 0 . 0 5 9 . p H .

    T h e e l e c t r o c h e m i c a l b e h a v i o u r o f t h e c h a l c o p y r i t e d u r i n g a c a t h o d i c s c a n f r o m E R t o

    E s. c = - 0 . 5 V ( F i g s . 11 a n d 1 2 ) m i g h t b e a t t ri b u t e d t o t h e p r o g r e s s i v e t r a n s f o r m a t i o n o f

    t he ch a l cop y r i t e i n to C u 2 S and Cu 1.9 S [20 ]. Such a t r an s fo rm a t ion wo u ld occ u r t h rough

    a s e r i es o f i n te r m e d i a t e s t e p s i n v o l v i n g t h e g e n e r a t i o n o f C u x F e y S z s u lp h i d e s , s u c h a s

    C u 9 F e 8 S 4

    a n d C u s F e S 4 , F e 2 + , C u 2 + a n d H 2 S . T h e f o r m a t i o n o f m e t a l l ic c o p p e r i s

    a n o t h e r p o ss i b il it y [2 1] ( E ° C u 2 + / C u ° = 3 4 0 m V S H E ; + 1 33 m V A g / A g C 1 ) . N o t e

    tha t t he a nod i c pea ks A w and A v (F ig . 11 ) and A v l (F ig . 12 ) appea r wh en Es , c

    < - 0 . 4 0 V , p r o b a b l y d u e t o t h e f o l lo w i n g r e ac t io n s :

    ( 1 6 )

    C u ° + H 2 S ~ C u 2 S + 2 H ÷ + 2 e -

    C u 2 S ~ C u 2 _ x -q- x C u 2 + + 2 x e - ( 1 7 )

    (18)

    u 2 _ x S ~ C u S + (1 - x ) C u 2 + + 2 ( 1 - x ) e -

    W h a t e v e r t h e c a s e , a t b o t h h i g h a n d l o w t e m p e r a t u r e s t h e c h a l c o p y r i t e e l e c t r o d e i s

    t r a n s f o r m e d i n t o a C u - r i c h a n d F e - p o o r p h a s e a t E < E R , s o t h a t a t - 0 . 1 V t h e

    c h a l c o p y r i t e n o l o n g e r e x i s t s a s a m i n e r a l p h a s e o n t h e e l e c t r o d e s u r f a c e .

    5 . C o n c l u s i o n s

    T h e r e s u l t s s h o w t h a t t h e c h a l c o p y r i t e i n a n e l e c t r o l y t e o f s i m i l a r c o m p o s i t i o n t o o n e

    u s e d i n a c u lt u r e o f m e s o p h i l i c a n d t h e r m o p h i l i c b a c t e r i a b e h a v e s i n a s im i l a r m a n n e r t o

    t h e o n e d e s c r i b e d b y o t h e r a u t h o r s i n a s u l p h u r i c a c i d m e d i u m . T h e d i f f e r e n c e s i n t h e

    r e s p o n s e a t 2 5 ° C a n d 6 8 ° C a r e o n l y d u e t o t h e d i f f e r e n t p h y s i c a l s t r u c t u r e o f t h e

    c o m p l e x f i l m s o f s u l p h i d e s , p o l y s u l p h i d e s a n d e l e m e n t a l s u l p h u r , w h i c h a r e f o r m e d

    e l e c t r o c h e m i c a l l y .

    A c k n o w l e d g e m e n t s

    T h i s s t u d y w a s f u n d e d b y M E C : I n te r m i n is t e ri a l C o m m i s s i o n o f S c i e n c e a n d

    T e c n o l o g y a n d P r o g r a m m e f o r S c i e n t i f i c C o o p e r a t i o n w i t h S o u t h A m e r i c a , i n c o n j u n c -

    t i on w i th t he Pon t i f i c i a Un ive r s idad Ca t61 i ca de Ch i l e .

  • 8/18/2019 Biolix Calco a Distintas Temp.

    14/14

    344 C . Gdm ez e t a l . / Hydrom etal lurgy 43 1996) 33 1-3 44

    R e f e r e n c e s

    [1] Barbe ry , G . , F l e t che r, A .W . and S i ro i s , L .L ., Explo i t a t ion of complex su lph ide depos it s : a rev iew of

    process ing op t ions f rom ore to me ta l . Conf . Ins t . o f Min ing and Meta l lu rgy , Rome (1980) , pp . 135-150 .

    [2] V izso ly i , A . , Ve l tman, H . , Warren , I . and Mackiw , V .N . , Copper and e l ementa l su l fur f rom cha lcopyr i t e

    by pressure l each ing . J . Me t . , 19 (1967) : 52-59 .

    [3] Bi swas , A .K . and Davenpont , G . , Ext rac t ive Meta l lu rgy of Copper . 3 rd ed . , Pe rgamon (1994) .

    [4] Mil ler , J .D. , McD ono ugh , P .J. and Port i l lo, H.Q. , Ele ct roch emis t ry in si lver cata lysed ferr ic sul fa te

    l each ing of cha lcopyr i t e . In : M.C. Kuhn (Edi tor ) , P rocess and Fu ndamen ta l Conside ra t ions of Se lec ted

    H y d r o m e t al l ur g i ca l S y s t em s . S M E - A I M E , V o l . 27 ( 1 98 1 ) , p p . 3 2 7 - 3 2 8 .

    [5] De Fi l ippo, D. , Rossi , A. , Rossi , G. and Trois, P . , Chalcopyri te bioleaching: an invest igat ion on copper

    recovery . In : G . Duran , L . Bobidon and J . F loren t (Edi to r s ) , 8 th In t . Bio technology Syrup . on Copper .

    Soc ie t e F ranca i se , Pa r i s (1988) .

    [6] Balle ster, A., Gonz~ilez, F., Bl~izquez, M.L ., G 6m ez, C. and Mier , J.L., Th e use of catalytic ion s in

    b io l each ing . Hydrometa l lu rgy , 29 (1992) : 1 45-16 0 .

    [7] Mier , J .L. , Estudios de cat f i l i sis y toxic idad con iones metf i l icos en la biol ixiviaci6n de la calcopir i ta por

    mic roorgani smos t e rm6f i los . Ph .D . Thes i s , Univ . Complu tense Madr id (1993) .

    [8] Habash i , F . , D i sso lu t ion of mine ra l s and hydrometa l lu rg ica l p rocesses . Na turwissenscha f t en , 70 (1983) :

    4 0 3 - 4 1 1 .

    [9] N avarro, P . , Vergara , F . and Algua ci l , F .J. , Elect roo xidaci6 n de la calcopir i ta en medio c lorhidrico. Rev.

    Meta l . , 29 (1993) : 368-374 .

    [10] Pa rke r , A .J . , Pau l , R .L . and Power , G .P . , E lec t rochemis t ry of t he ox ida t ive l each ing of copper f rom

    cha lcopyr i te . J . E lec t roana l. Chem . , 118 (1981) : 305 -31 6 .

    [11] Warren , G .W. , Wadswor th , M.E . and EI -Raghy, S .H . , Pass ive and t ranspass ive anodic behavior o f

    cha lcopyr i t e i n ac id so lu t ions . Meta l l . T rans . B , 13B (1982) : 571-579 .

    [12] S tankovic , Z .D . , The anodic d i sso lu t ion reac t ion of cha lcopyr i t e . E rzmeta l l , 39 (1986) : 623-628 .

    [13] Torma , A .E . , E lec t rochemis t ry of a semiconduc tor cha lcopyr i t e concent ra t e l each ing by Thiobacillus

    ferroox idans .

    In : W.C. Cooper , D .J . Kemp, G .E . Lagos and K .G. Tan (Edi tor s ) , Hydrometa l lu rgy and

    Elec t rometa l lu rgy of Copper . Pe rgam on, New York (1991) , pp . 73- 85 .

    [14] Biegler , T. and Swift , D.A. , Anodic e lect rochemist ry of chalcopyri te . J . Appl . Elect rochem., 9 (1979):

    5 4 5 - 5 5 4 .

    [15] Benson , J . and Gui t ton , J . , Manipula t ions d ' E lec t roch imie . Masson e t Cie , Pa r i s (1972) .

    [16] Biegler , T. and Hom e, M .D., The e lect ro chem ist ry of chalcopy ri te . J . Elect rochem . Soc. , 132 (1985):

    1 3 6 3 - 1 3 6 9 .

    [17] Hol l iday , R . I . and Richmond, W.R. , An e l ec t rochemica l s tudy of t he ox ida t ion of cha lcopyr i t e i n ac id i c

    so lu t ion . J . E lec t roana l . Chem. , 288 (1990) : 83-98 .

    [18] Abrantes, L.M., Costa , M.C. and Paiva, A.P. , Pret reatment by e lect rolyt ic or oxidat ive leaching for

    recovery of go ld and s i lve r f rom re f rac tory su lph ide concent ra t e s . Hydrometa l lu rgy ' 94 . Cam br idge , UK

    (1994).

    [19] Kucez i , E . and Kam mel , R . , Kupfe rk ie s und de r e in f lub von Ag + ionen . Erzmeta l l, 41 (1988) : 332 -338 .

    [20] W arren , G .W. , Soh n , H .J ., W adswor th , M.E . and W ang, T .G . , The e f fec t o f e lec t ro ly t e composi t ion on

    the ca thodic reduc t ion of CuFeS 2 . Hydrometa l lu rgy , 15 (1985) : 133-1 49 .

    [21] Brage , M.C. , Lamache , M. and Bauer , D . , Cont r ibu t ion a l ' e tude des su l fures de cu ivre non s toe -

    ch iomet r iques . E lec t roch im. Ac ta , 24 (1979) : 25-30 .