10
1 Blood Vessels Associated with the Nephrons Each nephron supplied with blood by an afferent arteriole branch of renal artery divides into glomerular capillaries capillaries converge as they leave glomerulus forming an efferent arteriole The vessels divide again Forming the peritubular capillaries surround the PCT and DCT Vasa recta Capillaries that serve the loop of Henle vasa recta and loop of Henle funcBon as countercurrent system Blood flows in opposite direcBon of filtrate Blood Vessels Associated with the Nephrons From Blood Filtrate to Urine: A Closer Look Proximal Convoluted Tubule (PCT) ReabsorpBon of ions, water, and nutrients Molecules transported acBvely and passively From filtrate into intersBBal fluid then capillaries Some toxic materials secreted into the filtrate filtrate volume decreases

BIOL 223 Ch 44 Osmoregulation and Excretion part 2 · BIOL 223 Ch 44 Osmoregulation and Excretion part 2.pdf Author: Philip D. Jones Created Date: 6/4/2014 2:56:08 PM

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: BIOL 223 Ch 44 Osmoregulation and Excretion part 2 · BIOL 223 Ch 44 Osmoregulation and Excretion part 2.pdf Author: Philip D. Jones Created Date: 6/4/2014 2:56:08 PM

1

Blood  Vessels  Associated  with  the  Nephrons  •  Each  nephron  supplied  with  blood  by  an  

afferent  arteriole  

•  branch  of  renal  artery    

•  divides  into  glomerular  capillaries  

•  capillaries  converge  as  they  leave  glomerulus    

•  forming  an  efferent  arteriole  

•  The  vessels  divide  again  

•  Forming  the  peritubular  capillaries  

•  surround  the  PCT  and  DCT  

•  Vasa  recta  

•  Capillaries  that  serve  the  loop  of  

Henle  

•  vasa  recta  and  loop  of  Henle    

•  funcBon  as  countercurrent  system  

•  Blood  flows  in  opposite  direcBon  

of  filtrate  

Blood  Vessels  Associated  with  the  Nephrons  

From  Blood  Filtrate  to  Urine:  A  Closer  Look  

•  Proximal  Convoluted  Tubule  (PCT)  

•  ReabsorpBon  of  ions,  water,  and  

nutrients    

•  Molecules  transported    

•  acBvely  and  passively    

•  From  filtrate  into  intersBBal  

fluid  then  capillaries  

•  Some  toxic  materials    

•  secreted  into  the  filtrate  

•  filtrate  volume  decreases  

Page 2: BIOL 223 Ch 44 Osmoregulation and Excretion part 2 · BIOL 223 Ch 44 Osmoregulation and Excretion part 2.pdf Author: Philip D. Jones Created Date: 6/4/2014 2:56:08 PM

2

•  Descending  Limb  of  the  Loop  of  Henle  

•  ReabsorpBon  of  water  conBnues    

•  through  aquaporin  proteins  

•  Movement  is  driven  by    

•  High  osmolarity  of  the  

intersBBal  fluid  

•  HyperosmoBc  to  the  

filtrate  

•  filtrate  becomes  increasingly  

concentrated  

From  Blood  Filtrate  to  Urine:  A  Closer  Look  

•  Ascending  Limb  of  the  Loop  of  Henle  

•  Salt  diffuses  from  tubule  into  

intersBBal  fluid    

•  but  not  water    

•  No  aquaporins  present  

•  Completely  impervious  

to  water  

•  Filtrate  becomes  increasingly  

dilute  

From  Blood  Filtrate  to  Urine:  A  Closer  Look  

•  Distal  Convoluted  Tubule  (DCT)  

•  Regulates  K+  and  NaCl  

concentraBons  of  body  fluids  

•  controlled  movement  of  ions  

contributes  to  pH  regulaBon  

From  Blood  Filtrate  to  Urine:  A  Closer  Look  

Page 3: BIOL 223 Ch 44 Osmoregulation and Excretion part 2 · BIOL 223 Ch 44 Osmoregulation and Excretion part 2.pdf Author: Philip D. Jones Created Date: 6/4/2014 2:56:08 PM

3

•  CollecCng  Duct  

•  Carries  filtrate  through  

medulla  to  renal  pelvis  

•  Water  reabsorbed  from  filtrate  

•  some  salt  and  urea  

•  Filtrate  becomes  more  

concentrated  

•  Urine  hyperosmoBc  to  body  

fluids  

From  Blood  Filtrate  to  Urine:  A  Closer  Look  

Fig.  44-­‐15  

Key

Active transport Passive transport

INNER MEDULLA

OUTER MEDULLA

H2O

CORTEX

Filtrate

Loop of Henle

H2O K+ HCO3–

H+ NH3

Proximal tubule NaCl Nutrients

Distal tubule

K+ H+

HCO3–

H2O

H2O

NaCl

NaCl

NaCl

NaCl

Urea

Collecting duct

NaCl

Solute  Gradients  and  Water  ConservaBon  Summary  

•  Urine    

•  Much  more  concentrated  than  blood  

•  loops  of  Henle  and  collecBng  ducts  

•  responsible  for  osmoBc  gradient    

•  concentrates  urine  

•  NaCl  and  urea    

•  Contribute  to  osmolarity  of  intersBBal  fluid  

•  causes  reabsorpBon  of  water    

•  concentrates  the  urine  

Key

Active transport Passive transport

INNER MEDULLA

OUTER MEDULLA

H2O

CORTEX

Filtrate

Loop of Henle

H2O K+ HCO3 –

H+ NH3

Proximal tubule

NaCl

Nutrients

Distal tubule

K+ H+

HCO3 –

H2O

H2O

NaCl

NaCl

NaCl

NaCl

Urea

Collecting duct

NaCl

Page 4: BIOL 223 Ch 44 Osmoregulation and Excretion part 2 · BIOL 223 Ch 44 Osmoregulation and Excretion part 2.pdf Author: Philip D. Jones Created Date: 6/4/2014 2:56:08 PM

4

The  Two-­‐Solute  Model  (NaCl  &  Urea)  •  PCT  

•  Filtrate  volume  decreases  

•  osmolarity  remains  same  

•  Countercurrent  mulCplier  system    

•  loop  of  Henle    

•  Maintains  high  salt  concentraBon  in  kidney  

•  acBve  transport  of  NaCl    

•  In  thick  ascending  limb  of  LoH  

•  Thin  limb  loses  NaCl  by  diffusion  

•  Allows  formaBon  of  concentrated  urine  

•  allows  vasa  recta  to  supply  nutrients  to  kidney  

•  without  interfering  with  osmolarity  gradient  

•  Due  to  counter  flow  of  blood  in  vasa  recta  

Key

Active transport Passive transport

INNER MEDULLA

OUTER MEDULLA

CORTEX H2O

300 300 300

H2O

H2O

H2O

400

600

900

H2O

H2O

1,200

H2O

300

Osmolarity of interstitial

fluid (mOsm/L)

400

600

900

1,200

Key

Active transport Passive transport

INNER MEDULLA

OUTER MEDULLA

CORTEX H2O

300 300

300

H2O

H2O

H2O

400

600

900

H2O

H2O

1,200

H2O

300

Osmolarity of interstitial

fluid (mOsm/L)

400

600

900

1,200

100

NaCl

100

NaCl

NaCl

NaCl

NaCl

NaCl

NaCl

200

400

700

•  collecBng  duct    

•  Conducts  filtrate  through  

osmolarity  gradient  

•  Cortex  to  outer  medulla  to  

inner  medulla  

•  More  water  exits  filtrate  by  

osmosis  

•  Urea  diffuses  out  of  collecBng  

duct    

•  In  inner  medulla  

The  Two-­‐Solute  Model  

Key

Active transport Passive transport

INNER MEDULLA

OUTER MEDULLA

CORTEX H2O

300 300

300

H2O

H2O

H2O

400

600

900

H2O

H2O

1,200

H2O

300

Osmolarity of interstitial

fluid (mOsm/L)

400

600

900

1,200

100

NaCl

100

NaCl

NaCl

NaCl

NaCl

NaCl

NaCl

200

400

700

1,200

300

400

600

H2O

H2O

H2O

H2O

H2O

H2O

H2O

NaCl

NaCl

Urea

Urea

Urea

Fig.  44-­‐16-­‐1  

Key

Active transport Passive transport

INNER MEDULLA

OUTER MEDULLA

CORTEX H2O

300 300

300

H2O

H2O

H2O

400

600

900

H2O

H2O

1,200

H2O

300

Osmolarity of interstitial

fluid (mOsm/L)

400

600

900

1,200

Page 5: BIOL 223 Ch 44 Osmoregulation and Excretion part 2 · BIOL 223 Ch 44 Osmoregulation and Excretion part 2.pdf Author: Philip D. Jones Created Date: 6/4/2014 2:56:08 PM

5

Fig.  44-­‐16-­‐2  

Key

Active transport Passive transport

INNER MEDULLA

OUTER MEDULLA

CORTEX H2O

300 300

300

H2O

H2O

H2O

400

600

900

H2O

H2O

1,200

H2O

300

Osmolarity of interstitial

fluid (mOsm/L)

400

600

900

1,200

100

NaCl

100

NaCl

NaCl

NaCl

NaCl

NaCl

NaCl

200

400

700

Fig.  44-­‐16-­‐3  

Key

Active transport Passive transport

INNER MEDULLA

OUTER MEDULLA

CORTEX H2O

300 300

300

H2O

H2O

H2O

400

600

900

H2O

H2O

1,200

H2O

300

Osmolarity of interstitial

fluid (mOsm/L)

400

600

900

1,200

100

NaCl

100

NaCl

NaCl

NaCl

NaCl

NaCl

NaCl

200

400

700

1,200

300

400

600

H2O

H2O

H2O

H2O

H2O

H2O

H2O

NaCl

NaCl

Urea

Urea

Urea

PLAY

Mammals  

•  The  juxtamedullary  nephron    

•  Contributes  to  water  

conservaBon    

•  in  terrestrial  animals  

•  Mammals  that  inhabit  dry  

environments    

•  Have  long  loops  of  Henle  

•  While  those  in  fresh  water  

have  relaBvely  short  loops  

Page 6: BIOL 223 Ch 44 Osmoregulation and Excretion part 2 · BIOL 223 Ch 44 Osmoregulation and Excretion part 2.pdf Author: Philip D. Jones Created Date: 6/4/2014 2:56:08 PM

6

Birds  and  Other  RepBles  •  Birds    

•  shorter  loops  of  Henle    

•  Even  in  juxtamedullary  nephrons  

•  conserve  water  by  excreBng  uric  acid    

•  instead  of  urea  

•  excreted  as  a  paste  

•  Fairly  non-­‐water  soluble  

•  Other  repBles  have  only  corBcal  nephrons    

•  No  juxtamedullary  nephrons  

•  But  also  excrete  uric  acid  

Uptake of water and some ions in food

Uptake of salt ions by gills

Osmotic water gain through gills and other parts of body surface

Excretion of large amounts of water in dilute urine from kidneys

(b) Osmoregulation in a freshwater fish

Freshwater  Fishes  and  Amphibians  

•  Freshwater  fish  

•  Conserve  salt  in  DCT’s  

•  Excrete  large  volumes  of  dilute  

urine  

•  Amphibian    

•  kidney  funcBon  similar  to  freshwater  

fish  

•  conserve  water  on  land    

•  by  reabsorbing  water  from  the  

urinary  bladder  

Excretion of salt ions from gills

Gain of water and salt ions from food

Osmotic water loss through gills and other parts of body surface

Excretion of salt ions and small amounts of water in scanty urine from kidneys

Gain of water and salt ions from drinking seawater

(a) Osmoregulation in a saltwater fish

Marine  Bony  Fishes  •  Marine  bony  fish  

•  HypoosmoBc  compared  with  their  environment    

•  excrete  very  lible  urine  

•  Urea  lost  through  skin  and  gills  

•  Fewer  and  smaller  nephrons  than  fresh  water  fish  

•  No  DCT  

•  Divalent  ions  secreted  to  proximal  tubule  

•  Ca2+,  Mg2+,  SO42-­‐  

Page 7: BIOL 223 Ch 44 Osmoregulation and Excretion part 2 · BIOL 223 Ch 44 Osmoregulation and Excretion part 2.pdf Author: Philip D. Jones Created Date: 6/4/2014 2:56:08 PM

7

Thirst

Drinking reduces blood osmolarity

to set point.

Osmoreceptors in hypothalamus trigger

release of ADH.

Increased permeability

Pituitary gland

ADH

Hypothalamus

Distal tubule

H2O reab- sorption helps prevent further

osmolarity increase.

STIMULUS: Increase in blood

osmolarity

Collecting duct

Homeostasis: Blood osmolarity

(300 mOsm/L)

(a)

Exocytosis

(b)

Aquaporin water channels

H2O

H2O

Storage vesicle

Second messenger signaling molecule

cAMP

INTERSTITIAL FLUID

ADH receptor

ADH

COLLECTING DUCT LUMEN

COLLECTING DUCT CELL

AnBdiureBc  Hormone  •  Osmolarity  of  urine    

•  Regulated  by  nervous  and  

hormonal  control    

•  of  water  and  salt  reabsorpBon  

•  AnCdiureCc  hormone  (ADH)  

(vasopressin)  

•  Increases  water  reabsorpBon  in  

DCT  and  collecBng  ducts  

•  An  increase  in  osmolarity  triggers  the  

release  of  ADH  

•  to  conserve  water  

•  When  above  300mOsm/L  

•  MutaBon  in  ADH  producBon  causes  severe  dehydraBon  

•  Results  in  diabetes  insipidus  

•  Large  volumes  of  dilute  urine  

•  Alcohol  is  a  diureBc  

•  inhibits  the  release  of  ADH  

AnBdiureBc  Hormone  

PLAY

The  Renin-­‐Angiotensin-­‐Aldosterone  System  

•  Renin-­‐angiotensin-­‐aldosterone  system  

(RAAS)    

•  Part  of  complex  feedback  circuit  

•  funcBons  in  homeostasis  

•  drop  in  blood  pressure  near  glomerulus    

•  Causes  juxtaglomerular  apparatus  

(JGA)    

•  to  release  the  enzyme  renin  

•  triggers  the  formaBon  of  

angiotensin  II  

Page 8: BIOL 223 Ch 44 Osmoregulation and Excretion part 2 · BIOL 223 Ch 44 Osmoregulation and Excretion part 2.pdf Author: Philip D. Jones Created Date: 6/4/2014 2:56:08 PM

8

•  Angiotensin  II    

•  Raises  blood  pressure  and  decreases  blood  flow  to  kidneys  

•  Through  vasoconstricBon  

•  SBmulates  release  of  the  hormone  aldosterone  

•  Causes  retenBon  of  salt    

•  Increases  blood  volume  and  pressure  

•  As  water  follows  salt  

The  Renin-­‐Angiotensin-­‐Aldosterone  System  

Fig.  44-­‐21-­‐1  

Renin

Distal tubule

Juxtaglomerular apparatus (JGA)

STIMULUS: Low blood volume or blood pressure

Homeostasis: Blood pressure,

volume

Fig.  44-­‐21-­‐2  

Renin

Distal tubule

Juxtaglomerular apparatus (JGA)

STIMULUS: Low blood volume or blood pressure

Homeostasis: Blood pressure,

volume

Liver

Angiotensinogen

Angiotensin I

ACE

Angiotensin II

Page 9: BIOL 223 Ch 44 Osmoregulation and Excretion part 2 · BIOL 223 Ch 44 Osmoregulation and Excretion part 2.pdf Author: Philip D. Jones Created Date: 6/4/2014 2:56:08 PM

9

Fig.  44-­‐21-­‐3  

Renin

Distal tubule

Juxtaglomerular apparatus (JGA)

STIMULUS: Low blood volume or blood pressure

Homeostasis: Blood pressure,

volume

Liver

Angiotensinogen

Angiotensin I

ACE

Angiotensin II

Adrenal gland

Aldosterone

Arteriole constriction

Increased Na+ and H2O reab-

sorption in distal tubules

HomeostaBc  RegulaBon  of  the  Kidney  

•  ADH  and  RAAS    

•  Both  increase  water  reabsorpBon  

•  But  only  RAAS  will  respond  to  a  decrease  in  blood  volume  

•  Atrial  natriureCc  pepCde  (ANP)  

•  Opposes  the  RAAS  

•  released  in  response  to  increase  in  blood  volume  and  pressure  

•  Inhibits  the  release  of  renin  

You  should  now  be  able  to:  

1.  DisBnguish  between  the  following  terms:  isoosmoBc,  hyperosmoBc,  and  hypoosmoBc;  osmoregulators  and  osmoconformers;  stenohaline  and  euryhaline  animals  

2.  Define  osmoregulaBon,  excreBon,  anhydrobiosis  

3.  Compare  the  osmoregulatory  challenges  of  freshwater  and  marine  animals  

4.  Describe  some  of  the  factors  that  affect  the  energeBc  cost  of  osmoregulaBon  

Page 10: BIOL 223 Ch 44 Osmoregulation and Excretion part 2 · BIOL 223 Ch 44 Osmoregulation and Excretion part 2.pdf Author: Philip D. Jones Created Date: 6/4/2014 2:56:08 PM

10

5.  Describe  and  compare  the  protonephridial,  metanephridial,  and  Malpighian  tubule  excretory  systems  

6.  Using  a  diagram,  idenBfy  and  describe  the  funcBon  of  each  region  of  the  nephron  

7.  Explain  how  the  loop  of  Henle  enhances  water  conservaBon  

8.  Describe  the  nervous  and  hormonal  controls  involved  in  the  regulaBon  of  kidney  funcBon  

You  should  now  be  able  to: