11
excerpt from the book: Biomechatronics, Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved. Chapter 17, Pages 495-541 Bioinspired Robotics Krishnanand N. Kaipa*, Cagdas Onal , Vukica Jovanovic*, Ana Djuric , Ming Luo § , Matthew P. Bowers , Marko B. Popovic *OLD DOMINION UNIVERSITY, NORFOLK, VA, UNITED STATES WORCESTER POLYTECHNIC INSTITUTE, WORCESTER, MA, UNITED STATES WAYNE STATE UNIVERSITY, DETROIT, MI, UNITED STATES § STANFORD UNIVERSITY, STANFORD, CA, UNITED STATES Abstract Animals and insects evolved distinct traits over millions of years of natural selection, which enable them to adapt to, and perform reliably in, a variety of unstructured environments. Nature abounds in examples of such natural creatures that exploit features like softness, compliance, and configurability to achieve effective interactions with their surroundings. Robotic replicas with similar adaptation capabilities can be created by copying some of these crucial elements into the robots’ designs. This chapter describes the approach of using biological inspiration for the design of robotic systems. Representative examples of bioinspired robots used for locomotion and manipulation are described. Soft-robotic systems, which represent the latest advances in the field of bioinspired robotics are also described. Finally, examples algorithmic bioinspiration, including locomotion gaits, central pattern generators, and multirobot coordination are discussed. CHAPTER OUTLINE 17.1 Introduction: Bioinspiration ................................................................................................... 495 17.2 Bioinspired Locomotion ......................................................................................................... 498 17.2.1 Terrestrial Mobile Robots ...................................................................................................499 17.2.2 Bioinspired Aerial Robots ....................................................................................................507 17.3 Bioinspired Manipulation ....................................................................................................... 513

Bioinspired Roboticsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_17.pdf · project Advanced Step in Innovative MObility and was inducted into the Robot Hall of Fame in Pittsburgh

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bioinspired Roboticsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_17.pdf · project Advanced Step in Innovative MObility and was inducted into the Robot Hall of Fame in Pittsburgh

excerpt from the book: Biomechatronics, Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved. Chapter 17, Pages 495-541

Bioinspired Robotics Krishnanand N. Kaipa*, Cagdas Onal†, Vukica Jovanovic*, Ana Djuric‡,

Ming Luo§, Matthew P. Bowers†, Marko B. Popovic†

*OLD DOMINION UNIVERSITY, NORFOLK, VA, UNITED STATES †WORCESTER

POLYTECHNIC INSTITUTE, WORCESTER, MA, UNITED STATES ‡WAYNE STATE

UNIVERSITY, DETROIT, MI, UNITED STATES §STANFORD UNIVERSITY, STANFORD, CA,

UNITED STATES

Abstract

Animals and insects evolved distinct traits over millions of years of natural selection, which enable them

to adapt to, and perform reliably in, a variety of unstructured environments. Nature abounds in examples

of such natural creatures that exploit features like softness, compliance, and configurability to achieve

effective interactions with their surroundings. Robotic replicas with similar adaptation capabilities can be

created by copying some of these crucial elements into the robots’ designs. This chapter describes the

approach of using biological inspiration for the design of robotic systems. Representative examples of

bioinspired robots used for locomotion and manipulation are described. Soft-robotic systems, which

represent the latest advances in the field of bioinspired robotics are also described. Finally, examples

algorithmic bioinspiration, including locomotion gaits, central pattern generators, and multirobot

coordination are discussed.

CHAPTER OUTLINE

17.1 Introduction: Bioinspiration ................................................................................................... 495

17.2 Bioinspired Locomotion ......................................................................................................... 498

17.2.1 Terrestrial Mobile Robots ...................................................................................................499

17.2.2 Bioinspired Aerial Robots ....................................................................................................507

17.3 Bioinspired Manipulation ....................................................................................................... 513

Page 2: Bioinspired Roboticsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_17.pdf · project Advanced Step in Innovative MObility and was inducted into the Robot Hall of Fame in Pittsburgh

17.3.1 Robotic Arms .......................................................................................................................513

17.3.2 Anthropomorphic Robotic Hands .......................................................................................521

17.4 Bioinspired Soft-Robotic Systems ........................................................................................... 525

17.5 Algorithmic Bioinspiration ..................................................................................................... 528

17.5.1 Bioinspired Gaits .................................................................................................................528

17.5.2 Central Pattern Generators .................................................................................................532

References .................................................................................................................................... 534

Further Reading ............................................................................................................................. 541

Biomechatronics. https://doi.org/10.1016/B978-0-12-812939-5.00017-3

© 2019 Elsevier Inc. All rights reserved.

[chapter content intentionally omitted]

References

[1] G. Quaglia, D. Maffiodo, W. Franco, S. Appendino, R. Oderio, The Epi.q-1 hybrid mobile robot, Int. J.

Robot. Res. 29 (1) (2010) 81–91.

[2] S. Ososky, A. William Evans III, F. Jentsch, From the lab to the field: observations from unmanned

system field research and comparisons to laboratory counterparts, J. Manag. Inf. Syst. 7 (3) (2007) 1427–

1431.

[3] A. Sprowitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri, A.J. Ijspeert, Towards dynamic trot gait

locomotion: design, control, and experiments with cheetah-cub, a compliant quadruped robot, Int. J.

Robot. Res. 32 (8) (2013) 932–950.

[4] N.F. Lepora, P. Verschure, T.J. Prescott, The state of the art in biomimetics, Bioinspir. Biomimet. 8 (1)

(2013) 013001.

[5] H.-J.Weidemann, F. Pfeiffer, The six-leggedTUMwalking robot, in: V. Graefe (Ed.), Intelligent Robots

and Systems, Elsevier Science B.V., Amsterdam, 1995, pp. 549–557

[6] J. Ayers, J. Witting, Biomimetic approaches to the control of underwater walking machines, Philos.

Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 365 (1850) (2007) 273–295.

[7] D.A. Kingsley, R.D. Quinn, R.E. Ritzmann, Acockroach inspired robot with artificial muscles, in: IEEE/RSJ

International Conference on Intelligent Robots and Systems, Beijing, 2006, 2006, pp. 1837–1842.

Page 3: Bioinspired Roboticsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_17.pdf · project Advanced Step in Innovative MObility and was inducted into the Robot Hall of Fame in Pittsburgh

[8] N.S. Szczecinski, et al., MantisBot: a platform for investigating mantis behavior via real-time neural

control, in: S. Wilson, P. Verschure, A. Mura, T. Prescott (Eds.), Biomimetic and Biohybrid Systems. Living

Machines 2015. Lecture Notes in Computer Science, vol. 9222, Springer, Cham, 2015.

[9] M.P. Murphy, A. Saunders, C. Moreira, A.A. Rizzi, M. Raibert, The LittleDog robot, Int. J. Robot. Res. 30

(2) (2011) 145–149.

[10] K. Capek, RUR (Rossum’s Universal Robots), Penguin, 2004.

[11] D. Zunt, Who Did Actually Invent the Word “Robot” and What Does it Mean, The Karel Capek website,

2002.

[12] T. Kanda, H. Ishiguro,M. Imai, T. Ono, Development and evaluation of interactive humanoid robots,

Proc. IEEE 92 (11) (2004) 1839–1850.

[13] Reffell, L. H., & Richards, W. H. (1932). Kunstlicher Maschinenmensch, Roboter. In M. R. J.

Bundesarchiv Bild Ed.), 102-13018, George the humanoid robot from the 1930s was constructed by motor

engineer Alan Herbert Reffell and Captain W. H. Richards. Captain and journalist William H. Richards was

secretary of the Exhibition of the Society of Model Engineers. The picture shows W. H. Richards and the

Robot: Unbekannt, Aktuelle-Bilder-Centrale, Georg Pahl.

[14] ASIMO. (2011). Categories: ASIMO (2nd generation) Robot Hall of Fame, in: A. 4.28.11.jpg (Ed.), (pp.

Asimo at a Honda factory. This humanoid robot was created by Honda Motor Co. as a part of the research

project Advanced Step in Innovative MObility and was inducted into the Robot Hall of Fame in Pittsburgh

in 2004 as the first humanoid droid able to walk dynamically): Wikimedia Commons—User: Vanillase.

[15] Reinecke, D. (2004). Sony Qrio Robot, in S.Q. Robot.jpg (Ed.), (pp. Presentation of the Sony Qrio Robot

at the RoboCup 2004): Wikimedia Commons, the free media repository.

[16] SoftbankRobotics, NAO evolution, In: N. E. .jpg, (Ed), Wikimedia Commons, the Free Media

Repository, 2017

[17] S. Shamsuddin, L.I. Ismail, H. Yussof, N.I. Zahari, S. Bahari, H. Hashim, A. Jaffar, Humanoid robot NAO:

Review of control and motion exploration, in: Paper presented at the IEEE International Conference on

Control System, Computing and Engineering (ICCSCE), 2011, 2011.

[18] SoftBank, Who Is NAO?, (2016). Available from:

https://www.ald.softbankrobotics.com/en/coolrobots/nao (retrieved 14.10.16).

[19] A.D. Ames, E.A. Cousineau, M.J. Powell, Dynamically Stable Bipedal Robotic Walking with NAO Via

Human-Inspired Hybrid Zero Dynamics, in: Paper Presented at the Proceedings of the 15th ACM

International Conference on Hybrid Systems: Computation and Control, 2012.

[20] N. Kofinas, Forward and Inverse Kinematics for the NAO Humanoid Robot, Technical University of

Crete, Greece, 2012.

[21] M. Vukobratovi_c, B. Borovac, Zero-moment point—thirty five years of its life, Int. J. Human. Robot.

1 (01) (2004) 157–173.

[22] M. Vukobratovic, A. Rodic, Contribution to the integrated control of biped locomotion mechanisms,

Int. J. Human. Robot. 4 (01) (2007) 49–96.

Page 4: Bioinspired Roboticsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_17.pdf · project Advanced Step in Innovative MObility and was inducted into the Robot Hall of Fame in Pittsburgh

[23] M. Alemi, A. Meghdari, M. Ghazisaedy, Employing humanoid robots for teaching English language in

Iranian junior high-schools. Int. J. Human. Robot. 11 (3) (2014) 1–25,

https://doi.org/10.1142/S0219843614500224.

[24] S.i. Nakaoka, M. Morisawa, K. Kaneko, S. Kajita, F. Kanehiro, Development of an indirect-type

teleoperation interface for biped humanoid robots, in: Paper Presented at the IEEE/SICE International

Symposium on System Integration (SII), 2014, 2014.

[25] DARPA, DARPA Robotics Challenge, Available from:http://www.theroboticschallenge.org/, 2017.

[26] J. Monceaux, J. Becker, C. Boudier, A. Mazel, First steps in emotional expression of the humanoid

robot NAO, in: Paper Presented at the Proceedings of the 2009 International Conference on Multimodal

Interfaces, 2009.

[27] A. Magassouba, N. Bertin, F. Chaumette, Binaural auditory interaction without HRTF for humanoid

robots: a sensor-based control approach, in: Paper Presented at the Workshop on Multimodal Sensor-

based Control for HRI and Soft Manipulation, IROS’2016, 2016.

[28] A. Goswami, S.-k. Yun, U. Nagarajan, S.-H. Lee, K. Yin, S. Kalyanakrishnan, Direction-changing fall

control of humanoid robots: theory and experiments, Auton. Robot. 36 (3) (2014) 199–223.

[29] A. Polishuk, I. Verner, Y. Klein, E. Inbar, R. Mir, I. Wertheim, The challenge of robotics education in

science museums, in: The 4th Knowledge Cities World Summit, 2011, p. 319.

[30] O.Mubin, C.J. Stevens, S. Shahid, A. Al Mahmud, J.-J. Dong, A review of the applicability of robots in

education, J. Technol. Educ. Learn. 1 (2013). 209-0015.

[31] H. Kose, R. Yorganci, E.H. Algan, D.S. Syrdal, Evaluation of the robot assisted sign language tutoring

using video-based studies, Int. J. Soc. Robot. 4 (3) (2012) 273–283, https://doi.org/10.1007/s12369-012-

0142-2.

[32] D. Hood, S. Lemaignan, P. Dillenbourg, When children teach a robot to write: An autonomous

teachable humanoid which uses simulated handwriting, in: Paper Presented at the Proceedings of the

Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, 2015.

[33] M. Fridin, Storytelling by a kindergarten social assistive robot: a tool for constructive learning in

preschool education, Comput. Educ. 70 (2014) 53–64.

[34] G. Keren, A. Ben-David, M. Fridin, Kindergarten assistive robotics (KAR) as a tool for spatial cognition

development in pre-school education, in: Paper Presented at the 2012 IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2012.

[35] A.Melchior, F. Cohen, T. Cutter, T. Leavitt, N.H. Manchester,More Than Robots: An Evaluation of the

First Robotics Competition Participant and Institutional Impacts,Heller School for Social Policy and

Management, Brandeis University, 2005.

[36] V. Jovanovic, Hampton Roads Section Challenge IEEE SoutheastCon 2016, Norfolk, VA, 2016.

[37] G. Pratt, J. Manzo, The DARPA robotics challenge [competitions], IEEE Robot. Autom. Mag. 20 (2)

(2013) 10–12.

Page 5: Bioinspired Roboticsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_17.pdf · project Advanced Step in Innovative MObility and was inducted into the Robot Hall of Fame in Pittsburgh

[38] S. Agarwal, M. Popovic, Study of toe joints to enhance locomotion of humanoid robots, 2018 IEEERAS

18th International Conference on Humanoid Robots (Humanoids 2018), November 6–9, Beijing. China,

2018.

[39] N.A. Radford, P. Strawser, K. Hambuchen, J.S. Mehling, W.K. Verdeyen, A.S. Donnan, et al., Valkyrie:

Nasa’s first bipedal humanoid robot, J. Field Robot. 32 (3) (2015) 397–419.

[40] M.B. Popovic, Biomechanics and Robotics, CRC Press, Pan Stanford Publishing Pte. Ltd., Singapore,

2013

[41] N. Deisadze, W.C. Jo, B.R. Seo, S. Nestinger, M.B. Popovic, Toward Biologically Inspired Human-

Carrying Ornithopter Robot Capable of Hover, WPI, April 29, 2013. (MQP Report),

http://www.wpi.edu/Pubs/E-project/Available/E-project-042613-

114244/unrestricted/Wing_MQP_Report-2013-04-27_final.pdf, 2013 (retrieved 25.12.13).

[42] M.B. Popovic, Designing large ornithopter for human transport via ExoMusculature and sensitive

robotics, in: Presented at Robotics Science and Systems (RSS) 2013, International Conference, Berlin,

Germany, June 28, 2013.

[43] V. Tucker, Gliding birds—reduction of induced drag by wing tip slots between the primary feathers,

J. Exp. Biol. 180 (1993) 285–310.

[44] H. Eder,W. Fiedler, X. Pascoe, Air-permeable hole-pattern and nose-droop control improve

aerodynamic performance of primary feathers. J. Compar. Physiol. A: Neuroethol. Sens.Neural Behav.

Physiol. 197 (1) (2011) 109–117, https://doi.org/10.1007/s00359-010-0592-7.

[45] Hunt, T.R., Berthelette, C.J., Iannacchione, G.S., Koehler, S., and Popovic, M.B., “Soft robotics variable

stiffness exo-musculature, one-to-many concept, and advanced clutches”, Invited Talk at the IEEE

International Conference on Robotics and Automation 2012 WORKSHOP: Variable Stiffness Actuators

Moving the Robots of Tomorrow, May 14, 2012. Presentation available at:

http://www.ce.utwente.nl/car/ICRA2012/workshop.html (retrieved 25.12.13).

[46] T.R. Hunt, C.J. Berthelette, M.B. Popovic, Linear one-to-many (OTM) system: Many degrees of

freedom independently actuated by one electric motor, in: Presented at the 5th Annual IEEE International

Conference on Technologies for Practical Robot Applications (TePRA), Greater Boston Area,

Massachusetts, USA, April 22–23, 2013.

[47] C.J. Berthelette, M. DiPinto, J.D. Sareault, Rotary “One-To-Many” (OTM) novel actuator, in: (Prof. M.B.

Popovic advisor), The Winner of the 2013 WPI Mechanical Engineering Department Best MQP in Robotics

Engineering Award. WPI, April 25, 2013, https://web.wpi.edu/Pubs/E-project/Available/E-project-

042513-153455/unrestricted/Rotary_One-to-Many_OTM_Novel_Actuator_Final_Report.pdf , (retrieved

25.12.13).

[48] M. B. Popovic, C. J. Berthelette, M. DiPinto, J. D. Sareault, and T. R. Hunt “Actuation Systems and

Methods”United States Patent and Trademark Office, Assignee Worcester Polytechnic Institute. Serial

No.: 61/844,604. Filed: July 10, 2013. US Patent 20,160,138,690, 2016 (publication date 19.05.16)

Page 6: Bioinspired Roboticsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_17.pdf · project Advanced Step in Innovative MObility and was inducted into the Robot Hall of Fame in Pittsburgh

[49] Send, W., Fischer, M., Jebens, K., Mugrauer, R., Nagarathinam, A., & Scharstein, F. (2012). Artificial

hinged-wing bird with active torsion and partially linear kinematics. 28th International Congress of the

Aeronautical Sciences, Gottingen, Germany 2012.

[50] R. Tedrake, Z. Jackowski, R. Cory, J.W. Roberts, W. Hoburg, Learning to fly like a bird, in: 14th

International Symposium on Robotics Research. Lucerne, Switzerland, 2009.

[51] Subbaraman, N. (2009). Robotic Bird Flies Over MIT j Scope. Scope j The Publication of the Graduate

Program in Science Writing at MIT. Available from: http://scopeweb.mit.edu/?p=671 (retrieved 28.03.13).

[52] L. Edwards, Robot hummingbird passes flight tests, in: Phys. Org., 2011 https://phys.org/news/2011-

02-robot-hummingbird-flight-video.html (accessed 03.09.18).

[53] R.J. Wood, Liftoff of a 60mg flapping-wing MAV, IEEE/RSJ IROS, San Diego, CA, October, 2007.

[54] B. Yirka, Festo builds BionicOpter—fully functional robot dragonfly, Phys. Org. 1 2013.

https://phys.org/news/2013-04-festo-bionicopterfully-functional-robot-dragonfly.html (accessed

03.09.18).

[55] W. Shyy, M. Berg, D. Ljungqvist, Flapping and flexible wings for biological and micro air vehicles. Prog.

Aerosp. Sci. 35 (5) (1999) 455–505, https://doi.org/10.1016/S0376-0421(98)00016-5.

[56] S.S. Baek, F.L.G. Bermudez, R.S. Fearing, Flight control for target seeking by 13 gram ornithopter, in:

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, IEEE, 2011, pp. 2674–

2681.

[57] A.A. Paranjape, M.R. Dorothy, S. Chung, K.D. Lee, A flight mechanics-centric review of bird-scale

flapping flight, Int. J. Aeronaut. Space Sci. 13 (3) (2012) 267–281.

[58] Devol, G. (1954). Patent 2,988,237. Programmed Article Transfer. Filed December, 10.

[59] E. Mandfield, The diffusion of industrial robots in Japan and the United States, Res. Policy 18 (4) (1989)

183–192.

[60] L. Nocks, The Robot: The Life Story of a Technology, Greenwood Publishing Group, 2007.

[61] A. Djuric, V.M. Jovanovic, T. Goris, Preparing students for the advanced manufacturing environment

through robotics, mechatronics, and automation training, in: Paper Presented at the 2015 ASEE Annual

Conference & Exposition, Seattle, WA, 2015.

[62] D. Acemog˘lu, P. Restrepo, Robots and Jobs: Evidence From the US, 2017.

[63] M. Hagele, Robots conquer the world [turning point], IEEE Robot. Autom. Mag. 23 (1) (2016) 118–

120.

[64] P. Gorle, A. Clive, Positive Impact of Industrial Robots on Employment, International Federation of

Robotics, METRA MARTECH Limited, 2013.

[65] S. Kim, C. Laschi, B. Trimmer, Soft robotics: a bioinspired evolution in robotics, Trends Biotechnol. 31

(5) (2013) 287–294.

Page 7: Bioinspired Roboticsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_17.pdf · project Advanced Step in Innovative MObility and was inducted into the Robot Hall of Fame in Pittsburgh

[66] E. Mattar, A survey of bio-inspired robotics hands implementation: new directions in dexterous

manipulation, Robot. Auton. Syst. 61 (5) (2013) 517–544.

[67] J.E. Colgate, W. Wannasuphoprasit, M.A. Peshkin, Cobots: robots for collaboration with human

operators, in: Paper Presented at the Proceedings of the 1996 ASME International Mechanical Engineering

Congress and Exposition, 1996.

[68] M.A. Peshkin, J.E. Colgate, W. Wannasuphoprasit, C.A. Moore, R.B. Gillespie, P. Akella, Cobot

architecture, IEEE Trans. Robot. Autom. 17 (4) (2001) 377–390.

[69] J.E. Colgate, M.A. Peshkin, Cobots: Google Patents, 1999.

[70] M.J. Timms, Letting artificial intelligence in education out of the box: educational cobots and smart

classrooms, Int. J. Artif. Intell. Educ. 26 (2) (2016) 701–712.

[71] A. Djuric, J. Urbanic, J.L. Rickli, A framework for collaborative robot (CoBot) integration in advanced

manufacturing systems, SAE Int. J. Mater. Manuf. 9 (2016-01-0337) (2016) 457–464.

[72] A.R. Sadik, B. Urban, An ontology-based approach to enable knowledge representation and reasoning

in worker–cobot agile manufacturing, Future Internet 9 (4) (2017) 90.

[73] ABB, YuMi®—Creating an Automated Future Together, You and Me, ABB Robotics, Available from:

http://new.abb.com/products/robotics/industrial-robots/yumi, 2018 (retrieved 05.03.18).

[74] Bosch, APAS, Humans and Machines Hand in Hand, Robert Bosch Manufacturing Solutions GmbH,

2017. Available from:https://www.bosch-apas.com/en/home/ (retrieved 05.03.18).

[75] KUKA, Cobots in the Industry, KUKA Systems GmbH, Augsburg, Germany, 2018. Available from:

https://www.kuka.com/en-us/technologies/industrie-4-0/industrie-4-0-cobots-in-industry (retrieved

05.03.18).

[76] Fanuc, Collaborative Robot, CR-35iA, Available

from:https://www.fanucamerica.com/products/robots/productsbyseries/default.aspx?seriesId=25&rob

otseries=Collaborative%20Robot, 2018 (retrieved 05.03.18).

[77] Mabi, MABI Speedy 6 Cobot, Human-Robot Collaboration (HRC), Mabi-Robotics, 2018. Available from:

http://mabi-robotic.com/en/products/mabi-speedy-6/ (retrieved 05.03.18).

[78] Universal Robots, Collaborative Robots From Universal Robots, Available from:

https://www.universal-robots.com/products/, 2018 (retrieved 05.03.18).

[79] A. Fast-Berglund, F. Palmkvist, P. Nyqvist, S. Ekered, M.Akerman, Evaluating cobots for final assembly,

Proc. CIRP 44 (2016) 175–180.

[80] S. Beak, Demystifying Cobot Safety: The Four Types of Collaborative Operation, Universal Robots,

2016. Available from:https://blog.universal-robots.com/demystifying-cobot-safety-the-four-typesof-

collaborative-operation (retrieved 05.03.18).

[81] P.A. Lasota, G.F. Rossano, J.A. Shah, Toward safe close-proximity human-robot interaction with

standard industrial robots, in: Paper Presented at the IEEE International Conference on Automation

Science and Engineering (CASE), 2014, 2014.

Page 8: Bioinspired Roboticsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_17.pdf · project Advanced Step in Innovative MObility and was inducted into the Robot Hall of Fame in Pittsburgh

[82] M. Bdiwi, M. Pfeifer, A. Sterzing, A new strategy for ensuring human safety during various levels of

interaction with industrial robots, in: CIRP Annals-Manufacturing Technology, 2017.

[83] ISO, ISO 10218-1/2:2011—Robots and Robotic Devices—Safety Requirements for Industrial Robots—

Part 1: Robots/Part 2: Robot Systems and Integration, 2011.

[84] ISO, ISO/TS 15066:2016—Robots and Robotic Devices—Collaborative Robots, 2016.

[85] A. Djuric, J. Urbanic, Using collaborative robots to assist with travel path development for material

deposition based additive manufacturing processes, Comput.-Aided Design Appl. (2018) 1–14.

[86] Djuric, A., Rickli, J. L., Jovanovic, V. M., & Foster,D. (2017).Hands-on learning environment and

educational curriculum on collaborative robotics Paper Presented at the 2017 ASEE Annual Conference &

Exposition, Columbus, OH.

[87] K. Ziegler-Graham, E.J. MacKenzie, P.L. Ephriam, T.G. Travison, R. Brookmeyer, Estimating the

prevalence of limb loss in the United States: 2005 to 2050, Arch. Phys. Med. Rehabil. 89 (3) (2008) 422–

429, https://doi.org/10.1016/j.apmr.2007.11.005.

[88] S. Casley, T. Choopojcharoen, A. Jardin, D. Ozgoren, IRIS HAND: Smart Robotics Prosthesis, Worcester

Polytechnic Institute, 2014, April.

[89] J. Billock, Upper limb prosthetic terminal devices: hand versus hooks, Clin. Prosth. Orthotics 10 (2)

(1986) 57–65.

[90] R. Bowers, Prosthetic Devices for Upper-Extremity Amputees, Amputee Coalition of America, 2014.

[91] I-limb ultra Clinician Manual Issue 2. (2013). Available from: Touch Bionics

http://www.touchbionics.com/sites/default/files/i-limb_ultra_clinician_manual_issue_2.pdf (retrieved

11.10.16).

[92] M. Brochure. Available from: ottobock http://www.ottobockus.com/media/local-

media/prosthetics/upper-limb/michelangelo/files/michelangelo-brochure.pdf (retrieved 11.10.16).

[93] Ada V1.0-Datasheet. (2016). Available from OpenBionicswww.openbionics.com(retrieved 11.10.16).

[94] E. Saint-Elme, M.A. Larrier Jr., C. Kracinovich, D. Renshaw, K. Troy, M. Popovic, Design of a biologically

accurate prosthetic hand, Extended Abstracts Proceedings of the International Symposium on Wearable

Robotics (WeRob 2017), Houston, Texas (USA), November 5–8, 2017.

[95] Brain Controlled Accurate Prosthetic Hand, Popovic Labs, Available from:

http://users.wpi.edu/~mpopovic/pages/AccurateProstheticHand.html (accessed 17.03.18).

[96] D. Rus, M.T. Tolley, Design, fabrication and control of soft robots, Nature 521 (7553) (2015) 467.

[97] H.F. Schulte, The characteristics of the mckibben artificial muscle, in: The Application of External

Power in Prosthetics and Orthotics, Washington, DC: Nat. Acad. Sci.-Nat. Res. Council, 1961.

[98] Suzumori, K., Iikura., S. & Tanaka, H. (1992). Applying a flexible microactuator to robotic mechanisms.

IEEE Control. Syst., 12(1), pp. 21–27.

Page 9: Bioinspired Roboticsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_17.pdf · project Advanced Step in Innovative MObility and was inducted into the Robot Hall of Fame in Pittsburgh

[99] I.D. Walker, D.M. Dawson, T. Flash, F.W. Grasso, R.T. Hanlon, B. Hochner, W.M. Kier, C.C. Pagano, C.D.

Rahn, Q.M. Zhang, Continuum robot arms inspired by cephalopods, in: Unmanned Ground Vehicle

Technology, vol. 5804, 2005, pp. 303–315 International Society for Optics and Photonics.

[100] C.D. Onal, System-level challenges in pressure-operated soft robotics, in: Micro- and

Nanotechnology Sensors, Systems, and Applications VIII, vol. 9836, 2016, p. 983627. International Society

for Optics and Photonics.

[101] R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M.

Whitesides, Multigait soft robot, Proc. Natl. Acad. Sci. 108 (51) (2011) 20400–20403.

[102] S.A. Morin, R.F. Shepherd, S.W. Kwok, A.A. Stokes, A. Nemiroski, G.M. Whitesides, Camouflage and

display for soft machines, Science 337 (6096) (2012) 828–832.

[103] N.W. Bartlett, M.T. Tolley, J.T. Overvelde, J.C. Weaver, B. Mosadegh, K. Bertoldi, G.M. Whitesides,

R.J. Wood, A 3D-printed, functionally graded soft robot powered by combustion, Science 349 (6244)

(2015) 161–165.

[104] M.Wehner, R.L. Truby, D.J. Fitzgerald, B.Mosadegh, G.M. Whitesides, J.A. Lewis, R.J.Wood, An

integrated design and fabrication strategy for entirely soft, autonomous robots, Nature 536 (7617) (2016)

451.

[105] A.D.Marchese, C.D. Onal, D. Rus, Towards a self-contained soft robotic fish: on-board pressure

generation and embedded electro-permanent magnet valves, in: Experimental Robotics, Springer,

Heidelberg, 2013, pp. 41–54.

[106] A.D. Marchese, C.D. Onal, D. Rus, Autonomous soft robotic fish capable of escape maneuvers using

fluidic elastomer actuators, Soft Robot. 1 (1) (2014) 75–87.

[107] C.D. Onal, D. Rus, Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic

soft robot, Bioinspir. Biomim. 8 (2) 2013, 026003.

[108] M. Luo, M. Agheli, C.D. Onal, Theoretical modeling and experimental analysis of a pressureoperated

soft robotic snake, Soft Robot. 1 (2) (2014) 136–146.

[109] M. Luo, Y. Pan, E.H. Skorina,W. Tao, F. Chen, S. Ozel, C.D. Onal, Slithering towards autonomy: a

selfcontained soft robotic snake platform with integrated curvature sensing, Bioinspir. Biomimet. 10 (5)

2015, 055001.

[110] E.H. Skorina, M. Luo, S. Ozel, F. Chen, W. Tao, C.D. Onal, Feedforward augmented sliding mode

motion control of antagonistic soft pneumatic actuators, in: IEEE International Conference on Robotics

and Automation (ICRA), 2015, 2015, pp. 2544–2549.

[111] E.H. Skorina, W. Tao, F. Chen, M. Luo, C.D. Onal, Motion control of a soft-actuated modular

manipulator, in: IEEE International Conference on Robotics and Automation (ICRA), 2016, 2016, pp. 4997–

5002.

[112] S. Sridar, C.J. Majeika, P. Schaffer, M. Bowers, S. Ueda, A.J. Barth, J.L. Sorrells, J.T. Wu, T.R. Hunt, M.

Popovic, Hydro Muscle—a novel soft fluidic actuator, in: IEEE International Conference on Robotics and

Automation (ICRA), 2016, 2016, pp. 4014–4021.

Page 10: Bioinspired Roboticsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_17.pdf · project Advanced Step in Innovative MObility and was inducted into the Robot Hall of Fame in Pittsburgh

[113] A.D. Marchese, R. Tedrake, D. Rus, Dynamics and trajectory optimization for a soft spatial fluidic

elastomer manipulator, Int. J. Robot. Res. 35 (8) (2016) 1000–1019.

[114] A.D. Marchese, K. Komorowski, C.D. Onal, D. Rus, Design and control of a soft and continuously

deformable 2d robotic manipulation system, in: IEEE International Conference on Robotics and

Automation (ICRA), 2014, 2014, pp. 2189–2196.

[115] Roche, E.T., Horvath, M.A., Alazmani, A., Galloway, K.C., Vasilyev, N.V., Mooney, D.J., Pigula, F.A., &

Walsh, C.J. (2015). Design and fabrication of a soft robotic direct cardiac compression device. In ASME

2015 International Design Engineering Technical Conferences and Computers and Information in

Engineering Conference. American Society of Mechanical Engineers, pp. V05AT08A042–V05AT08A042.

[116] E.T. Roche, M.A. Horvath, I. Wamala, A. Alazmani, S.E. Song, W. Whyte, Z. Machaidze, C.J. Payne,

J.C. Weaver, G. Fishbein, J. Kuebler, Soft robotic sleeve supports heart function, Sci. Transl. Med. 9 (373)

(2017).

[117] P. Polygerinos, S. Lyne, Z. Wang, L.F. Nicolini, B. Mosadegh, G.M. Whitesides, C.J. Walsh, Towards a

soft pneumatic glove for hand rehabilitation, in: IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2013, 2013, pp. 1512–1517.

[118] P. Polygerinos, K.C. Galloway, E. Savage, M. Herman, K. O’Donnell, C.J. Walsh, Soft robotic glove for

hand rehabilitation and task specific training, in: IEEE International Conference on Robotics and

Automation (ICRA), 2015, 2015, pp. 2913–2919.

[119] E.W. Hawkes, L.H. Blumenschein, J.D. Greer, A.M. Okamura, A soft robot that navigates its

environment through growth, Sci. Robot. 2 (8) 2017, eaan3028.

[120] F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, C. Laschi, Dynamic model of a multibending soft robot

arm driven by cables, IEEE Trans. Robot. 30 (5) (2014) 1109–1122.

[121] M. Giorelli, F. Renda, G. Ferri, C. Laschi, A feed-forward neural network learning the inverse kinetics

of a soft cable-driven manipulator moving in three-dimensional space, in: IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2013, 2013, pp. 5033–5039.

[122] T. Deng, H. Wang, W. Chen, X. Wang, R. Pfeifer, Development of a new cable-driven soft robot for

cardiac ablation, in: IEEE International Conference on Robotics and Biomimetics (ROBIO), 2013, 2013, pp.

728–733.

[123] S. Seok, C.D. Onal, K.J. Cho, R.J. Wood, D. Rus, S. Kim, Meshworm: a peristaltic soft robot with

antagonistic nickel titanium coil actuators, IEEE/ASME Trans. Mechatron. 18 (5) (2013) 1485–1497.

[124] H.T. Lin, B.A. Trimmer, Caterpillars use the substrate as their external skeleton: a behavior

confirmation, Commun. Integr. Biol. 3 (5) (2010) 471–474.

[125] M. Cianchetti, M. Follador, B. Mazzolai, P. Dario, C. Laschi, Design and development of a soft robotic

octopus arm exploiting embodied intelligence, in: IEEE International Conference on Robotics and

Automation (ICRA), 2012, 2012, pp. 5271–5276.

[126] G.Y. Gu, J. Zhu, L.M. Zhu, X. Zhu, A survey on dielectric elastomer actuators for soft robots, Bioinspir.

Biomimet. 12 (1) 2017, 011003.

Page 11: Bioinspired Roboticsusers.wpi.edu/~mpopovic/pages/Biomechatronics_Chapter_17.pdf · project Advanced Step in Innovative MObility and was inducted into the Robot Hall of Fame in Pittsburgh

[127] Y. Tang, L. Qin, X. Li, C.M. Chew, J. Zhu, A frog-inspired swimming robot based on dielectric elastomer

actuators, in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, 2017.

[128] H. Godaba, J. Li, Y.Wang, J. Zhu, A soft jellyfish robot driven by a dielectric elastomer actuator, IEEE

Robot. Autom. Lett. 1 (2) (2016) 624–631.

[129] T. Li, G. Li, Y. Liang, T. Cheng, J. Dai, X. Yang, B. Liu, Z. Zeng, Z.Huang, Y. Luo, T. Xie, Fast-moving soft

electronic fish, Sci. Adv. 3 (4) 2017, e1602045.

[130] K. Jung, J.C. Koo, Y.K. Lee, H.R. Choi, Artificial annelid robot driven by soft actuators, Bioinspir.

Biomimet. 2 (2) (2007) S42–S49.

[131] L. Xu, H.Q. Chen, J. Zou,W.T. Dong, G.Y. Gu, L.M. Zhu, X.Y. Zhu, Bio-inspired annelid robot: a dielectric

elastomer actuated soft robot, Bioinspir. Biomimet. 12 (2) 2017, 025003.

[132] J. Cao,W. Liang, Q. Ren, et al.,Modelling and control of a novel dielectric elastomer based soft

crawling robot, in: IEEE International Conference on Robotics and Automation (ICRA), 2018, 2018.

[133] H.E. Holling, H.C. Boland, E. Russ, Investigation of arterial obstruction using a mercury-in-rubber

strain gauge, Am. Heart J. 62 (2) (1961) 194–205.

[134] Kramer, R.K., Majidi, C., Sahai, R., & Wood, R.J. (2011). Soft curvature sensors for joint angle

proprioception. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011 (pp.

1919–1926).

[135] S. Ozel, E.H. Skorina, M. Luo,W. Tao, F. Chen, Y. Pan, C.D. Onal, A composite soft bending actuation

module with integrated curvature sensing, in: IEEE International Conference on Robotics and Automation

(ICRA), 2016, 2016, pp. 4963–4968.

[136] Y.L. Park, K. Chau, R.J. Black, M.R. Cutkosky, Force sensing robot fingers using embedded fiber Bragg

grating sensors and shape deposition manufacturing, in: IEEE International Conference on Robotics and

Automation, 2007, 2007, pp. 1510–1516.

[137] J. Yi, X. Zhu, L. Shen, B. Sun, L. Jiang, An orthogonal curvature fiber bragg grating sensor array for

shape reconstruction, in: Life System Modeling and Intelligent Computing, Springer, Berlin, Heidelberg,

2010, pp. 25–31.

[138] M. Popovic, A. Englehart, H. Herr, Angular momentum primitives for human walking: biomechanics

and control, in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004).

Proceedings, vol. 2, IEEE, 2004, pp. 1685–1691.

[139] R. Alexander, The gaits of bipedal and quadrupedal animals, J. Robot. Res. 3 (2) (1983) 49–59.

[140] BeBionic3 Tech Manual. (2013). Retrieved October 11, 2016 from Steeper website:

http://bebionic.com/distributor/documents/bebionic3_Tech_Manual_web.pdf.

[141] A. Rahman, A. Al-Jumaily, Design and development of a bilateral therapeutic hand device for stroke

rehabilitation, Int. J. Adv. Robot. Syst. 10 (12) (2013).

[142] K. Jung, J.C. Koo, Y.K. Lee, and H.R. Choi. “Artificial annelid robot driven by soft actuators.” Bioinspir.

Biomimet., 2 (2), pp. S42–S49.