13
Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina Biochemistry Department Iowa State University

Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Embed Size (px)

Citation preview

Page 1: Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable

Energy Production

Andre Salazar

Olga A. Zabotina

Biochemistry Department

Iowa State University

Page 2: Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Amaranthus – Biomass Resource

• Amaranthus – Food Production ◦ Agricultural seed ◦ Environmentally tolerant and adaptable

• Amaranthus – Energy Production ◦ Plant cellulose and monosaccharides◦ Lignocellulosic ethanol

• Amaranthus – Potential Economic Impact ◦ Sustainable Supplement to grain production

Page 3: Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Research Objective

• Hypothesis ◦ Amaranthus is a viable biomass resource for lignocellulosic

ethanol production in comparison with plant resources under evaluation.

• Objectives ◦ Determine biochemical carbohydrate properties of Amaranthus

cell wall ◦ Compare Amaranthus to other plants proposed as biomass

resources in lignocellulosic ethanol production ◦ Improve Amaranthus biomass model with the inclusion of cell

wall biochemical properties

Page 4: Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Experimental Information

• Plants ◦ Amaranthus cruentus – DB98246 ◦ Amaranthus hypochondriacus – PI558499

• Plots ◦ Single row (each plant) – 20 ft long, 5 ft apart

• Biochemical Analysis ◦ Plant – Stem diameter and height, and mass ◦ Cell Wall – Cellulose, lignin, monosaccharides

• Data Statistical Analysis ◦ Mean Comparison – Anova ◦ Covariance Comparison – Correlation

Page 5: Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Field and Sample Data

0.0

50.0

100.0

150.0

200.0

Stem Diameter (4 wks) Stem Height (4 wks) Stem Diameter (8 wks) Stem Height (8 wks)

cm

A. cruentus (Field) A. cruentus (Sample)

A. hypochondriacus (Field) A. hypochondriacus (Sample)

Page 6: Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Plant Stem Properties

0.0

50.0

100.0

150.0

200.0

Stem Diameter (4 wks) Stem Diameter (8wks) Stem Height (4 wks) Stem Height (8 wks)

cm

A. cruentus A. hypochondriacus

Page 7: Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Plant Mass Results

0.0

200.0

400.0

600.0

800.0

Stem Mass (4 wks) Stem Mass (8wks) Leaf Mass (4 wks) Leaf Mass (8 wks)

gm

A. cruentus A. hypochondriacus

Page 8: Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Plant Dry Mass Results

0.00

5.00

10.00

15.00

20.00

Plant Dry Mass (4 wks) Plant Dry Mass (8 wks) Cell Wall Dry Mass (4 wks) Cell Wall Dry Mass (8 wks)

Per

cen

t T

ota

l Mas

s

A. cruentus A. hypochondriacus

Page 9: Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Cellulose and Lignin

0.00

10.00

20.00

30.00

40.00

50.00

A. cruentus A. hypochondriacus M. sinensis Switchgrass Maize Stover

Per

cen

t M

ass

/ mg

Dry

Cel

l Wal

l

Cellulose Lignin

Page 10: Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Percent Total Monosaccharide Molecular Mass

0.00

20.00

40.00

60.00

80.00

A. cruentus A. hypochondriacus M. sinensis Switchgrass Maize Stover

Per

cen

t / m

g D

ry C

ell W

all

Glucose Xylose Galactose

Page 11: Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Summary

• Amaranthus Plants ◦ Stem and Leaf measurements – No significant difference ◦ Plant dry and cell wall mass – No significant difference ◦ Cellulose and lignin – No significant difference ◦ Xylose – A. hypochondricus > A. cruentus

• Biomass Plant Comparison ◦ Cellulose – No significant difference ◦ Lignin – M. sinesis > switchgrass > Amaranthus ◦ Glucose – Maize > M. sinesis, switchgrass , Amaranthus ◦ Xylose – Switchgrass > M. sinesis, Maize > Amaranthus ◦ Galactose – Amaranthus > M. sinesis, Maize, switchgrass

• Correlation – Plant measurement to mass

Page 12: Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Conclusions

• Amaranthus Plants ◦ No significant difference ◦ Xylose content

• Biomass resource ◦ Amaranthus comparable to other resources

• Cellulose – Equivalent content • Lignin – Less content • Monosaccharide – Equivalent to Maize stover

Page 13: Biochemical Characterization of Amaranthus Cell Wall as a Lignocellulosic Biomass Resource in biorenewable Energy Production Andre Salazar Olga A. Zabotina

Additional Research

• Amaranthus◦ Analyze cell wall biochemical properties at 16 wks ◦ Evaluate results for correlations ◦ Evaluate data fit into biomass model