35
Aldo Auditore, Matteo Conforti, Costantino De Angelis Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia Binary plasmonic waveguide arrays. Modulational instability and gap solitons. Alejandro B. Aceves Southern Methodist University, Dallas Triantaphyllos R. Akylas Massachusetts Institute of Technology, Boston

Binary plasmonic waveguide arrays. Modulational instability ......Aldo Auditore, Matteo Conforti, Costantino De Angelis Dipartimento di Ingegneria dell’Informazione, Università

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • Aldo Auditore, Matteo Conforti,

    Costantino De Angelis Dipartimento di Ingegneria dell’Informazione,

    Università degli Studi di Brescia

    Binary plasmonic waveguide arrays.

    Modulational instability and gap solitons.

    Alejandro B. Aceves Southern Methodist University, Dallas

    Triantaphyllos R. Akylas Massachusetts Institute of Technology, Boston

  • 2

    Outline of the talk

    Introduction

    Linear Regime: tuning the coupling

    coefficient

    Nonlinear Regime: modulational instability

    and dark solitons

    Conclusions

  • 3

    Discrete optics in coupled waveguides offers a unique framework where to study discrete linear and nonlinear phenomena in both regular (uniform) and non regular (non-uniform) settings.

    Introduction

    C1 C1 C1

    C2 C2 C2 C2

    C1 C1 x

    z

    F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics” , Physics Report 463, 1-126 (2008).

    I.L. Garanovich, S. Longhi, A. A. Sukhorukov, and Y.S. Kivshar, “Light propagation and localization in modulated photonic lattices and waveguides” , Physics Report 518, 1-79 (2012).

  • 4

    CMT for directional couplers

    ),(),(),( zxzxzx ba ),(),(),( zxzxzx ab

    The coupler

    Waveguide a

    Waveguide b

    ),( zx

    z

    ),( zxa

    z

    ),( zxb

    z

    M. Skorobogatiy et al. Phys. Rev. E 68 065601 (2003) ; D. Michaelis et al. Phys. Rev. E 68 065601 (2003)

  • 5

    CMT from reciprocity theorem ),(),(),( , ),(),(),( zxzxzxzxzxzx abba

    11

    11

    EiH

    HiE

    a

    PiEiJJEiH

    HiE

    aa

    22222

    22

    ,

    PEiHEHE 11221

    ),( zx

    z

  • 6

    CMT from reciprocity theorem

    Field 1 is an ideal backward propagating mode of

    the unperturbed structure (guide a):

    PEiHEHE 11221

    zizxhzxH

    zizxezxE

    aa

    aa

    exp),(),(

    exp),(),(

    *

    1

    *

    1

    Field 2 is a z-dependent superposition of the modes of waveguide a and b.

    ),()(),()(),,(

    ),()(),()(),,(

    2

    2

    zxhBzxhAzxH

    zxeBzxeAzxE

    ba

    ba

    Field 2. Write the transverse field as:

    Field 2.

    From Maxwell equations it follows: ),()(),()(),,(

    ),()(),()(),,(

    2

    2

    zxhBzxhAzxH

    zxeBzxeAzxE

    bzazz

    bzb

    aza

    z

  • 7

    CMT from reciprocity theorem

    PEiHEHE 11221

    0

    0

    zCAdz

    zdBi

    zCBdz

    zdAi

    zL

    bzazb

    baa

    za

    eeeedzdxLI

    C0

    **

    2

    C

    011 nnn EEC

    dz

    dEi

    UNIFORM WAVEGUIDE ARRAY

  • 8

    Sign of the coupling coefficient For conventional couplers based on TIR, the structure is z

    independent:

    * xexexxdxC byaya

    It is real and in single mode

    operation can not change sign

    Always positive

    ** xexexexexxdxC bzazb

    bxaxa

    TE

    TM

  • 9

    Sign of the coupling coefficient For z-independent plasmonic couplers:

    ** xexexexexxdxC bzazb

    bxaxa

    Can be positive or negative Can be positive or negative

    TM

  • 10

    Sign of the coupling coefficient Transverse magnetic (TM) surface plasmons in a single graphene layer

    ))0((2)3()1(

    20

    22

    20

    10

    22

    10

    xEfi

    z

    r

    r

    r

    r

    satx

    x

    xxf

    1

    Auditore A. et al. Optics Letters 38, 631-633 (2013).

    Gorbach A. V., Physical Review A 87, 013830 (2013).

    10 r 20 r

    Graphene Layer (tunable EM parameters)

  • 11

    Sign of the coupling coefficient Coupled TM surface plasmons in graphene double layer

    Even Mode.

    Out of phase superposition of

    the isolated graphene

    plasmons

    Odd Mode.

    In phase superposition of the

    isolated graphene plasmons

    10 r20 r

    Graphene Layers

    30 r

    B. Wang, Appl. Phys. Lett. 100, 131111 (2012).

  • 12

    Sign of the coupling coefficient Coupled TM surface plasmons in graphene double layer

    even

    odd

    Even Mode

    Odd mode

    02

    evenoddC

  • 13

    Tuning of the coupling coefficient

    Auditore A. et al., “Tuning of surface

    plasmon polaritons beat length in graphene

    directional couplers” Optics Letters in press.

  • 14

    Plasmonic arrays: diffraction management

    C1 C1 C1

    C2 C2 C2

    x

    z

    m

    C1>0

    C2

  • 15

    Nonlinear regime: introduction

    Waveguides based on plasmonic confinement offer a unique setting where to exploit positive and negative coupling regimes

    Binary arrays offer a framework where to exploit a two–band structure in the linear and nonlinear regime (R. Morandotti et al, Opt. Lett. 29, 2890 (2004))

    N.K. Efremidis et al., Phys. Rev. A 81, 053817 (2010)

    M. Conforti, C. De Angelis, T.R. Akylas, Phys. Rev. A 83, 043822 (2011)

    M. Conforti, C. De Angelis, T. R. Akylas, A. B. Aceves, Phys. Rev. A 85, 063836 (2012).

    A. Auditore, M. Conforti, C. De Angelis, A. B. Aceves, Opt. Comm. 297, 125 (2013).

    C2

    C1 C1

    C2

    C1 C1

    C2

    x

    z

    C1>0

    C2

  • 16

    Coupled mode equations

    0|| 21111 nnnnnnnn EEEcEc

    dz

    dEi

    0||

    0||

    2

    11

    2

    11

    nnnnn

    nnnnn

    BBAcAdz

    dBi

    AABBcdz

    dAi

    1

    ,,,12

    ,,,2

    2

    1121

    2111

    c

    ccccBEnm

    ccccAEnm

    mmmnm

    mmmnm

    Even

    Odd

    Binary Array

    Nonlinear regime: introduction

    K. Hizanidis, Y. Kominis, N. Efremidis,

    “ Interlaced linear-nonlinear optical waveguide

    arrays” , Optics Express 16, 18296 (2008).

  • 17

    xz

    zxnzxn

    kcck

    zknkiBBzknkiAA

    cos21

    )](exp[)],(exp[

    1

    2

    1

    c1=-1+0.25

    Gap solitons

    Nonlinear regime: discrete dispersion relation

  • 18

    Derive from the discrete system a continuous one by first order expansion around kx=0

    c1=-1+ε

    Nonlinear regime: long wavelength limit

    0||

    0||

    2

    2

    wwudx

    du

    dz

    dwi

    uuwdx

    dw

    dz

    dui

  • 19

    22

    )](exp[),()],(exp[),(

    xz

    zxzx

    kk

    zkxkiBzxwzkxkiAzxu

    ε =0.25

    Nonlinear regime: continuous system

  • 20

    A.B. Aceves and S. Wabnitz, Phys. Lett. A 141, 37 (1989). C. M. de Sterke et al., Phys. Rev. E 54, 1969 (1996).

    C. Conti and S. Trillo, Phys. Rev. E 64, 036617 (2001). H. Alatas et al., Phys. Rev. E 73, 066606 (2006).

    Nonlinear regime: solitons

    0||

    0||

    2

    2

    wwudx

    du

    dz

    dwi

    uuwdx

    dw

    dz

    dui

  • 21

    One dimensional Hamiltonian system, integrable by quadrature

    With: g1,2(ξ ) = f (ξ ) exp[iθ1,2(ξ )] , P=|g1|

    2-|g2|2, η=f2

    2 , μ=θ1 – θ2

    s=γ

    d=γ

    Nonlinear regime: Hamiltonian structure

  • 22

    Nonlinear regime

    Bright solitons

    Bright solitary wave solutions correspond to homoclinic trajectories emanating from unstable fixed points (η0, μ0) = (0, ±arccos(cos(Q)/ε) (H=0)

  • 23

    Nonlinear regime

    Dark solitons

  • 24

    Nonlinear regime: dark solitons

    Solitary wave solutions correspond to trajectories emanating from

    unstable fixed points with μ0 = ± p/2

    P1

    P2

  • 25

    Nonlinear regime: dark solitons

    P1

  • 26

    Nonlinear regime: modulational instability.

    0||

    0||

    2

    2

    wwudx

    du

    dz

    dwi

    uuwdx

    dw

    dz

    dui

    For =0 we have no band gap.

    M. Conforti, C. De Angelis, T. R. Akylas, A. B. Aceves, Phys. Rev. A 85, 063836 (2012).

    A. Auditore, M. Conforti, C. De Angelis, A. B. Aceves, Opt. Comm. 297, 125 (2013).

  • 27

    Nonlinear regime: modulational instability.

    Plane wave solutions: dispersion relation =0

  • 28

    Nonlinear regime: modulational instability

    kx=1

  • 29

    Nonlinear regime: modulational instability.

    kx=1

  • 30

    Nonlinear regime: modulational instability. Stability of solitons in the discrete system: can discreteness

    change the stability of these solitons?

    We thus consider the discrete problem:

    0||

    0||

    2

    1

    2

    1

    nnnnnn

    nnnnnn

    BBAAAdz

    dBi

    AABBBdz

    dAi

    =0

  • 31

    Nonlinear regime: modulational instability. CW solutions.

    =1 =0.

    5 =0 I0=1

    Continuous problem

    Discrete problem

    202

    0000 , exp),(,exp),( BAInikzikBznBnikzikAznA xzxz

  • 32

    Nonlinear regime: modulational instability.

    =1 =0.

    5 =0 I0=1

    Stability of CW solutions. On the upper branch, solutions become stable for high enough intensities

    For example for kx=0, =1, =0, =0 we easily obtain on the upper

    branch the following expression for the instability gain:

    cos88cos44

    2

    1Im 20

    2

    0 IIg

    Which is always zero (i.e. CW solutions are stable) for I0 bigger than 4.

  • 33

    Nonlinear regime: discrete solitons.

    zinDznBzinCznA exp),(,exp),(

    2

  • 34

    Nonlinear regime: discrete solitons.

    zinDznBzinCznA exp),(,exp),(

    5

  • 35

    Light propagation in waveguide arrays with

    alternating positive/negative couplings and

    binary Kerr nonlinearity:

    o Linear regime;

    o Nonlinear regime.

    Conclusions