19
BiCMOS055 Technology Offer STMicroelectronics Technology & Design Platforms, Crolles February 2016

BiCMOS055 Technology Offer - mycmp.fr · This option requires 2 masks in addition ... Layout Verification : DRC/LVS DFM YA/YE/YS Calibre pvs Mentor Cadence Parasitic Extraction :

  • Upload
    trannhi

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

BiCMOS055 Technology Offer

STMicroelectronics

Technology & Design Platforms, Crolles

February 2016

Best-in-class BiCMOS

• BiCMOS055 (B55)* is:

• The latest BiCMOS technology developed

in STMicroelectronics to address

demanding Optical, Wireless and High-

Performance Analog Applications

• The only high-speed BiCMOS technology in

55-nm CMOS fabricated in 300-mm

manufacturing facility

• Pre-production qualified

February 2016BiCMOS055

0

200

400

600

800

1000

1200

0

100

200

300

400

500

600

300 mm200 mm

55 nm90 nm

HS

NP

N p

ea

k f

T a

nd

fM

AX(G

Hz)

fT

fMAX

130 nm

BiC

MO

S9

MW

(

ST

)

INT

EL

BIC

MO

S9

HP

(

IBM

)

SG

13G

2 (

IHP

)

BiC

MO

S0

55

(S

T)

Sta

nd

ard

ce

lls

de

ns

ity

(K

ga

te/m

m²)

Wafer size

CMOS node

HS cells: ST data

HD cells: ST data

BIC

MO

S8

XP

(

IBM

)

IBM data

(*) P. Chevalier et al, “55 nm Triple Gate Oxide 9 Metal Layers SiGe BiCMOS Technology Featuring 320 GHz fT / 370 GHz fMAX HBT and High-Q Millimeter-Wave Passives”

Proceedings of the 2014 International Electron Devices Meeting (IEDM), San Francisco, CA (USA), 15-17 December 2014, pp. 77–79

15 years BiCMOS at ST• Continuous improvement of SiGe HBT performance with CMOS scaling

• fT and fMAX increased by a factor of ~6 from 0.35µm to 55nm CMOS nodes

BiCMOS055 February 2016

0.1 1 10 1000

100

200

300

400

BiCMOS6G

BiCMOS7

BiCMOS7RF

BiCMOS9

BiCMOS9MW

BiCMOS055

f T (

GH

z)

Collector current density JC (mA/µm²)

0.1 1 10 1000

100

200

300

400

BiCMOS6G

BiCMOS7

BiCMOS7RF

BiCMOS9

BiCMOS9MW

BiCMOS055

f MA

X (

GH

z)

Collector current density JC (mA/µm²)

Technology offer & devices targets

BiCMOS055 February 2016

Overview

BiCMOS055 February 2016

55nm triple-gate oxide CMOS baseline

LP & GP HVT, SVT & LVT* CMOS w/ 2.5V IOs + LP SVT & HVT SRAM*

High-Performance Analog GO1 LP LVT CMOS*

Natural bipolar transistors, resistors & capacitors + 6 k/sq. HIPO resistor*

55-nm SiGe BiCMOS technology = BiCMOS055

Core process: 50 masks / Options: Up to +11 masks (w/o bumping)

SiGe NPN HBTs

(High-Speed

Medium-Voltage

& High-Voltage*)

AMOS varactors

Diode varactors

Thick copper BEOL

5 fF/µm² MIM*

Thin Film Resistor*

Transmission lines

Inductors

+ + +

(*) Option

Technology cross-sections

BiCMOS055 February 2016

BEOL schematic cross-section

• 9 metal layers (including Aluminum capping) BEOL obtained by the

introduction of a thick Via/Line copper module :• 3µm thick M8U and 1.5µm thick V7U

• MIM integrated in V5Z

• TFR integrated in V6Z

• All the 55-nm CMOS libraries

are therefore compatible

with BiCMOS055

BiCMOS055 February 2016

3.1µm

CMOS0557M4X2Z0U

polySi

M6Z

M5X

M1

Via4XVia5Z

M7Z

Via6Z

AP

polySi

M6Z

M5X

M1

Via4X

Via5Z

M7Z

Via6Z

5.5µm

M8U

AP

CB

Via7U

BiCMOS0558M4X2Z1U

MIM

TFR

M2 to Last Metal Layer

BiCMOS055 devices list (DK2.3)• Core

• LP/GP HVT & SVT CMOS w/ 2.5V GO2

(incl. RF SVT for LP, GP & GO2)

• High-Speed & Medium-Voltage SiGe HBTs

• Natural devices

• NPN & PNP bipolar transistors

• Resistors (active, poly & metal – incl. RF resistors)

• Diodes (N+/Pwell, P+/Nwell, Deep Nwell/Psub,…)

• DC capacitors (poly, plate)

• Varactors

• Single & Diff. GO1/GO2 P+ poly/Nwell varactors

• P+/Nwell diode varactor

• RF MOM

• MMW, HQ & LOHQ inductors

• µstrip transmission line

• Options• LP & GP CMOS LVT

(incl. RF models for LP & GP)

• SRAM SVT + HVT

• High-Performance Analog (HPA) CMOS

(incl. RF models)

• High-Voltage SiGe HBTs

• 6k/sq. HIPO resistor

(incl. RF model)

• 5fF/µm² MIM capacitor

(incl. RF model)

• Thin Film Resistor

• Flip-Chip bumping

BiCMOS055 February 2016

LP & GP CMOS

• Low Power (LP) and General Purpose (GP) CMOS

BiCMOS055 February 2016

Devices targets

DeviceLow Power MOS (TOX=18.5Å) General Purpose MOS (TOX=13Å)

ION (µA/µm) IOFF (nA/µm) ION (µA/µm) IOFF (nA/µm)

Low VT NMOS 740 5 970 382

Low VT PMOS 390 2.4 460 204

Standard VT NMOS 610 0.35 830 51

Standard VT PMOS 305 0.1 395 36

High VT NMOS 430 0.015 669 5

High VT PMOS 210 0.010 300 4

Ldrawn=0.06µm, Wdrawn= 1.0 µm, T=25°C

SiGe HBTs

• 3 collector flavors sharing the same E/B system

• Scalable emitter widths and lengths

BiCMOS055 February 2016

CBEBC: Wdrawn= 0.2 µm, Ldrawn=5.56µm, T=25°C

DevicefT

(GHz)

fMAX

(GHz)

BVCBO

(V)

BVCEO

(V)

HS NPN SiGe HBT

npnvhs, npnvhs_t

320

VCB=0.5V

VBE=0.90V

370

VCB=0.5V

VBE=0.90V

5.2

ICB=10µA

1.5

IB=0µA

MV NPN SiGe HBT

npnvmv, npnvmv_t

180

VCB=1.0V

VBE=0.87V

380

VCB=1.0V

VBE=0.87V

7.2

ICB=10µA

1.8

IB=0µA

HV NPN SiGe HBT

npnvhv, npnvhv_t

70

VCB=2.0V

VBE=0.80V

250

VCB=2.0V

VBE=0.80V

13.5

ICB=10µA

3.2

IB=0µA

Devices targets

E

Deep Trench Isolation (DTI)

B

As in-situ doped

EmitterB in-situ doped

SiGe:C Base

Shallow Trench Isolation (STI)

Localized Collector

Pedestal

oxide

Buried Layer

Epitaxial Collector

Collector Sinker

CB

B doped

Polybase

C CC C C

High-speed SiGe HBT schematic cross-section

Double Polysilicon Self-Aligned (DPSA) architecture

featuring a Selective Epitaxial Growth (SEG) of the base

Varactors & capacitors

• P+ Poly/NWell GO1 & GO2 benefit from short gate lengths

• RF MOM

• C0~0.9 fF/µm² (M1-M2) to ~3.0 fFµm² (M1-M5) / CV1 < 1 ppm/V

• MIM

• C0=5.0 fF/µm² / CV1 < 150 ppm/V / CV2 < 100 ppm/V²

BiCMOS055 February 2016

Device

Oxide

type

Capacitance

range

(Cmin / max)

Typical

tuning ratio

@ 25 GHz

@ C =100 fF

Max Q

@ C =100 fF

@ 25 GHz

@ V =1,2 V

Freq_res

@ C =100 fF

@ 1,2 V (GO1)

@ 2,5 V (GO2)

Varactor P+/NWell GO1 SE

cpo12nw_varGO1

1,2 V

5 fF / 1 pF 3

(max 5)

20 > 110 GHz

Varactor P+/NWell GO2 SE

cpo25nw_varGO2

2,5 V

5 fF / 1 pF 3

(max 5)

30 > 110 GHz

Devices targets

Inductors & transmission lines

• Inductors & TL benefit from the 8ML BEOL with thick V7/M8

BiCMOS055 February 2016

Devices targets

Device Stack L Qmax

Self

resonance

frequency

MMW Inductor

ind_mmw_8m4x0y2z1u

Coil M8U

Upath M7Z

Gnd ring M1

From 65pH

to 1.6nH

> 10 From 27GHz

to 300GHz

Device Stack Zc IL

µ-strip TL

microstrip_8m4x0y2z1u

Line in M8U

Gnd in M1 or M4

From 35

to 70

0.5dB/mm

@60GHz

4.25-turn inductor 3D view

1-turn inductor 3D view

M8 line

M1 gnd

Lateral wall

3D schematic view

Inductors geometry:

• Number of coil turns (n): 1 to 4.25

• Internal coil diameter (d): 10 to 50 µm

• Coil width (w): 0.6 to 4 µm

Masks count• All options are compatible with each other*

BiCMOS055 February 2016

Process options Masks count

Core process 50

SRAM 3

Triple-VT Low-VT (LVT, SVT and HVT transistors) 2

High-Performance Analog (HPA) CMOS 2/4*

HIPO (6k/sq poly resistor) 1

HV (High-Voltage) NPN 0

MIM (5fF/µm²) 2

TFR (Thin Film Resistor) 1

Flip-Chip 1(*) HPA CMOS are LVT MOS devices. This option requires 2 masks in addition

to LVT option, then 4 masks if standard LVT MOS devices are not used

Design kit & design platform

BiCMOS055 February 2016

Design kit

BiCMOS055 February 2016

Front-end/Schematic capture EDA tools EDA Vendors

Schematic Capture (Composer) IC Cadence

Simulation model libraries Eldo Mentor

Spectre Cadence

Hspice Synopsys

RF Simulation ADS (RFDE) Agilenteesof

GoldenGate Agilenteesof

ADS environment ADSKit ST

Layout Entry & Finishing EDA tools EDA Vendors

Layout Placement Virtuoso Layout Editor Cadence

Layout Verification : DRC/LVS

DFM YA/YE/YS

Calibre

pvs

Mentor

Cadence

Parasitic Extraction : interconnect RC StarRCXT

ext

Synopsys

Cadence

Post Layout Simulation flow PLSKit

Totem

ST

Apache

Design platform content

BiCMOS055 February 2016

Design platform flows

BiCMOS055 February 2016

Design platform version

BiCMOS055 February 2016

Design flow

BiCMOS055 February 2016