20
Bibliography *Starred items are from the unpublished Bibliography on Quantum Spacetime prepared by Marc Kolodner, Georgia Institute of Technology, and used with his kind permission. * Ahmavaara, Y. (1965). The structure of space and the formalism of relativistic quantum theory. I. Journal of Mathematical Physics 6, 87-93. * Ahmavaara, Y. (1965). The structure of space and the formalism of relativistic quantum theory. II. Journal of Mathematical Physics 6,220--227. Alexandrov, AD. (1956). The space-time of the theory of relativity. Helvetica Physica Acta Supplement 4 (Jubilee of Relativity Theory), 44. * Alvarez, E., J. Cespedes, & E. Verdaguer. (1992). Transition metric spaces as a model for pregeometry. Physical Review D45, 2033-2043. * Ambarzumian, V. & D. Iwanenko. (1930). Zur Frage nach Vermeidung der unendlichen Selbstruckwirkung des Elektrons. Zeits. f Physik 64, 563-567. Anderson, J.L. (1967). Principles of Relativity Physics. Academic Press, New York. * Anderson, J.L. & D. Finkelstein (1971). Cosmological constant and fundamental length, American Journal of Physics 38,901-904. * Antonsen, F. (1992). Pregeometry. Copenhagen: University of Copenhagen, cando scient thesis. Artin, E. (1957). Geometric Algebra. Interscience Publishers, New York. Ashtekar, A (1991).Lectures on Non-Perturbative Canonical Gravity. World Scientific, Singapore. * Bacry, H. (1988). The notion of space in quantum physics. Lecture Notes in Physics 308. * Bacry, H. (1989). The notions of localizability and space: From Eugene Wigner to Alain Connes. Nuclear Phys. B. (Proc. Suppl.) 6, 222-230. Baer, Reinhold (1952). Linear Algebra and Projective Geometry. Academic Press, New York. * Banai, M. (1981). On the quantization of spacetime. In L. Castell, M. Dreischner, & C.F. v. Weizsiicker (eds.), Quantum Theory and the Structures of Time and Space, IV. Munich: Hanser, 226-235. * Banai, M. (1984). Quantum relativity theory and quantum space-time, International Jour- nal of Theoretical Physics 23, 1043-1063. * Bandyopadhyay, P. & S. Roy. (1976). Some remarks on nonlocal field theory and space- time quantization. International Journal of Theoretical Physics 15, 323-331. Bartholinus, Erasmus (1669). Experimenta crystalli islandici disdiaclastici quibus mira & in solita refractio detegitur. Hafniae (Copenhagen), Sumptibus Daniellis Paulli Reg. Bibl. Becchi, c., Rou!'!t, A, & Stora, R. (1975). Renormalization of the abelian Higgs-Kibble model. Communications in Mathematical Physics 42, 127. Becchi, C., Rouet, A, & Stora, R. (1976). Renormalization of gauge theories. Annals of Physics 98, 287. Berezin, F.A (1966). The Method of Second Quantization. Academic Press, New York.

Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

  • Upload
    vokiet

  • View
    214

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

Bibliography

*Starred items are from the unpublished Bibliography on Quantum Spacetime prepared by Marc Kolodner, Georgia Institute of Technology, and used with his kind permission.

* Ahmavaara, Y. (1965). The structure of space and the formalism of relativistic quantum theory. I. Journal of Mathematical Physics 6, 87-93.

* Ahmavaara, Y. (1965). The structure of space and the formalism of relativistic quantum theory. II. Journal of Mathematical Physics 6,220--227.

Alexandrov, AD. (1956). The space-time of the theory of relativity. Helvetica Physica Acta Supplement 4 (Jubilee of Relativity Theory), 44.

* Alvarez, E., J. Cespedes, & E. Verdaguer. (1992). Transition metric spaces as a model for pregeometry. Physical Review D45, 2033-2043.

* Ambarzumian, V. & D. Iwanenko. (1930). Zur Frage nach Vermeidung der unendlichen Selbstruckwirkung des Elektrons. Zeits. f Physik 64, 563-567.

Anderson, J.L. (1967). Principles of Relativity Physics. Academic Press, New York. * Anderson, J.L. & D. Finkelstein (1971). Cosmological constant and fundamental length,

American Journal of Physics 38,901-904. * Antonsen, F. (1992). Pregeometry. Copenhagen: University of Copenhagen, cando scient

thesis. Artin, E. (1957). Geometric Algebra. Interscience Publishers, New York. Ashtekar, A (1991).Lectures on Non-Perturbative Canonical Gravity. World Scientific,

Singapore. * Bacry, H. (1988). The notion of space in quantum physics. Lecture Notes in Physics 308. * Bacry, H. (1989). The notions of localizability and space: From Eugene Wigner to Alain

Connes. Nuclear Phys. B. (Proc. Suppl.) 6, 222-230. Baer, Reinhold (1952). Linear Algebra and Projective Geometry. Academic Press, New

York. * Banai, M. (1981). On the quantization of spacetime. In L. Castell, M. Dreischner, &

C.F. v. Weizsiicker (eds.), Quantum Theory and the Structures of Time and Space, IV. Munich: Hanser, 226-235.

* Banai, M. (1984). Quantum relativity theory and quantum space-time, International Jour­nal of Theoretical Physics 23, 1043-1063.

* Bandyopadhyay, P. & S. Roy. (1976). Some remarks on nonlocal field theory and space­time quantization. International Journal of Theoretical Physics 15, 323-331.

Bartholinus, Erasmus (1669). Experimenta crystalli islandici disdiaclastici quibus mira & in solita refractio detegitur. Hafniae (Copenhagen), Sumptibus Daniellis Paulli Reg. Bibl.

Becchi, c., Rou!'!t, A, & Stora, R. (1975). Renormalization of the abelian Higgs-Kibble model. Communications in Mathematical Physics 42, 127.

Becchi, C., Rouet, A, & Stora, R. (1976). Renormalization of gauge theories. Annals of Physics 98, 287.

Berezin, F.A (1966). The Method of Second Quantization. Academic Press, New York.

Page 2: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

558 Bibliography

Bergmann, P.G. (1957). Two component spinors in general relativity. Physical Review 107, 624-629.

Birkhoff, G. & Von Neumann, I. (1936). The logic of quantum mechanics. Annals of Mathematics 37, 823.

Bleuler, K. (1950). Helvetica Physica Acta 23, 567. * Blokhintsev, D.1. (1978). Quarks in quantized space. Teor. and Mat. Fiz. 37, 147-153.

Trans in: Theor. and Math. Phys. 37, 933-937. . * Bohm, D. (1962). A proposed topological formulation of the quantum theory, in I. I.

Good (ed.), The Scientist Speculates. New York: Basic Books, 302-314. Bohm, D., B.I. Hiley, & A.E.G. Stuart. (1970). On a new mode of description in physics.

International Journal of Theoretical Physics 3, 171-183. Bohr, N. (1934). Atomic Theory and the Description of Nature. Cambridge University

Press, Cambridge * Bombelli, L., R.K. Koul, I. Lee and R.D. Sorkin (1986). A Quantum Source of Entropy

for Black Holes. Physical Review D34, 373-383. * Bombelli, L., I. Lee, D. Meyer and R.D. Sorkin (1987). Spacetime as a causal set. Phys.

Rev. Lett. 59, 521. Boole, G. (1847). The mathematical analysis of logic; being an essay towards a calculus

of deductive reasoning. Cambridge. Reprinted, Philosophical Library, New York, 1948. Boole, G. (1854). An investigation of the laws of thought, on which are founded the

mathematical theories of logic and probabilities. Walton & Maberly, London. * Bopp, F. (1967). Dirac equation in the lattice space as an example of a theory developing

from elementary processes (trans.). z. Physik 200, 117-132. * Bopp, F. (1967). Ground state of urfermions in lattice space (trans.), z. Physik 204,

311-338. * Bopp, F. (1967). Interaction operation in the lattice space (trans.), z. Physik 200,142-157. * Bopp, F. (1967). Quasirelativistische Urfermionen. Z. Physik 200, 133-141. * Bopp, F. (1967). Urfermionen im kubischen Gitter mit acht Punktlagen, Z. Physik 205,

103-107. Bradley, R. & Swartz, N. (1987). Possible Worlds, Hackett Publ. Co., Indianapolis. Brink, L. & I.H. Schwarz. (1981). Quantum superspace. Phys. Lett. 100B, 310-312. Brouwer, Luitzen (1907) Over de Grondslagen der Wiskunde. Thesis, Municipal Univer-

sity of Amsterdam. Amsterdam and Leipzig Bourbaki, N. (1959). Elements de mathematique I, Les structure fondamentales de

I 'analyse, livre II, Algebra. P. 70. * Caldirola, P. (1976). On the introduction of a fundamental interval of time in quantum

mechanics. Lett. Nuovo Cimento 16, 151-155. * Capek, Milic. (1961). The Philosophical Impact of Contemporary Physics. New York:

Van Nostrand. Carmeli, M. (1982). Quantization of the gravitational field: the presentation of gravity

as the hilbert space of the quantized system, in Proceedings of the Second Marcel Grossman Meeting on General Relativity 1, 113-119.

* Castell, L., M. Dreischner, & C.F. v. Weizsacker (eds.). (1975-1981) Quantum Theory and the Structures of Time and Space. Vol. I-IV. Munich: Hanser

* Castell, L., M. & C.F. v. Weizsacker (eds.). (1984, 1986) Quantum Theory and the Structures of Time and Space. Vol. V, VI. Munich: Hanser

* Charlesby, A. (1977). A form of quantized space-time. Radiation Physics and Chemistry 10,71-72.

* Chew, G.F. & H.P. Stapp. (1987). 3-space from quantum mechanics. Preprint, Lawrence Berkeley Laboratory (LBL-23595).

* Cicogna, G. (1966). Modified space-time derived from non-euclidean momentum space. Nuovo Cimento 42A, 656-671.

Page 3: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

Bibliography 559

* Coish, H.R. (1959). Elementary particles in a finite world geometry, Physical Review 114, 383-388.

* Cole, E.A.B. (1970). Transition from a continuous to a discrete space- time scheme. Nuovo Cimento 66 A, 645-656.

* Cole, E.A.B. (1971). Cellular space-time and quantum field theory, Nuovo Cimento 1 A, 120-132.

ColI, B. & Morales, J.A. (1992). 199 causal classes of space-time frames. International Journal of Theoretical Physics 31, 1045-1062.

* Connes, A. (1985). Non-commutative differential geometry. Publ. Math. IHES 62, 257-360.

* Connes, A. (1988). The action functional in non-commutative geometry, Commun. Math. Phys. 114, 673-683.

* Connes, A. (1990). Essay on physics and non-commutative geometry, in D. G. Quillen, G. B. Segal, & T. Tsous (eds.), The Interface of Mathematics and Particle Physics. Oxford: Clarendon Press, 9-48.

* Connes, A. and M. Rieffel. (1987). Yang-Mills for non-commutative two tori. Contemp. Math. 62, 237-266.

* Coxeter, H.S.M. & G.J. Whitrow. (1950). World structure and non-euclidean honeycombs. Proceedings of the Royal Society A201, 417-437.

* Dadic, I. & K. Pisk. (1979). Dynamics of discrete-space structure, International Journal of Theoretical Physics 18, 345-358.

* Dantzig, T. (1954). Number, The Language of Science. New York: Macmillian. * Darling, B. T. (1950). The irreducible volume character of events: a theory of the ele­

mentary particles and of fundamental length. Physical Review 80, 460-466. * Das, A. (1960). Cellular space-time and quantum field theory. Nuovo Cimento 18,482-

504. * Das, A. (1966). The quantized complex space-time and quantum theory of free fields. II.

Journal of Mathematical Physics. 7, 52-60. Davis, M. (1977). A relativity principle in quantum mechanics. International Journal of

Theoretical Physics 17, 867-874. * DeWitt, B.S. (1992). Supermanifolds. Second edition. Cambridge: Cambridge University.

Dirac, P.A.M. (1930-67). The Principles of Quantum Mechanics. Oxford University Press. First edition 1930; revised fourth edition 1967.

Dirac, P.A.M. (1942) The physical interpretation of quantum mechanics. Bakerian Lec­ture, June 19, 1941. Proceedings of the Royal Society of London A 180, 1-40 (1942)

Dirac, P.A.M. (1943). Communications of the Dublin Institute for Advanced Studies AI. Doebner, H.D & Hennig, J.-D. (eds.) (1990). Quantum Groups. Lecture Notes in Physics

370. Berlin: Springer. * Drieschner, M. (1975). Lattice theory, groups and space, in L. Castell, M. Drieschner, &

C.F. v. Weizsacker (1975) Drinfeld, V.G. (1986). Proceedings of the International Congress of Mathematicians,

Berkeley. Page 798. * Duff, M.J. & C.J. Isham. (1982). Quantum Structure of Time and Space. Cambridge:

Cambridge University Press. Ehlers, J. (1961). Contributions to the Relativistic Mechanics of Continuous Media. Pro­

ceedings of the Mathematical-Natural Scence Section of the Mainz Academy of Science and Literature 11, 792-837 (1961). English translation, General Relativity and Gravi­tation 25,1225-1266 (1993).

* Eilenberg, S. (1974). Automata, Languages and Machines. Vol. 1,2. New York: Academic Press.

* Einstein, A. (1936). Physics and reality. Journal of the Franklin Institute 221,313-347. Everett, H. (1957). 'Relative state' formulation of quantum mechanics. Physical Review

47, 777-800. Faddeev, L.D., Reshetikhin, N. Yu. & Takhtajan, L.A. (1987). Algebraic Analysis 1, 178.

Page 4: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

560 Bibliography

Faddeev, L.D. & Takhtajan, L.A. Hamiltonian Methods in the Theory of Solitons. Berlin: Springer 1987. Translation of Faddeev, L.D. & Takhtajan, L.A. Gamiltonov podkhov v teorii solitonov. Moscow: Nauka, 1986.

* Feynman, R.P. & A.R. Hibbs. (1965). Quantum Mechanics Via Path Integrals. New York: McGraw-Hill, Chap. 2.

* Feynman, R.P. (1972). The development of the space-time view of quantum electro­dynamics, in Nobelstiftelse (ed.), Nobel Lectures - Physics - 1963-1970. Holland: Elsevier, 168-169.

* Feynman, R.P. & Hibbs, A.R. (1965). Quantum Mechanics Via Path Integrals. McGraw­Hill, New York, Chap. 2.

Finkelstein, D. (1968). Matter, space, and logic, in R.S. Cohen & M.W. Wartofsky (eds.), Boston Studies in the Philosophy of Science, V. Dordrecht, Holland: Reidel, 199-215.

* Finkelstein, D. (1969). Space-time structure in high energy interactions, in B. Kursunoglu (ed.), Fundamental Interactions at High Energy. New York: Gordon & Breach, 338.

* Finkelstein, D. (1969). Space-time code. Physical Review 184, 1261-1271. * Finkelstein, D. (1972). Space-time code II. Physical Review D 5 , 320-328. * Finkelstein, D. (1972). Space-time code III. Phys. Rev. D5, 2922-2931. * Finkelstein, D. (1974). Space-time code IV. Physical Review D9, 2219-2231. * Finkelstein, D. (1974). Quantum physics and process metaphysics, in C. Enz & J. Mehra

(eds.), Physical Reality and Mathematical Description. Dordrecht, Holland: Reidel, 91-99.

* Finkelstein, D. (1976). Classical and quantum probability and set theory, in E. Harper & c. A. Hooker (eds.), Foundations of Probability Theory, Statistical Inference and Statistical Theories of Science, lll. Dordrecht, Holland: Reidel, 11-19.

* Finkelstein, D. (1977). The delinearization of physics. In V. Karimiiki (ed.), Proceedings of the Symposium on the Foundations of Modem Physics, Loma-Koli, Finland, August 1977. Joensuu: University of Joensuu Press, 169-192.

* Finkelstein, D. (1977). The Leibniz project. Journal of Philosophical Logic 6, 425-539. * Finkelstein, D. ( 1978). Beneath time: explorations in quantum-topology, in J.T. Fraser,

N. Lawrence & D. Park (eds.), The Study of Time, lll. Berlin: Springer, 94-112. * Finkelstein, D. (1979). Quark confinement and time-space structure, in M. Levy, J.L.

Basdevant, D. Speiser et al. (eds.), Hadron Structure and Lepton Hadron Interactions. New York: Plenum, 727-734.

* Finkelstein, D. (1981). Quantum set theory and geometry, in L. Castell, M. Drieschner, & C.F. v. Weizsacker (1981).

* Finkelstein, D. (1982). Quantum set theory and Clifford algebra, International Journal of Theoretical Physics 21, 489-503.

Finkelstein, D. and S.R. Finkelstein (1983). Computational complementarity, Interna­tional Journal of Theoretical Physics2, 753-779.

Finkelstein, D. (1986). Hyperspin and hyperspace. Physical Review Letters 56, 1532. * Finkelstein, D. (1987). Coherent quantum logic. International Journal of Theoretical

Physics 26, 109-129. * Finkelstein, D. (1988). Finite physics, in R. Herken (ed.), The Universal Turing Machine

- A Half-Century Survey. Hamburg: Kammerer & Unverzagt, 349-376. * Finkelstein, D. (1988). Superconducting causal nets. International Journal of Theoretical

Physics 27,473-519. * Finkelstein, D. (1988). The universal quantum, in E. Kitchener (ed.), The World-View of

Contemporary Physics. Albany: SUNY Press, 75-89. * Finkelstein, D. (1989). First flash and second vacuum. International Journal of Theoretical

Physics 28, 1081-1098. Finkelstein, D. (1989). Quantum net dynamics. International Journal of Theoretical

Physics 28, 441-467. * Finkelstein, D. (1991). Theory of vacuum, in S. Saunders & H. Brown (eds.), The Phi­

losophy of the Vacuum. Cambridge: Cambridge University Press, 251-274.

Page 5: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

Bibliography 561

* Finkelstein, D., G. Frye, & L. Susskind. (1974). Space-time code. V, Physical Review D9,2231-2236.

* Finkelstein, D., J.M. Jauch, and D. Speiser (1959). Notes on quaternion quantum mechan­ics I, II, III. European Centre for Nuclear Research Reports 59-7, 11, 17. Reprinted in C.A. Hooker (ed.), The Logico-Algebraic Approach to Quantum Mechanics, II .. Reidel, Dordrecht, Holland ( 1979)

Finkelstein, D., J.M. Jauch, S. Schiminovich and D. Speiser (196la). Principle of general Q-covariance. Journal of Mathematical Physics 4, 788-796.

Finkelstein, D., 1.M. Jauch, S. Schirninovich and D. Speiser (1961b). Non-Conservation of Isospin. Abstract, Bulletin of the American Physical Society, New York Meeting, 1961

* Finkelstein D. (1978). Process philosophy and quantum dynamics, in C. A. Hooker (ed.), Physical Theory as Logico-Operational Structure. Dordrecht, Holland: Reidel.

* Finkelstein, D. & W.H. Hallidy. (1991). Q: a language for quantum-spacetime topology. International Journal of Theoretical Physics 30, 463-486.

* Finkelstein, D. & E. Rodriguez, (1986). Quantum time-space and gravity, in R. Penrose & C. Isham (eds.), Quantum Concepts in Time and Space. Oxford: Oxford University Press, 247-254.

* Finkelstein, D. & E. Rodriguez. (1984). Relativity of topology and dynamics. Interna­tional Journal of Theoretical Physics 23, 1065-1098.

* Finkelstein, D. & E. Rodriguez. (1984). The quantum pentacle, International Journal of Theoretical Physics 23, 887-894.

* Finkelstein, D. & E. Rodriguez. (1986). ALgebras and manifolds: differential, difference, simplicial, and quantum. Physica D 18, 197-208.

* Finkelstein, D. & E. Rodriguez. (1986). Applications of quantum set theory, in L. Castell & C.F. v. Weizsacker (1986).

Finkelstein, D. & G. McCollum. (1975). Unified quantum theory, in L. Castell, M. Dri­eschner, & c.P. v. Weizsacker (1975).

* Finkelstein, D. & G. McCollum. (1977). Concept of particle in quantum topology, in L. Castell, M. Drieschner, & C.F. v. Weizsacker (1977)

Finkelstein, D. & Misner, C.W. 1959. Some new conservation laws. Annals of Physics 6,230-243.

Finkelstein, D. & Rubenstein, J., 1968. Connection between spin, statistics, and kinks. Journal of Mathematical Physics 9,1762-1779.

* Fischbach, E. (1965). Coupling of internal and quantized space-time symmetries. Physical Review B 137, 642-644.

Fivel, D. (1991). Geometry underlying no-hidden variables theorems. Physical Review Letters 67, 285-289.

* Flint, H.T. & E.M. Williamson. (1953). Coordinate operators and fundamental lengths. Physical Review 90,318-319.

* Flint, H.T. & 1.W. Fisher. (1928). Fundamental equation of wave mechanics and metrics of space. Proceedings of the Royal Society A 117, 625-629.

* Flint, H.T. & O.W. Richardson (1928). On a minimum proper time and its applications to (1) the number of chemical elements (2) to some uncertainty relations. Proceedings of the Royal Society A 117, 637-649.

* Flint, H. T. (1928). Relativity and the quantum theory. Proceedings of the Royal Society A 117, 630-637.

* Flint, H.T. (1948). The quantization of space and time. Physical Review 74,209-210. Flores, E.V. (1991). Physical implications of the cosmological constant. Preprint, Depart­

ment of Physical Sciences, Glassboro State College. Foulis, DJ., & Randall, C.H. (1983). A mathematical language for quantum physics. In

Gruber, c., C. Piron, T. Minhtom R. Wei I (eds.), Les fondements de la mecanique quantique. Association Vaudoise des Chercheurs en Physique, Lausanne.

Page 6: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

562 Bibliography

Fredkin, E. & T. Toffoli (1982), Conservative Logic. International Journal of Theoretical Physics 21, 219-253

* Geroch, R. (1972). Einstein algebras. Communications in Mathematical Physics 26,271-275.

* Gersch, H.A (1981). Feynman's relativistic chessboard as an Ising model. International Journal of Theoretical Physics20, 491-501.

Giles, R. (1970). Foundations for quantum mechanics. Journal of Mathematical Physics 11, 2139-2160.

* Ginzburg, V.L. (1971). What problems of physics and astrophysics are of special im­portance and interest at present. Soviet Phys. Uspekhi 14, Section 9: The fundamental length (quantized space, etc.), 29.

Goldin, G.A, R. Menikoff, & D.H. Sharp. Journal of Mathematical Physics 22, 1664, 1981

* Gol'fand, Yu.A (1960). On the introduction of an "elementary length" in the relativistic theory of elementary particles, Soviet Physics JETP 10, 356-360.

* Gol'fand, Yu.A (1963). Quantum field theory in constant curvature p-space. Soviet Physics JETP 16, 184-191.

* Gol'fand, Yu.A (1965). Extension of quantum mechanics to the case of discrete time. Soviet Physics-JETP 20, 1537-1541.

Golomb, S.W. (1982) American Scientist 70,257-259 (1982). Grassmann, H. (1844). In Die Ausdehnungslehre von 1844 und Die geometrische Analy­

se/ Hermann Grassmann; unter der Mitwirkung von Edward Study; hsg. von Friedrich Engel. Chelsea, New York, 1969

Gupta, S.N. (1950). Proceedings of the Royal Society A63, 681. * Hasebe, K. (1972). Quantum space-time. Prog. Theor. Phys. 48, 1742-1750.

Hehl, F.W., J. Nitsch & P. Van der Heyde (1980). Gravitation and the Poincare gauge field theory with quadratic Lagrangian. In A. Held (editor), General Relativity and Gravitation (1980).

Heisenberg, W. (1938). Die Grenzen der Anwendbarkeit der bisherigen Quantentheorie. Z. Physik 110, 251-266.

Heisenberg, W. (1986). Gesammelte Werke. Piper, Munich. Held, A (1980). Editor. General Relativity and Gravitation, Plenum Press, New York.

* Hellund, E.J. & K. Tanaka. (1954). Quantized space-time. Physical Review 94, 192-195. Henneaux, M. & Teitelboim, C. (1992). Quantization of Gauge Systems. Princeton Uni-

versity Press. Hestenes, D. (1966). Space-Time Algebra. Gordon & Breach, New York. Higgs, P.W. (1964). Physics Letters 12, 132. Hiley, B.J. & AE.G. Stuart. (1971). Phase space, fibre bundles and current algebras.

International Journal of Theoretical Physics 4, 247-265. * Hill, E.L. (1955). Relativistic theory of discrete momentum space and discrete space-time.

Physical Review 100, 1780-1783. Holm, C. (1988-89). The hyperspin structure of unitary groups. Journal of Mathematical

Physics 29, 978; 30, 10. Honeycut, D.C. 1991. Bergmannian relativity and bracket spaces. International Journal

of Theoretical Physics 30, 1613-1644. * Ichiyanagi, M. (1981). On quantized space-time. Prog. Theor. Phys. 65, 1472-1475. * Isham, C.J. (1987). Quantum Gravity, in General Relativity and Gravity: Proceedings

of the Eleventh International Conference. Cambridge: Cambridge University Press, 99-129.

* Isham, c.J. (1989). Quantum topology and quantisation on the lattice of topologies. Classical and Quantum Gravity 6, 1509-34.

* Isham, c.J. (1990). An introduction to general topology and quantum topology, in Pro­ceedings of the Advanced Summer Institute on Physics, Geometry, and Topology. New York: Plenum, 129-189.

Page 7: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

Bibliography 563

* Isham, c.J., Y. Kubyshin, & P. Renteln. (1990). Quantum norm theory and the quanti­zation of metric topology. Classical and Quantum Gravity 7, 1053-1074.

Jacobson, T. (1983). Spinor Chain Path Integral for the Dirac Electron. Ph.D. Thesis, The University of Texas at Austin (1983).

* Jacobson, T. (1983). Spinor Chain Path Integral for the Dirac Equation. Journal of Physics A17, 2433-51 (1984).

* Jacobson, T. (1985a). Random Walk Representations for Spinor and Vector Propagators. Journal of Mathematical Physics 26, 1600-04 (1985).

* Jacobson, T. (1985b). Feynman's Checkerboard and Other Games. In Non-linear Equa­tions in Classical and Quantum Field Theory, ed. N. Sanchez, Lecture Notes in Physics, vol. 226, Berlin: Springer, pp. 386-95.

* Jacobson, T. (1989). Bosonic Path Integral for Spin-l12 Particles. Physics Letters B216 150-154.

* Jagannathan, R. & T.S. Santhanam. (1981). Finite-dimensional quantum mechanics of a particle. International Journal of Theoretical Physics 20, 755-773.

* Jagannathan, R. & T.S. Santhanam. (1982). Finite-dimensional quantum mechanics of a particle. II. International Journal of Theoretical Physics 21, 351-362.

Jimbo, M. (1985). Letters on Mathematical Physics 10, 63. Kac, G.I. (1961). Obobshchenie gruppovogo printsipa dvoistvennosti. Doklady Akademia

Nauk 138, 275-278. Kac, G.I. (1963). Kol'tsevye gruppy i printsip dvoistvennosti. Trudii Moscovskogo

Matematicheskogo Obshchestva 12, 259-301. Kac, G.I. (1965). Kol'tsevye gruppy i printsip dvoistvennosti. II. Trudii Moscovskogo

Matematicheskogo Obshchestva 13, 84-113. * Kadyshevskii, V.G. (1962). On the theory of quantization of space-time, Soviet Physics

JETP 14, 1340-1346. * Kadyshevskii, V.G. (1963). Various parametrizations in quantized space-time theory. So­

viet Physics-Doklady 7, 1031-1033. Kaku, M. (1993). Quantum Field Theory. Oxford.

* Kaplunovsky, V. & M. Weinstein. (1985). Space-time: arena or illusion?, Physical Review D31,1879-1898.

Kaufman, L.H. (1991). Knots and Physics. World Scientific, Singapore. * Kirzhnits, D.A & V.A Chechin. (1968). The Mossbauer effect and the theory of quan­

tized space-time. Soviet Journal of Nuclear Physics 7, 275-279. Kugo, Taichiro & Izumi Ojima (1978). Manifestly covariant canonical formulation of the

Yang-Mills field theories. Progress of Theoretical Physics 60, 1869. * Kiinemund, Th. (1984). The substructure of the tensorspace of urs, in L. Castell & C.F.

v. Weizslicker (1984). * Kurdgelaidze, D.F. (1977). Spinor geometry (translated). Izv. Vuz Fiz. 2, 7-12. Trans in:

Soviet Physics J. 20, 143-146. * Lacroix, R. (1978). Sur l'existence d'une ... elementaire et d'un intervalle de temps

elementaire. Canadian Journal of Physics 56, 1109-1115. Lee. T.D. (1981). Particle Physics and Introduction to Field Theory. Harwood, Chuf. Lehman, H., K. Symanzik & W. Zimmerman (1955). Nuovo Cimento 1, 1425.

* Leznov, AN. (1967). Generalization of Snyder's quantized space-time theory (translated). Zh. Eksp. Teor. Fiz. Pis'ma 6, 821-823.

Lieb, E.H. (1973). Classical limit of quantum spin systems. Communications on Mathe­matical Physics 31, 327-40.

* Lloyd-Evans, DJ.R. (1976). Geometry and quantization. International Journal of Theo­retical Physics 15, 427-451.

Ludwig, G. (1985-7). An Axiomatic Basis for Quantum Mechanics. Vol. I, II. Springer, New York.

* Madore, J. (1990). Modification of Kaluza-Klein theory. Physical Review D 41, 3709-19 * Maimon, Moses ben (Maimonides) (1963). Guide of the Perplexed, translated by S. Pines.

Page 8: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

564 Bibliography

* Manin, Yu.I. (1988). Quantum Groups and Non-Commutative Geometry. Centre de Recherches MatMmatiques, Universite de Montreal.

* Manin, Yu.I. (1989). Communications in Mathematical Physics 123, 163-175. Mantke, W. (1992). Picture Independent Quantum Action Principle. Ph.D. Thesis, School

of Physics, Georgia Institute of Technology. * March, A. (1936). Die Geometrie kleinster Riiume. II. Zeitschriftflir Physik 104, 161-168. * Marlow, A.R. (1981). Quantum spacetime, in L. Castell, M. Dreischner, & C. F. v.

Weiziicker (1981). * Meessen, A. (1971). Space-time quantification and generalization of the Dirac equation:

interpretation of an additional degree of freedom, Ann. Soc. Sci. Bruxelles 85, 204-220. Misner, C.W. , K.S. Thorne, & J.A. Wheeler. (1973). Gravitation. San Francisco: W.H.

Freeman and Company. Misner, c., Thorne K., & Wheeler, J.A. (1973). Gravitation. Freeman. Mistura, L. (1990). Cartan connection and defects in Bravais lattices. International Jour­

nal of Theoretical Physics 29, 1207. * Morris, H.C. (1972). Operators for the space-time code. Nuovo Cimento 8B, 143-156.

Nagy, K.L. (1966). State vector spaces with indefinite metric in quantum field theory. Akademiai Kiad6, Budapest.

Nakanishi, Noboru (1978). Indefinite-metric quantum field theory of general relativity. III-Poincare generators. Progress of Theoretical Physics 60, 1890-1899.

Nambu, Yoichiro and G. Yona-Lasinio (1961). Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I, II -it Physical Review122, 345-358; 124,246.

* National Research Council (1985). Physics Through the 1990's: Elementary Particle Physics. Washington: National Academy Press.

* National Research Council (1985). Physics Through the 1990's: Gravitation, Cosmology, and Cosmic-Ray Physics. Washington: National Academy Press.

Neumann, J. von (1925). Eine Axiometisierung der Mengenlehre. Zeitschrift flir Math­ematik 154, 219-240. Also in J. von Neumann, Collected Works, volume 1, page 35.

Neumann, J. von (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.

Nielsen, H.B. & M. Ninomiya (1989). Nuclear Physics B 141, 153. Pandres, Dave (1981). Quantum unified field theory from enlarged coordinate trasforma­

tions group. Physical Review D. 24, 1499-1508. Peano, G. (1888). Calcolo geometrico secondo l'Ausdehnungslehre di H. Grassmann.

Fratelli Bocea Editori, Thrin. Peirce, C.S. (ca. 1890). A guess at the riddle. Reprinted in Peirce (1958), Volume 1,

Paragraph 412. Peirce, C.S. (1868). On an improvement in Boole's calculus of logic. Proceedings of the

American Academy of Arts and Sciences 7, 250-261. Upon the logic of mathematics, ibid. ,402-412. Reprinted in Peirce (1958).

Peirce, C.S. (1898). The logic of events. Manuscript, Harvard University Collection. Reprinted in Peirce (1958), Volume 6, Paragraph 217.

Peirce, C.S. (1958). Collected Papers of Charles Sanders Peirce. C. Hartshorne & P. Weiss, eds. Harvard University Press, Cambridge, Mass.

* Penrose, R. (1971). Angular momentum: an approach to combinatorial space-time, in T. Bastin (ed.), Quantum Theory and Beyond. Cambridge: Cambridge University Press, 151-180.

Penrose, R. (1989) Private communication. * Proca, AI. (1929?). Le Temps Discontinu, in G. A Proca (ed.), Alexandre Proca: Oeuvre

Scientifique Publiee. Paris?, 1988, Paper B.VI.5, section 10. Prugovecki, E. (1981). Stochastic quantization of geometrodynamic curved space-time.

Nuovo Cimento 62 B, 17-30.

Page 9: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

Bibliography 565

Przeworkska-Rolewicz, D. 1988. Algebraic Analysis. Reidel Publishing Co., Dordrecht, Holland

* Pukhov, AE. (1979). Remark on field theory in quantized space-time, Vestn. Mosk. Univ. Ser. 3 34, 87-89. Trans in: Moscow Univ. Phys. Bull. 34, 81-88.

Regge, T. (1961). General relativity without coordinates. Nuovo Cimento 19 558-571. * Rietdijk, C.W. (1980). A microrealistic explanation of fundamental quantum phenomena.

Foundations of Physics 10, 403-457. Robb, A.A (1936). Geometry of space and time. Cambridge University Press. 2nd edition.

(1st edition published in 1914.) Rogula, D. (1976). Large deformations of crystals, homotopy and defects. In G. Fichera

(ed.), Trends in Applications of Pure Mathematics to Mechanics. Pitman, London. Rojansky, V. (1955). Quantum-mechanical operators. Physical Review 97,507. Rosen, G. (1973). Space-time microstructure and singularity-free quantum field theory.

International Journal of Theoretical Physics 7, 145-148. * Russo, J.G. (1993). Discrete strings and deterministic cellular strings. Preprint UTTG-

11-93, Department of Physics, University of Texas. Saller, H. (1989) On the nondecomposable time representations in quantum theory. Nuovo

Cimento I04B, 291-337. Saller, H. (1992) Indefinite metric and asymptotic probabilities. Nuovo Cimento 106B,

1319-1356. Saller, H. (1992) Canonical and non-canonical quantization on space-time. Nuovo Ci­

mento 107B, 1355-1372. Saller, H. (1993) The probability structure and BRS invariance of noncompact Hamilto­

nians. Nuovo Cimento 106A, 469-479. * Santhanam, T.S. & AR. Tekumalla. (1976). Quantum mechanics in finite dimensions.

Foundations of Physics 5, 583-587. * Schild, A (1948). Discrete space-time and integral Lorentz transformations. Physical

Review 73, 414-415. * Schild, A (1949). Discrete space-time and integral Lorentz transformations. Canadian

Journal of Mathematics 1, 29-47. Schwinger, J. (1953). Theory of Quantized Fields. IV. Physical Review 92, 1283-1299. Schwinger, J. (1969). Particles and Sources. Gordon & Breach, New York Schwinger, J. (1970, 1973). Particles, Sources and Fields, Vol.!, II. Addison-Wesley,

Reading, Mass. Segal, I.E. (1951). A class of operator algebras which are determined by groups. Duke

Mathematics Journal 18, 221. * Segal, I.E. (1951). A non-commutative extension of abstract integration. Annals of Math­

ematics 57, 401-457. * Selesnick, S. (1991). Correspondence principle for the quantum net. International Journal

of Theoretical Physics 30, 1273. Shapiro, I.S. (1960). Weak interactions in the theory of elementary particles with finite

space. Nuclear Physics 21, 474-491. * Shchetochkin, V.N. and Efremov, V.N. (1982). Interaction constants as numerical char­

acteristics of discrete spaces. Izv. Vuz. Fiz. 25,62--67. Trans in: Soviet Physics Journal 25, 1030-1034.

* Sirag, S.-P.(1981) Why there are three fermion families. Bulletin of the American Physical Society.

Skyrme, T.H.R. (1958) A non-linear theory of strong interactions. Proceedings of the Royal Society (London) A247, 260-278.

Skyrme, T.H.R. (1959) A unified model of K- and 7r-mesons. Proceedings of the Royal Society (London) A252, 236-245.

Smith, F. Tony. (1992, 1995). Conversations. * Snyder, H.P. (1947). Quantized space-time. Physical Review 71,38.

Page 10: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

566 Bibliography

* Snyder, H.S. (1947). The electromagnetic field in quantized space-time, Physical Review 72,68-71.

* Sorkin, R.D. (1983). Posets as lattice topologies, in B. Bertotti, F. de Felice, & A Pascolini (eds.), General Relativity and Gravitation, I. Rome: Consiglio Nazionale Delle Ricerche, 635-637.

* Sorkin, RD. (1990). Does a discrete order underly spacetime and its metric?, in A. Coley, F Cooperstock, & B. Tupper (eds.). Procedings of the Third Canadian Conference on General Relativity and Relativistic Astrophysics. Singapore: World Scientific.

* Sorkin, RD. (1991). Finitary substitute for continuous topology, International Journal of Theoretical Physics 30, 923-947.

* Sorkin, RD. (1991). Finitary substitute for continuous topology. International Journal of Theoretical Physics 31, 923-948.

Stiickelberg, E.C.G. (1960) Quantum theory in real Hilbert space. Helvetica Physica Acta 33, 727-752.

Sudarshan, E.C.G. (1990). The quantum envelope of a classical system. In From Symme­tries to Strings: Forty Years of Rochester Conferences. A Symposium to Honor Susumu Okubo in his 60th Year. Rochester, N.Y., May 4-5, 1990.

Sweedler, M.E. (1968). Hopf Algebras. W.A Benjamin, New York. t'Hooft, G. (1971). Nuclear Physics B33, 175; B35, 167

* t'Hooft, G. (1979). Quantum gravity: a fundamental problem and some radical ideas, in M. Levy & S. Deser (eds.). Recent Developments in Gravitation, Cargese 1978. New York: Plenum, 323-345.

* t'Hooft, G. (1987). On the quantization of space and time. In Proceedings of the Moscow Seminar on Quantum Gravity, Academy of Sciences of the USSR

* t'Hooft, G. (1988). Journal of Statistical Physics 53, 323. * t'Hooft, G., K. Isler & S. Kalitzin (1992). Utrecht preprint THU-92/07 * Taylor, J.G. (1979). Quantizing space-time. Physical Review D 19, 2336-2348. * Toller, M. (1975). A general scheme for microscopic theories, International Journal of

Theoretical Physics 12, 349-382. * Toller, M. (1977). An operational analysis of the space-time structure, Nuovo Cimento

40B,27-50. * Toyoda, T. & K. Yasue. (1978). A new approach to the theory of elementary domains.

International Journal of Theoretical Physics 17, 993-1002. Tryon, E.P. (1973) Is the Universe a vacuum fluctuation? Nature 246, 396-397. Tyutin, LV. (1975) Gauge invariance in field theory and statistical mechanics. Lebedev

Institute preprint FIAN no. 39. Von Neumann, J. (1961-63). Collected Works 1-6 (ed. AH. Taub). Pergamon Press, New

York. Von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics (transI. RT.

Beyer). Princeton University Press. Von Neumann, 1. See also Neumann, J. von.

* Weizsacker, C.F. v. (1983). Urs, particles, fields, in L. Castell, M. Dreischner, & C.F. v. Weizsacker (1983).

* Weizsacker, C.F. v. (1985). Aujbau der Physik. Munich: Hanser. * Weizsacker, C.F. v. (1955). Komplementaritat und Logik. Naturwissenschaften 42, 521. * Weizsacker, C.F. v. (1955). Komplementaritat und Logik, Naturwissenschaften 42, 545-

555. Weizsacker, C.F. v. (1951). Naturwissenschaften 38, 553.

* Weizsacker, C.F. v. (1955). Naturwissenschaften 42, 548. * Welch, L.C. (1976). Quantum mechanics in a discrete space-time, Nuovo Cimento 31 B,

279-288. * Wess, J. & Zumino, B. (1974). Supergauge transfonnations in four dimensions. Nuclear

Physics B 70, 39.

Page 11: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

Bibliography 567

Weyl, H. (1922). Space-Time-Matter. Trans!. H. L. Brose. Methuen, London. Translation of Raum-Zeit-Materie.

Wheeler, J.A. (1964). Geometrodynamics and the issue of the final state, in C. DeWitt & B.S. Dewitt (eds.), Relativity, Groups, and Topology. New York: Gordon and Breach.

* Wheeler, J.A. (1981). The elementary quantum act as higgledy-piggledy building mech­anism, in L. Castell, M. Dreischner, & C.F. v. Weizacker (eds.), Quantum Theory and the Structures of Time and Space, IV. Munich: Hanser, 27- 30.

* Wheeler, J.A. (1973). From relativity to mutability. In J. Mehra (ed.), The Physicist's Conception of Nature. Reidel, Dordrecht, Holland.

Whyte, L.L. (1931). Critique of Physics. New York: W.W. Norton. Wilczek, F. (1982). Phyical Review Letters 48, 1144, 1982. Witt, E. (1937). Theorie der quadratischen Formen in beliebigen Korpem, Journale de

Crelle 176, 31-44. Woronowicz, S.L. (1987). Compact matrix pseudogroups. Communications on Mathe-

matical Physics 111, 613-65. * Yahya, Q.A.M.M. (1963). Leptonic decays in finite space. Nuovo Cimento 29, 441-450. * Yang, C.N. (1947). On quantized space-time. Physical Review 72,874. * Yukawa, H. (1966). Atomistics and the divisibility of space and time, Prog. Theor. Phys.

supplement, no. 37 and 38, 512-523. * Zenczykowski, P. (1988). Towards a combinatorial description of space and strong inter­

actions. International Journal of Theoretical Physics 27, 9-26. Zimmerman, E.J. (1962). The macroscopic nature of space-time, American Journal of

Physics 30,97-105.

Page 12: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

Index

t space 50 * operation 50 * space 50

act - external - 14 - improper- 117 - internal - 16 - medial - 16 - proper - 20 - proper- 117 action 25,523 - final 13, 14 - final - 360 - initial 13 - initial - 360 - internal 25 - medial - 360 - sharp 14 action principle - Hamilton's - 371 action vector 16 action vectors - space - 402 activation 3 actor 440 actors 24 adjoint 30,50,285,532 - - subspace 118 - adapted - 121 - canonical - 432 - definite- 50 - dynamical - 487 - indefinite- 50 - Minkowski - 322 - physical - 503 - relative - 487 adjoint basis 292 agent 11 Aharanov X, 409 Aharanov-Bohm experiment 413 algebra 529

- Clifford - 279 - coordinate - 88 - double - 451 - framed - 99 - group - 454 - Iordan- 132 - Lie - 534 Ambarzumian 479 ambilinear form 116 ambispinors 350 A Midsummer-Night's Dream 262 amplitude 47,108 ancestor 489 Anderson X, 335 annihilator - initial - 524 anti- 440 antilinear 530 anti symmetric tensor 538 anti symmetrize 536 anti vector 115 Aristotle 153,155,256 Arrow 81 arrow - double 450 Artin 199 assembly - Maxwell-Boltzmann - 209 Austern X automorphism 523 - inner - 529

Bacon 12, 156 Baer 199 Bardeen 482 Barrett X Bartholinus 7 basis - null symmetric 326 Bateson 153 Bell 251 Bergmann 356

Page 13: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

570 Index

bicycle 497 black box 53 Bohm X, 153,409 Bohr 9,12,153,171-173,180,364 Boole 3,278 Boole's laws 4 Bose-Einstein 225 Bose-Einstein statistics 220 bottom 543 Bourbaki 125 Brewster angle 7 Bridgman 271 Brouwer 10 BRST 145,149 Bruno 261, 263 Bub XI, 65

C 173 calculus - - rational 262 Camus 255 canonical commutation relation 141 canonical coordinates 374 category 26, 524 category algebra 425 causal - - antecedent 489 - - symmetry -- maximal - 323 - interval 323 - symmetry 323 causal relation 321 - - proper 321 cenad 274 center 529 CGD 491 checkers 479 children 481 chronometric 322 chronon 22,486 Church 425 class 3 - homotopy - 546 classical 8, 65 Clifford 11, 279 closed 190 closure 189 co- 533 co-operation 83 coa1gebra 84 - ordinate- 89 coarrow 83 codomain 521,544 cofinite 297

coherent 361 coherent group 247 coherent manifold 247 coherent state 240,247 Coleman 489 combination principle 176 combinatorics 207 commutativity 8 commutator - general covariant - 339 compatible 19 complement 285,533,534 complement basis 292 complementary 8 complete 18,28 - theory 71 complex 526 complex projective sphere 542 concatenation 4 connection 338, 540 - Galois 191 - metrical - 339 connectionism 271 continue I 8 continuous 546 contravariant 531 control 122 Cooper 482 cooperation - quantum - 138 cooperator 38,83,86, 138 - statistical - 239 coordinate 40, 121 - binary - 94 coordinates - episystemic - 506 - systemic - 506 copath 394 copoint 49,544 coproduct 84 correspondence 490 correspondence principle 173 cosmological constant 344 costar 489 covariance - general - 334 - unimodular 345 covariant 531 co vector 538 cover 427,543 cpalgebra 84 creator 103 crisp 18 curvature 339

Page 14: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

- network - 516 curvature scalar 340

David XI Dedekind 509 Deg 265 degree 27 - contravariant - 535 - covariant - 535 density matrix 236 derivative 540 - covariant 338 - general covariant 540 Descartes 153,154,156,255 determine 122 diagonalized 449 diagram - action - 46 - category - 527 - commutative - 527 - Hasse - 543 - lattive - 543 diagram notation 37 dialectic 258 diffuse 18 digit 22 dimension 541 Dirac VII, XI, 10, 12,40 - - equation 354 - bra-ket notation 38 dislocation 512 distinguishable 211 distortion 339 domain 521,544 double arrow 450 double semi group 451 dual 533 Durr XI dynamical transport 384

eigenprojection 91 eigenvalue 542 Eilenberg 425 Einstein 33 election 3 endomorphism 523,524 energy tensor 342 entities - constant 27 - quantum 27 - random 27 epistemology 12 episystem 16 EPR 180

equivalence principle 333 equivalent 213 equivalent entities 208 ergodic 364 etherons 157 event 319 Everett 12 extensionality 423 extensor 265 exterior algebra 537 extraordinary ray 158

Fermi 12 Feynman XI,479 field variable 403 final 43,544 final space 521 finitary 422 Finkelstein XI Fivel 251 fixed 213 flat 339 flip 85 Flynn X form factor 241 frame 20,72,128 frame algebra 99 Fredkin XI, 500 free 529 Frege 278 full 111,268,431,529 full semi roup 187 functor 525

Galois 9,188, 189,509 Galois connection 191 Galois lattice 197 gauge 336,541 - - curvature 337 - - vector field 336,541 - -group 541 - curvature 337,541 - derivative 336,541 gauge condition 145 gauge generator 148 gauge transformation 146 - - of the first kind 150 - - of the second kind 150 - - of the third kind 150

Index 571

general covariant derivative 338 general order 290 general-relativization 334 general-relativizing 334 generate 552

Page 15: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

572 Index

generator 202 generators 246 geodesic 322 geometry - projective - 542 Gersch 479 ghost 148 - Faddeev-Popov - 149 Gibbs X Glauber 240 GOdel 10, 262 grade-commute 227 gradient 540 graph 526 grating 64 group 527 - abelian - 528 - additive - 528 - alternating - 528 - causal 323 - double - 451 - fundamental - 547 - homotopy - 547 - involutory - 464 - local- 336 - relativity - 19 - symmetric - 528 group algbera 448 guides 146

Hamiltonian 202,375 head 521 height 433 Heisenberg X, XI, 9,10,36,40,153 Heisenberg indeterminacy principle 165 Hessian 374 Hibbs 479 Hilbert space 552 Hodge star 267 hole 289 Holm X homogeneous 537 homomorphism 523 homotopy 546 hyperalgebra 485 hyperdiamond 476 hyperoperator 484 hyperspace 481

Iceland spar 6 identification 312 identity 81, 522, 527, 544 - final - 523 - initial - 523

image 544 inclusion 53 index notation 37 index-free notation 37 indistinguishable objects 212 inertial transport 338,384 Infeld 356 information dump 264 infraspace 481 initial 43, 544 initial space 19,521 initial transpose 450 interaction 211 interference 74 - quantum 68 interval 322 inverse 523, 527 inversor 460 involution - main - 532 - transpose - 532 isometry 119 isomorphism 524 isotropic 368 Ivanenko 479

Jacobi identity 534 Jacobson XI, 479 James 271 Jauch XI John Von Neumann 424 Jordan normal form 125 jump 79,80

Kalam 260,263,479 Kant 11 Keller XI Kelvin 155 ket 16 Kklauder 240 Koopman 108 Kripke 263 Krishnamurti 153 Kruskal 240

lambda conversion 425 Lande 276 lattice 543 - final 191 - initial 191 Leibniz 153,155 - law 539 limit 545 Uull 260

Page 16: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

local 418,488 - - frame 249 - - system 249 locality 333,334 logic 3 - intuitionistic - 10 - modal 69 logistics 262 Logos 255,277 loop 546 Lorentz transformation - infinitesimal - 331 Lorenz condition 147 lozenge 339

Maclane 425 Maimon 260 Malus VIII, 6, 7 Malusian 6 Mandula 489 manifold - spin - 357 Mantke X mapping 544 - partial - 544 - pointed - 546 - topological - 546 - total- 544 mass 341 - gravitational -- active 340 - - passive 340 - inertial 340 mathesis 154 matrix - binary - 95 - Booolean - 95 measure 321 measurement problem 363 mental 5 metric - - density 322 - transition 30 minimal coupling 343 minimal polynomial 124 Minkowski spacetime 321 Minkowskian 321,334 Minkowskian adjoint 335 mode 14 module 529 monad 155 monoid - double- 451 monoid algebra 448

monoid module 448 morph 524 morphism 523, 524 Moses XI multiplication - final - 530 - initial - 530

Index 573

multiplicity 55,67,79,91,191

Nambu 482 Ne'eman 356 negation 534 negative vector 114 neighborhood 542, 545 net 484 network 475,483 Nevanlinna space 40 Newton VIII Newtonian limit 343 nil vector 114 nilpotent - Jordan - 124 nil quadratic 314 non-objective 26 non-objective physics 165 normal 119, 121 normal form - Backus - 519 normal order 290,537 normal subgroup 528 null 268 null photon 145 null vector 114

object 22 - of a transformation 523 Omnilingua 263 ontic 11 ontism 26 pperation 17,38,40 - - semi group 11 0 - classical -) 80 - double - 451 - quantum - 110 operator 81,109,530 - simple - 32 - annihilation - 103 - creation - 102, 103 - Dirac - 354 - double - 451 - Majorana - 354 - nilpotent - 124 - projection - 119 - shift - 103

Page 17: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

574 Index

operator algebra 110 operon 454 opposite 266,285,533 opposite basis 292 OR 520 or-ion convention 40 orbit 213 order 27,438 - normal - 537 ordinary ray 158 Orion convention 40 orthogonal 119

partial order 543 partner spaces 289 path 546 - - tensor 390 - quantum - 390 Patterson 153 Peano 278 Peirce 153,271 Penrose XI perturbation 547 Petersen XI, 184 photon 6 physical 5 physical entity 19 Pisello XI Plato 153 pleiad 274 point 188, 544 - spacetime - 319 Poisson bracket 374 polar - - subspace 118 polarizer 6 paR 273,520 positi ve vector 114 possible worlds 264 Post 10 power 221 power set 521 pragmatism 271 praxic 11 praxism 26 predicate 257 principal - point 200 - vector 200 principle - - of maximal astonishment 27 product 522,544 - diagonalizer - 451 - equalizer - 449

- group - 527 - Lie - 534, 539 - parallel - 450 - semidirect - 523 - serial - 80,450 - tensor - 535 projection 531 projectively equal 542 projector 74,90,119,121, 550 propagation 82 propagator 83 proper - - distance 322 - - time 322 proposition 256 pure set 427

q group 480 quantifier 257 - existential - 257 - numerical - 257 - universal - 257 quantization 134 quantum 3,9 - - law of large numbers 232 - -principle 161 - - set theory 15 quantum - - Liouville equation 387 quantum group 460 quantum interference 68 quantum theory - metric - 52 - old - 171 - projective - 52 quantum-relativity analogy 36,73 quotient object 209

Racah 61 random phases 364 range 544 ray 31,109,541 re-relativization 132 real time 21 recipient 11 reciprocal basis 292 reconnection 450 recursive definition 519 Regge 477 relation 544 relativity 8, 10 - classical - 73 - quantum - 73 rephase 133

Page 18: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

rephasing 25 represent 47 representation - projective - 532 - vector - 532 resolvable 123 resolvent 124 respects 213 reversal - total - 61 Ricci tensor 340 Riemann 11 ring - unital - 528 Ritz XI Rodriguez X Rota XI

Saller XI, 125 Schiller XI Schopenhauer 255 Schrieffer 482 SchrMinger 12, 176,240 Schwartz XI Schwarz inequality 143 Scott XI Scotus 255 selection rule 16 Selesnick XI semantic ensemble semantics 262 semifinite 298 semigroup 47,522 - * 115 - t- 50,115

* 50 - Baer- 524 - reversible - 50

58

semi group quantum theory semilinear 529 sensorium 157 sequence 208, 209 serial action 4 series 209,212,216 sero-point energy 143 sesquilinear 116 sesquispinors 323 set 99,209 - - algebra 283 - - calculus 283 - open - 545 set theory 208 - random - 426 sharp 18,54, 191

186

Index

sib 99,209 signature 116 - full- 116 simply connected 546 singular dynamics 374 Sirag XI Skyrme 287 Smith X, XI, 476 Smolin XI Snell's law 158 solder 357 solitons 240 Sorkin XI source 400 space -t- 40,41 - complement - 538 - connected- 547 - - multiply - 547 - covering- 546 - Dirac- 40 - dual- 538 - Krein- 40 - opposite- 538 - principal- 124 - projective - 542 - tensor- 535 - topological--- pointed- 546 spacetime - microstructure 481 span 189,541 spectral theorem 92 spectral value 124 spectrum 124 sphere 546 spin - - distortion 357 - - tensor 357 - anomalous- 436 standard order 292,293 Stapp XI star 489 state 13,22 statistical actor - final- 238 - initial- 237 statistical cooperator 97, 139 statistical operator 236 - initial 97 statistics 208 statistor 249 stop 0 7 strain acceleration 345

575

Page 19: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

576 Index

stress tensor 342 structural relations 525 structure 525 subobject 209 succession 484 successor - - operator 245 successor relation 484 succotash 30 Sudarshan XI, 108,240 super 482 supercrystal 478 superposition 198 - coherent 31 - coherent- 32 - incoherent 31 - incoherent- 32 - proper - 190 - quantum 31 - quantum- 32 superquantum theory 395 superselection 77,129 supers pace 480 supersymmetry 395,480 support 544 Susskind XI symmetric 220 symmetry 225 symplectic form 373 symplectic geometry 373 synechism 271,275 syntax 262 system 16 - active - 22 - closed - 67 - closed- 49 - open - 67 - passive - 22 system cut 16

tail 521 Tang X tangent vector 539 tensor - - bundle 540 - anti symmetric - 536 - Einstein - 345 - homogeneous - 536 Thomism 255 time 21 - - space 329 time reversal 494 - total - 62 - Racah VIII

- Racah - 61 - total VIII - Wigner VIII - Wigner - 62 Toffoli 500 Toller XI topology 321,477 - Hausdorff - 545 - spacetime - 323 torsion tensor 340 torsional derivative 339 transition 16,45 - - improbability 252 - allowed 16 - assured 30 - assured - 49 - forbidden 16 - spontaneous 29 transition amplitude 135 transition metric 113 transition semigroup 196 transitive 521 transport 338 transpose 84, 532 trivial transformation 20 Turing 10 tychism 271 type 224,535,549 - tensor - 535

Unger 153 unimodular 344 union - disjoint - 520 unit 99,522 unitary 119 unitizer 422 ur 480

vacuum 23 vacuum expectation value van der Waerden 356 variance 233 vector 529,530,539 - conjugate- 116 - final 44 - initial - 44 vector space 529 vertex 489 Vikings 7 von Glasersfeld XI

389

Von Neumann X, 10, 240 Von-Neumann-Bemays set theory 425

Page 20: Bibliography - Springer978-3-642-60936-7/1.pdf · The Method of Second Quantization. ... The mathematical analysis of logic; being an essay towards a calculus of deductive reasoning

wandering singularity 168 Weizsacker XI Wess 489 Weyl 146 white box 53 Whitehead 153, 185 Wigner 12,179,180 Wilson X

work function 167

XAND 280 XOR 279, 520

zero 522 Zumino 489

Index 577