20
Best Practices Overview for Electronics Thermal Simulations

Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Best Practices Overview for

Electronics Thermal

Simulations

Page 2: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Geometry Preparation

Mesh

Materials

Conditions

Solution

Results

STAR-CCM+ Simulation Process

Page 3: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

http://www.cd-adapco.com/webcasts (Industry = Electronics)

STAR-CCM+ Electronics Thermal Seminars

Natural convection series

– Best practices

– Small internal air gaps

– Radiation

Forced convection series

– Best practices, part 1

– Best practices, part 2

– Complex heat sinks

– Geometry preparation

Page 4: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

• Assumes 3D-CAD → Parts → Regions

• Composite parts Geometry

• Pre-defined parts-based mesh (PBM) operations Mesh

• Air (ideal gas or Boussinesq)

• Solids (common in electronics) Materials

• Pre-defined boundaries

• Forced & natural convection

• Field functions for ambient temperature & altitude Conditions

• Segregated flow & energy with under-relaxation

• Gravity & radiation (natural convection)

• Stopping criteria Solution

• Temperature report

• Geometry & mesh scenes

• Temperatures with velocity vectors on section planes Results

STAR-CCM+ Template Simulation File

Page 5: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Solids

– Eliminate mechanical connectors

(screws, rivets, springs, etc.)

– Fill holes

– Simplify individual parts

– Sheet metal modifications

– Eliminate interferences

– Fill undesired gaps

Best Practices: Geometry Preparation

Page 6: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Air

– Internal: Fill the empty space

– External

• Natural: Sphere or hemisphere

• Forced: Short inlet, extended outlet

– Tools (3D-CAD): Extract Internal / External Volume, Boolean

Best Practices: Geometry Preparation

Page 7: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Best Practices: Geometry Preparation

Page 8: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Best Practices: Geometry Preparation

Page 9: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Ideally: Conformal polyhedral

mesh

– Strongly recommended for natural

convection (because of radiation)

– Good for forced convection

Option: Polyhedral (conformal)

air, trimmed (non-conformal)

solids

– Suitable for forced convection

Part-Based vs Regions-Based

– Preference

– Conformal thin mesh not yet

available with PBM

Typical mesh: 500,000 –

5,000,000 cells

Best Practices: Meshing

Page 10: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Best Practices: Meshing

Page 11: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Air

– Ideal gas with temperature-

varying properties always suitable

– Boussinesq sufficient for natural

convection

Solids

– Isotropic solids

– Orthotropic solids (e.g. PCBs)

• Separate continua

• Properties in the region

• Typical PCB: kplanar ~ 10 W/m-K,

kthrough plane ~ 0.5 W/m-K

– Components

• Can use contact resistances on

interface to model as 2-resistor.

• Otherwise aluminum oxide (k ~ 25

W/m-K) common.

Best Practices: Materials

Page 12: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Heat sources

– Temperature on all inlets & outlets

– If no air surrounding the enclosure in the model (common in forced

convection), to model heat loss to the ambient add convection on boundary:

• External natural convection: h ~ 5 – 10 W/m2-K

• External forced convection: h > 20 W/m2-K

– Heat power on all dissipating components*

Best Practices: Conditions

Heat Electrical

power supplied

Component

(e.g. IC, IGBT,

MOSFET,

LED,…)

Electrical power

delivered

RF energy,

visible light

• “Wall power”

• Max power (power budget)

• Measured power?

• Duty-cycled?

• What is the efficiency?

Page 13: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

FORCED

CONVECTION Flow inlet Flow outlet

Flow “pushed”

into the system

• Specified positive flow speed

velocity), positive pressure,

positive mass flow rate, or

fan pressure jump

• Ambient temperature

• Pressure outlet (0 Pa)

• Ambient temperature (for any

reverse flow)

Flow “pulled”

through the

system

• Stagnation inlet (0 Pa)

• Ambient temperature

• Specified negative flow speed

velocity), negative pressure,

negative mass flow rate, or

fan pressure jump

• Ambient temperature (for any

reverse flow)

Fan inside the

system:

Internal

Interface fan +

• Stagnation inlet (0 Pa)

• Ambient temperature

• Pressure outlet (0 Pa)

• Ambient temperature (for any

reverse flow)

Best Practices: Conditions

Page 14: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Internal Interface Fan

– Only the circular or annular faces used as boundaries in fan definition

– Flow direction: From Boundary-0 to Boundary-1 (Swap Boundaries on the

interface as needed)

– Fan curve

• Define in the fan interface as a polynomial, OR

• Input fan curve to Tools > Tables & then select the curve.

Best Practices: Conditions

Page 15: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Natural Convection: Conditions on the exterior air boundary

– Convection

• Stagnation Inlet (0 Pa)

• Total temperature = Ambient temperature

– Radiation

• Boundary transparency = 1.0

• Radiation temperature is specified in the air continua

– Inside a room: Radiation temperature = wall temperature

– Outdoors: Turn on solar if device exposed to the sun during the day, at night Radiation Temperature = sky radiation temperature

Best Practices: Conditions

Page 16: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Solvers > Segregated Energy

– Fluid Under-Relaxation = 0.99

(default is 0.9)

– Solid Under-Relaxation = 0.9999

(default is 0.99)

Best Practices: Solution

Stopping Criteria

– Often convergence in 300 – 500

iterations.

– Observed residuals (non-

normalized)

• Energy residual < 1E-5

• Momentum residuals < 1E-8

– Convergence requires more

iterations for a finer mesh.

Scalability

– For typical size scales well to ~8

cores.

– I typically run with 2 or 4 cores.

Page 17: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Best Practices: Results

Page 18: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Best Practices: Results

Rthermal = (Tcenter of base – Tambient)

Heat power

Report (expression) from field functions:

($ThermocoupletemperatureReport -

$Tambient_K)/$Heat_power

Page 19: Best Practices Overview for Electronics Thermal …mdx2.plm.automation.siemens.com/sites/default/files...STAR-CCM+ Electronics Thermal Seminars Natural convection series – Best practices

Natural Convection

– Best practices: http://www.cd-adapco.com/webinar/electronics-best-practices-session-1-

simulating-natural-convective-airflow-electronic

– Small gaps: http://www.cd-adapco.com/webinar/electronics-best-practices-session-2-natural-

convection-analyses-thin-air-gaps

– Radiation: http://www.cd-adapco.com/webinar/electronics-best-practices-session-3-natural-

convection-analyses-thermal-radiation

Forced Convection

– Best practices, part 1: http://www.cd-adapco.com/webinar/best-practices-forced-convection-

simulations-series-1-part-1

– Best practices, part 2: http://www.cd-adapco.com/webinar/best-practices-forced-convection-

simulations-series-1-part-2

– Modeling complex heat sinks: http://www.cd-adapco.com/webinar/efficient-modeling-

complex-heat-sinks-series-2-part-1

– Geometry preparation: http://www.cd-adapco.com/webinar/geometry-preparation-electronics-

thermal-simulations-series-2-part-2

More Information: Web Seminar Recordings