24
Including EMC Proven™ Professional Certification Best Practices for Deploying Celerra NAS EMC Proven Professional Knowledge Sharing 2009 Ron Nicholl Systems Engineer Sr. [email protected] Large IT Division

Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

Including EMC Proven™ Professional Certification

Best Practices for Deploying Celerra NAS

EMC Proven Professional Knowledge Sharing 2009

Ron NichollSystems Engineer [email protected] IT Division

Page 2: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

Table of Contents Introduction......................................................................................................................... 3

Celerra Backend Storage Layout and Configuration .......................................................... 4

CLARiiON Fibre Channel Drives .................................................................................. 5

CLARiiON ATA Drives ................................................................................................. 5

CLARiiON Initiator Registration ................................................................................... 7

Symmetrix®..................................................................................................................... 8

Symmetrix Fibre Adaptor Requirements ........................................................................ 8

Importing Devices into the Celerra Gateway...................................................................... 9

Implementing a Reliable and Flexible Network Configuration........................................ 10

Planning Windows Domain Interaction............................................................................ 15

Best Practices for Backing up the Celerra Environment .................................................. 17

Quick Reference for adding a Tape Device to the Celerra ............................................... 20

Monitoring the Performance of the Celerra Solution ....................................................... 21

Conclusion ........................................................................................................................ 24

Additional Resources ........................................................................................................ 24

Biography.......................................................................................................................... 24

Disclaimer: The views, processes or methodologies published in this article are those of the authors. They do not necessarily reflect EMC Corporation’s views, processes or methodologies.

2009 EMC Proven Professional Knowledge Sharing 2

Page 3: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

Introduction

Deploying Celerra® Network Attached Storage (NAS) involves many pieces of the

Information Technology (IT) infrastructure ranging from backend storage, network

topology, and beyond. Choosing a solid design can make the difference between

mediocre performance and exceeding expectations.

NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly

Storage Area Network (SAN) based storage solution. A Celerra NAS solution can offer

much of the same functionality seen traditionally on the storage array over Internet

Protocol (IP). This functionality includes replication, checkpoints, mirroring and more.

You will improve performance and reliability by applying best practices to your design.

This article will describe:

1. How to layout the backend storage devices

2. How to implement a network configuration for greater flexibility and reliability

3. Planning Windows domain interaction

4. Best practices for backing up the Celerra environment

5. Monitoring the performance of the Celerra solution

There are many components to a successful NAS design. You can leverage the

network topology to provide greater scope of service. You can configure the Common

Internet File System (CIFS) and network file systems (NFS) clients for greater

performance and reliability. Applying standards can lower cost of ownership and

improve reliability. This information will help you to optimally configure the Celerra.

2009 EMC Proven Professional Knowledge Sharing 3

Page 4: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

Celerra Backend Storage Layout and Configuration

Layout and configuration of the backend storage is the first consideration to optimize the

Celerra. Celerra Gateway is the focus. The integrated Celerras are configured at the

time of installation. Pre-defined storage templates that have been tested to uniformly

balance performance and availability are applied.

The CLARiiON® backend is the most common and cost effective primary storage used in

conjunction with the Celerra. You must analyze existing workloads before any

CLARiiON can be considered. Individual storage processor (SP) utilization should be

well under 50% to accommodate existing performance levels as well as the addition of

new NAS activity. Dedicating RAID Groups (RG) to NAS workloads is recommended.

Competing workloads will impact performance and make performance estimates difficult;

the more spindles you can dedicate to NAS the better.

Use the following general settings when creating new Logical Unit Numbers (LUNs):

LUN ID: Select the first available value

Element Size: 128

Rebuild Priority: ASAP

Verify Priority: ASAP

Enable Read Cache: Selected

Enable Write Cache: Selected

Enable Auto Assign: Cleared (off)

Number of LUNs to Bind: (see drive type and RAID configuration)

Alignment Offset: 0

LUN size: Must not exceed 2 TB

2009 EMC Proven Professional Knowledge Sharing 4

Page 5: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

CLARiiON Fibre Channel Drives RAID Types: 4+1 or 8+1 RAID 5, 1+1 RAID 1, No restriction RAID 6

Create two LUNs of equal size using the total sum of the RG. Assign LUN to the

opposite default owner SP to equally utilize both SPs.

CLARiiON ATA Drives RAID Types: 4+1 or 8 + 1 RAID 5, No restriction RAID 6, 4+1 RAID 3 (create one LUN

using the entire RG). We recommend RAID 3 for ATA drives with performance coming

close to FC for sequential workloads.

Create two LUNs using the entire contents of the RG in an 8+1 or a single LUN in a 4+1

RG. Each LUN within the RG needs the same default owner SP to provide the best

performance. Only one SP can address the RG at a time. Alternating LUN ownership

by RG will evenly distribute utilization across the storage processors.

2009 EMC Proven Professional Knowledge Sharing 5

Page 6: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

Once the RAID groups have been carved, create the storage group and select the new

LUNs. It’s important to change the Host ID (HLU) to 16 or above when adding LUNs to

a storage group. The CLARiiON will default to starting with zero for the first LUN added

to the storage group. HLU’s 0 -16 are reserved for the Celerra’s internal control

volumes. Avoid setting the HLU below 16 because it can cause serious issues.

Illustration follows on next page.

2009 EMC Proven Professional Knowledge Sharing 6

Page 7: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

CLARiiON Initiator Registration

Manually register the initiators once the Celerra Gateway has been zoned to the

CLARiiON. Always use redundant zoning practices.

CLARiiON initiator settings:

Hostname: Celerra Gateway Name

IP Address: 192.168.1.2 (The data movers do not have a CLARiiON agent. I have

chosen the internal IP address for each data mover)

Initiator Type: CLARiiON Open

Array CommPath: Disabled

Failover Mode: 0

Unit Serial Number: Array

2009 EMC Proven Professional Knowledge Sharing 7

Page 8: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

Symmetrix®

The Symmetrix platform can be used for data volumes and is generally recommended

as the location for the Celerra’s internal control volumes.

We do not recommend the use of Symmetrix meta volumes. Instead, use standard

hyper volumes. The Celerra can use standard mirrors, parity RAID, and RAID 5.

Standard mirrors are typically used for the highest possible performance. It is important

to choose a consistent protection standard if you plan to use the Celerra Automatic

Volume Management (AVM). The Celerra will compile all of the devices into a single

AVM pool “symm_std.”

Just like the CLARiiON, spindle count is important with the Symmetrix. Keeping the

hyper sizes small and uniform helps meet this requirement to realize the best

performance. Create devices in multiples of eight for use with AVM. If multiples of eight

are not possible, use even numbers (8, 4, and 2.) The hyper emulation type must be

CELERRA_FBA.

An example follows:

symconfigure -sid XXX -f filename -nop -v (preview, prepare, commit)

Device File:

create dev count=X, size=12394, emulation=CELERRA_FBA, config=2-way-mir;

Symmetrix Fibre Adaptor Requirements

The Celerra requires that Fibre Adaptor (FA) ports have specific configurations. The

ports should not be shared with other host types due to these specific FA requirements.

Validate current port configuration settings.

2009 EMC Proven Professional Knowledge Sharing 8

Page 9: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

Specifically check the following:

Protocol Flag: State:

Common_Serial_Number Disabled

Avoid_Reset_Broadcast Enabled

Volume_Set_Addressing Disabled

symconfigure -sid XXX -f filename -nop -v (preview, prepare, commit)

Device File

set port XX:X attribute=enable|disable;

Importing Devices into the Celerra Gateway

Import the devices once they have been created and zoned to the Celerra Gateway

using Celerra Manager. Expand the Storage folder and then Systems. You will see a

list of the storage systems imported into the Gateway and their health status. Below that

is the “rescan” button. This will initiate the scan and subsequent import of new devices

across each data mover including the standby.

Run the following command on a per data mover basis. server_devconfig server_x –p –

scsi –disks to preview what devices will be added during the import process.

Example of the output truncated:

server_2 :

SCSI disk devices :

chain= 58, scsi-58 : no devices on chain

chain= 59, scsi-59 : no devices on chain

chain= 60, scsi-60 : no devices on chain

chain= 61, scsi-61 : no devices on chain

chain= 62, scsi-62 : no devices on chain

chain= 63, scsi-63 : no devices on chain

2009 EMC Proven Professional Knowledge Sharing 9

Page 10: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

chain= 64, scsi-64

stor_id= APM00000000000 celerra_id= 0000000000000000

tid/lun= 1/0 type= disk sz= 102399 val= 7 info= DGC RAID 5 02241200100012NI

tid/lun= 1/1 type= disk sz= 102399 val= 8 info= DGC RAID 5 02241300110013NI

tid/lun= 1/2 type= disk sz= 102399 val= 9 info= DGC RAID 5 02242800120028NI

tid/lun= 1/3 type= disk sz= 102399 val= 10 info= DGC RAID 5 02242900130029NI

If you are adding a new CLARiiON array to an existing Celerra gateway, update

/etc/hosts on the control station with the new CLARiiON information before you rescan.

The Celerra control station will regularly talk to the CLARiiON SPs for health and

performance information.

Example: Append the /etc/hosts file using the following format.

<SP A IP> A_APM<SP A Serial No.> <Fully qualified DNS NAME> # CLARiiON SP

<SPB IP> B_APM<SP AB Serial No.> <Fully qualified DNS NAME> # CLARiiON SP

The Celerra will create a new storage pool based on the new storage type and

protection level. If you are adding additional LUNs or hyper volumes from an array the

Celerra is already using, the existing storage pool will be added.

Implementing a Reliable and Flexible Network Configuration

Implementing a network configuration that provides flexibility and reliability depends on

your use case. This section covers the Celerra high availability network configurations.

Balancing your solution’s cost with availability requirements is a challenge in most

environments. Both EtherChannel and Link Aggregation are available with the Celerra.

Both require that the network infrastructure meets specific qualifications before they can

be used. They offer higher availability than any single port with the potential of greater

total throughput. You should not expect an increase in bandwidth for any single host.

2009 EMC Proven Professional Knowledge Sharing 10

Page 11: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

EtherChannel is a port trunking technology that allows grouping of multiple physical

ports into one larger trunk. Greater bandwidth and availability are the benefits.

EtherChannel requires ports in multiples of two, and a total of eight, to create a new

trunked interface. The interface can be combined with a fail safe network (FSN) to

provide even greater availability. The Celerra requires that we configure the connected

network switch ports for EtherChannel, primarily seen in Cisco switches. Statistical load

balancing distributes the traffic between ports.

Three options are available to determine how traffic is distributed to the trunk members:

Media Access Control Address (MAC): a port is chosen based on source and

destination MAC addresses

IP: the default indicating that source and destination IP addresses are used to

direct traffic to the trunk members

Transmission Control Protocol (TCP): the output traffic port is directly based

on the source and destination IP addresses.

Example: How to create a trunked interface. (The double quotes are required when

using the device options.)

server_sysconfig <data mover name> -virtual -name <virtual interface name> -create trk -option "device=<port,port> lb=<load balance type>”

Link aggregation is the second method to create a highly available network by trunking.

The Celerra’s link aggregation is based on the IEEE 802.3ad Link Aggregation Control

Protocol (LACP) This standard allows combining similar physical ports into one logical

port. This protocol gives the administrator a unique opportunity to use an odd number of

ports up to a maximum of twelve. The protocol will look at all connected ports and

determine the number and speed of each connection. The majority wins in this case,

even if it’s not the fastest available connection.

2009 EMC Proven Professional Knowledge Sharing 11

Page 12: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

The odd connection(s) are not allowed to be part of the aggregation. The Celerra

interface will appear as a trunk with frames being transmitted on each link. The network

switch must support LACP for the protocol to work correctly. The same load balancing

options used for Ethernet Channel are applied to link aggregation (MAC, IP, TCP). LACP

can be combined with FSN to provide an extra layer of availability.

Example: How to create a trunk using the LACP protocol.

server_sysconfig <data mover name> -virtual -name <virtual interface name> -create trk -option "device=<port, port> protocol=lacp lb=load balance type"

The Fail Safe Network (FSN) is a virtual device that can add an additional layer of

availability for the Celerra network interfaces. An FSN is switch independent and is

maintained within the Celerra. It has a primary and a passive secondary physical

connection. The link status of the primary is monitored for interruption. If the primary

link goes down, everything is transferred to the standby including the MAC address. It’s

a great way to have switch fault tolerance and can be combined with EtherChannel and

Link aggregation.

Example: How to create an FSN.

Server_sysconfig <data mover name> –virtual –name <fsn_name> -create fsn –option

“dev=<dev>,<dev>”

The following diagram (on the next page) combines a highly available trunked interface

and an FSN. This offers the greatest protection to maintain Celerra access to the

network. An increase in client performance should not be expected.

2009 EMC Proven Professional Knowledge Sharing 12

Page 13: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

`

`

Network ClientsSwitches

Trunk

Data Mover

Ethernet

A

B

FSN

Jumbo frames can improve Celerra network performance at the interface level. Jumbo

frames change the Maximum Transmission Unit (MTU) of the network frame from 1500

bytes up to 9000 bytes. A single 9K jumbo frame replaces six standard 1.5k frames.

The overhead savings can reduce CPU utilization and increase network bandwidth.

Jumbo frames are better suited to larger I/Os. The bad news is that jumbo frames

require every component of the network frames path to support the larger MTU size.

The fact that every component must support jumbo frames relegates their use largely to

the data center. They are great for server to server transfers if the requirements are

met. The result of using jumbo fames without meeting the requirements will mean data

layer fragmentation and reassembly penalties. Network performance can be adversely

impacted by slowing routers and switches.

Example: How to change the Celerra interface to transmit and receive jumbo frames.

server_ifconfig <data mover name> <interface> mtu=9000

2009 EMC Proven Professional Knowledge Sharing 13

Page 14: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

All of the configurations listed use some of the same basic command sets. The two

most common are checking port and virtual interface configuration.

Example: How to check port configuration

server_sysconfig <data mover name> –pci

Slot: 2

Broadcom Gigabit Ethernet Controller

0: cge2 IRQ: 20

speed=1000 duplex=full txflowctl=disable rxflowctl=disable

1: cge3 IRQ: 21

speed=auto duplex=auto txflowctl=disable rxflowctl=disable

Example: How to check virtual interface information

server_ifconfig <data mover name> –all

server_2 :

<interface name> protocol=IP device=fsn0

inet=<IP address> netmask=<subnet mask> broadcast=<broadcast address>

UP, ethernet, mtu=1500, vlan=0, macaddr=0:60:16:1d:1e:c8

loop protocol=IP device=loop

inet=127.0.0.1 netmask=255.0.0.0 broadcast=127.255.255.255

UP, loopback, mtu=32768, vlan=0, macaddr=0:0:0:0:0:0 netname=localhost

el31 protocol=IP device=mge1

inet=192.168.2.2 netmask=255.255.255.0 broadcast=192.168.2.255

UP, ethernet, mtu=1500, vlan=0, macaddr=0:60:16:19:a0:5 netname=localhost

el30 protocol=IP device=mge0

inet=192.168.1.2 netmask=255.255.255.0 broadcast=192.168.1.255

UP, ethernet, mtu=1500, vlan=0, macaddr=0:60:16:19:a0:6 netname=localhost

2009 EMC Proven Professional Knowledge Sharing 14

Page 15: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

Planning Windows Domain Interaction

Planning Windows domain interaction is an important factor when setting up the Celerra

for CIFS access. You must consider many variables including multiple domain

interaction, trust relationships, and access considerations.

It’s difficult to plan for every use case for the Celerra. It is important to define what

environments will need access to the data mover. Map out the domains in your

environment including trust relationships. Trust relationships will dictate cross domain

access.

An example: Clients in the Production A and B environment have access to all

production and development domains. Clients in the Development C domain will be

unable to access CIFS servers in production A or B.

Production A Production BDevelopment C

Example: How to join a CIFS server to a domain

Server_cifs <data mover name> -Join (or –Unjoin)<computer name>=<CIFS server

name>,domain=<domain FQDN>,admin=<admin name>,ou=”ou=<AD Orginational

Unit>

Include Virtual Data Movers (VDM) if you have any plans to replicate a CIFS file system.

A VDM is how Celerra creates a container to allow the CIFS configuration, audit logs,

credentials and Kerberos to be replicated to a destination Celerra.

Example: How to create a new VDM with CIFS running

nas_server -name <VDM Name> -type vdm -create <data mover -setstate loaded

2009 EMC Proven Professional Knowledge Sharing 15

Page 16: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

Consider your organizations’ security and standards when creating new CIFS servers.

It’s possible to have a CIFS server from a development and production environment

connected to the same file system within the data mover. The default behavior when

creating a new CIFS share is to allow all CIFS servers on the same data mover access

to the file system. A best practice is to keep production and development activities

separate. Some sensitive environments also prohibit different networks from touching

the same piece of hardware.

It’s always important to keep system times current, but with CIFS it’s critical because of

the Windows Kerberos authentication protocol. Created by the Massachusetts Institute

of Technology and adopted by Windows, Kerberos facilitates a ticketing system for

authentication. When a CIFS user connects, the Kerberos Distribution Center (DC)

issues an access ticket of sorts that is time sensitive. If the time between the DC and

the data mover skews greater than the default five minutes you will have access issues.

Example: How to start the Network Time Protocol (NTP) on a data mover to keep time

up to date.

server_date <data mover name> timesvc start ntp –i <hh:mm> <NTP time server IP>

The Domain Name System (DNS) relates host names to IP addresses. The Celerra

DNS provides connectivity to the DNS lookup servers in the environment. Caching of

previous lookups improves the lookup performance of clients accessing the Celerra.

The Celerra allows up to three DNS lookup servers per domain on each data mover.

Example: How to configure DNS on the data mover.

server_dns <data mover> <domain name> <IP of DNS server>

Distributed File System (DFS) is a Windows service that allows for consolidation and

portability of file systems without client interaction. DFS is the ‘middleman’ for CIFS

share points. You realize some of the benefits during file system migrations. Without

DFS, every client would have to be updated with a new share point every time a path

changes. DFS centralizes and automates this; the Windows DFS client checks with the

DFS server for path changes. Your mapped drive never needs to change.

2009 EMC Proven Professional Knowledge Sharing 16

Page 17: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

Best Practices for Backing up the Celerra Environment

Protecting data in a NAS environment presents unique challenges. The Celerra can

support both NFS and CIFS permission sets. The traditional methods of backing up file

systems via CIFS or NFS no longer provides complete protection.

The Network Data Management Protocol (NDMP) bridges the gap in backing up

multiprotocol file systems. NDMP requires a minimum of an NDMP host (data mover),

NDMP client with backup software, and tape drive/tape. The flow of data starts with the

backup software initiating a backup. A request is sent over the network to the NDMP

host to begin the backup. The data mover sets up a new session. The data mover then

begins the backup, and the data flows from the storage unit to the data mover and back

out the AUX fibre port to the tape drive. The only traffic flowing over the network is

control, catalog, and tape library commands.

NDMP Client with Backup

Software

Data Mover/ NDMP Host

Storage System

NDMP Control Data Over Ethernet

Tape Drive

Robotic Control/NDMP Data Stream

2009 EMC Proven Professional Knowledge Sharing 17

Page 18: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

The Celerra supports a number of NDMP options such as Direct access restore (DAR),

NDMP with integrated SNAP technology, and Volume based backups (VBB). DAR

allows a restore to begin from the location on the tape where the data resides. In a

basic NDMP restore, the data on the tape is read from the beginning to the end until the

restore point is found. This will significantly extend the total restore time. DAR works by

sending historical and tape marker information to the backup software. The biggest

drawback to DAR is the drop in backup performance due to the additional overhead.

The restore times will be significantly improved with the use of DAR.

NDMP with integrated SNAP technology helps ensure consistent backups with custom

scripting. This feature automates the creation of snap shots of file systems and the

subsequent NDMP backup. The SNAP sessions are automatically created and

destroyed regardless of whether the backup completes successfully or not. Your backup

software must support this option. Always consider the snap session limits of the Data

Access Real Time (DART) code you are running and the available storage.

VBB is a relatively new function of the Celerra NDMP backups. This option allows for a

block level backup as opposed to the file system level NDMP backup. VBB will backup

an entire meta-volume. It is suited to file systems that have been created using

dedicated volumes. AVM will take slices from multiple different meta-volumes. VBB

supports both full and incremental backups. A read only file system is required, but the

use of snapshots or Celerra TimeFinder® operations for Symmetrix based storage can

facilitate this need. Directory and file level filtering are not supported.

The NDMP protocol is a powerful tool for backing up the Celerra. There are several

points to monitor within the environment to maintain performance. The data that is being

backed up via NDMP travels to the tape device over fibre channel. The control data for

the backup stream is sent to the host running the backup software over the Ethernet

network. Validate that the server running the backup software has sufficient memory,

CPU, and network bandwidth to keep up with the NDMP stream. Using DAR will impact

system performance with the additional catalog information that must be created and

stored. If you are using 3-Way NDMP backups, be sure to have sufficient capacity and

error-free links between the primary and secondary data movers.

2009 EMC Proven Professional Knowledge Sharing 18

Page 19: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

Backup software vendors often require you to have NDMP dedicated tape devices. This

requirement can reduce the flexibility of your current backup infrastructure. When

possible, sharing NDMP tape drives between your Celerra data movers will maintain a

lower cost solution and have the benefit of pushing the tape drives into streaming the

data to tape. If the drives are not pushed hard enough, you may “shoe shine” the tape

device. The tape drive will constantly be stopping and starting as it waits for the tape

buffers to fill.

The Celerra backend will also impact your NDMP performance. The backups of file

systems residing on the same spindles can cause contention on the backend storage.

Mapping out where the file systems reside on the backend will allow you to strategically

create backup policies. A tool called wherisfs is located on the control station to help

map out where the file system resides.

Quick reference for adding a tape device to the Celerra follows on the next page.

2009 EMC Proven Professional Knowledge Sharing 19

Page 20: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

Quick Reference for adding a Tape Device to the Celerra

The same steps must be completed for every data mover that is zoned to a tape device.

1. Verify the data mover can see the tape device after zoning is complete. Probe the data mover for any attached non-disks (gatekeepers will also show as non-disks.) server_devconfig <data mover name> -p -s -n chain= 32, scsi-32 stor_id= celerra_id= tid/lun= 0/0 type= tape info= IBM ULT3580-TD4 0000 tid/lun= 0/1 type= jbox info= IBM 00000000 000000000000000000 0 2. Update the Celerra device CAM tables importing the new device. server_devconfig <data mover name> -c -s -n Discovering storage (may take several minutes) server_2 : done 3. Validate the import was successful. List out the Celerra active device table - server_devconfig <data mover name> -l -s –n server_2 : Scsi Device Table name addr type info gk161 c16t0l15 disk 567079440360SI000187461179 tape1 c32t0l0 tape IBM ULT3580-TD4 0000 jbox2 c32t0l1 jbox IBM 00000000 000000000000000000 0 gk641 c64t1l0 disk 5 021604001000APM00052502173 gk961 c96t1l0 disk 5 021604001000APM00052502173 gk01 c0t0l15 disk 567079440450SI000187461179

2009 EMC Proven Professional Knowledge Sharing 20

Page 21: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

Monitoring the Performance of the Celerra Solution

There are several methods to monitor the Celerra’s performance. The following

information covers the Celerra Manager down to device level reporting in the Celerra

Monitor, and the available Performance Manager within EMC ControlCenter®.

The Celerra Manager is the most basic component for managing and monitoring the

Celerra. The Celerra Manager provides basic statistics on data mover and network

utilization to give you a high level view of the Celerra’s health.

Data Mover Utilization Stats

The Celerra Manager also provides the ability to easily setup notifications via email or

Simple Network Management Protocol (SNMP) traps on data mover memory and CPU

limits. Monitoring storage pool utilization is just as important as performance. Start

looking at utilization of 80% or more. This will give you time to plan and implement

additional storage capacity.

The Celerra Monitor provides a comprehensive graphical user interface for viewing

detailed performance and configuration information. The first thing you need is the

Advanced License Edition of the Celerra Manager. The Celerra Monitor is used to

display data mover statistics including detailed network file system, server, volume, and

storage-system configurations. The Celerra monitor can even provide statistics on

individual CIFS and NFS calls. The biggest drawback to the Celerra monitor is the lack

2009 EMC Proven Professional Knowledge Sharing 21

Page 22: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

of long term historical data. The Celerra Monitor is not intended for long term

performance data archive and retrieval.

The Performance Manager is a component of EMC ControlCenter and provides a

powerful tool to monitor both the long and short term performance of multiple

components of the storage environment. The benefit to Celerra performance is the

ability to pull long term statistics on multiple key performance points and quickly

correlate them with backend storage statistics. It’s common for a performance issue to

appear only during monthly or quarterly cycles and be non-existent during day to day

operations. Performance Manager gives you the long term data you need to make those

correlations.

Celerra Statistics on Data Mover Network Performance

2009 EMC Proven Professional Knowledge Sharing 22

Page 23: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

CLARiiON Performance Statistics on a RAID Group used by the Celerra.

The wherisfs script is a quick and easy tool that is already on the Celerra control station.

This script provides details on what devices are being used by what file systems. In a

CLARiiON backend, you will also get a report on what RAID groups compose a file

system. It’s a great way to map out the Celerra backend usage. If you have identified a

hot disk or RG through Performance Manager or Navisphere® Analyzer it’s a short step

to find out what file systems are impacted.

Location: /nas/tools/.whereisfs

usage: whereisfs {-all|-ld|-rg} [-ld|-rg]

Options: -all in case of CLARiiON backend prints all 3 CLARiiON reports

in case of Symmetrix backend prints Symmetrix reports

-ld in case of CLARiiON backend prints the CLARiiON report with LUNs and

DVOLs

-rg in case of CLARiiON backend prints the CLARiiON report with RAID Groups

2009 EMC Proven Professional Knowledge Sharing 23

Page 24: Best Practices for Deploying Celerra NAS...NAS solutions are quickly becoming a viable alternative to mitigate the cost of a wholly Storage Area Network (SAN) based storage solution

2009 EMC Proven Professional Knowledge Sharing 24

Conclusion

Deploying Celerra NAS requires many considerations. Those considerations involve

multiple areas of IT expertise including network, SAN, Windows, and UNIX. You can

implement a cost effective and flexible NAS solution with detailed planning and sound

best practices.

Additional Resources

The following EMC Whitepapers are available on Powerlink to assist with the topics

covered in the document:

Managing Celerra Volumes and File Systems with Automatic Volume Management

Configuring and Managing Celerra Network High Availability

Configuring NDMP Backups on Celerra

Configuring CIFS on Celerra

http://www.ndmp.org – A great reference site to everything NDMP. This site provides a

history of the protocol, the details of the various revisions, and where things are headed.

Biography