30
Outline History and motivation Recent & new function spaces Properties Outlook Besov and Triebel-Lizorkin spaces of variable smoothness and integrability Jan Vyb´ ıral Austrian Academy of Sciences RICAM, Linz, Austria September 2011 FSDONA-2011, Germany joint work with Henning Kempka (University of Jena, Germany)

Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Besov and Triebel-Lizorkin spacesof variable smoothness and integrability

Jan Vybıral

Austrian Academy of Sciences

RICAM, Linz, Austria

September 2011FSDONA-2011, Germany

joint work with Henning Kempka (University of Jena, Germany)

Page 2: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Outline

◮ History and motivation◮ Besov and Triebel-Lizorkin spaces◮ Isotropic vs. anisotropic spaces

◮ Recent and new function spaces◮ Function spaces of variable integrability◮ Function spaces of variable smoothness◮ Function spaces of variable integrability and smoothness

◮ Properties of Fs(·)p(·),q(·)(R

n) and Bs(·)p(·),q(·)(R

n)

◮ Traces◮ Embeddings◮ Local means◮ Differences◮ Decompositions

◮ Outlook

Page 3: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

History and motivation

Classical spaces of functions:

Lebesgue spaces (Lp)Continuous and continuously differentiable functions (C ,C k)Hardy spaces (Hp)

Classical spaces of distributions:

Sobolev spaces

W kp (R

n) = {f ∈ S ′(Rn) : ‖Dαf ‖p <∞, |α| ≤ k}

1950’s and 1960’s: Slobodecki spaces, Besov spaces defined bydifferences, Bessel potential spaces

Page 4: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Typical properties:

Sobolev embedding theorem:

W k0p0(Rn) → W k1

p1(Rn)

if 0 ≤ k1 ≤ k0 are natural numbers, 1 ≤ p0 ≤ p1 <∞ and

k0 −n

p0= k1 −

n

p1

Trace embedding theorem: (tr f )(x ′) = f (x ′, 0)

tr : W 1p (R

n) → W1−1/pp (Rn−1), 1 < p <∞

...and many others...

Page 5: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Fourier-analytic function spaces

Besov and Triebel-Lizorkin spaces:smooth dyadic resolution of unity

ϕ ∈ S(Rn) : ϕ(x) = 1 if |x | ≤ 1 and ϕ(x) = 0 if |x | ≥ 32

ϕ0 := ϕ, ϕj(·) := ϕ(2−j ·)− ϕ(2−j+1·)

∞∑

j=0

ϕj = 1

f =

∞∑

j=0

(ϕj f )∨, convergence in S ′(Rn)

Page 6: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Definition:

(i) s ∈ R, 0 < p, q ≤ ∞

‖f |B spq(R

n)‖ =

( ∞∑

j=0

2jsq‖(ϕj f )∨|Lp(R

n)‖q)1/q

(ii) s ∈ R, 0 < p <∞, 0 < q ≤ ∞

‖f |F spq(R

n)‖ =

∥∥∥∥( ∞∑

j=0

2jsq |(ϕj f )∨(·)|q

)1/q

|Lp(Rn)

∥∥∥∥

Page 7: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Advantages:

◮ Two (closely related) scales including many special cases(W k

p , 1 < p <∞, Zygmund spaces, Slobodecki spaces)

◮ Many tools and results available (like embeddings, traces,Fourier multipliers, pointwise multipliers, . . . )

◮ Many equivalent characterisations (differences, local means,...)

◮ Good decomposition properties (atoms, molecules, wavelets)

◮ Applications to PDE’s, stochastic, numerics, . . .

◮ Many generalisations (anisotropic spaces, spaces withdominating mixed smoothness, modulation spaces, . . . )

Disadvantages:

◮ Rather complicated definition(three parameters, decomposition of unity, Fourier transform)

◮ Some important spaces are not included (L1, L∞,W11 ,BV )

◮ Spaces on domains?

Page 8: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Isotropy vs. anisotropy

B and F spaces are isotropic. . . i.e. invariant under shifts and rotations

sometimes inconvenient → anisotropic spaces, weighted spaces,spaces of dominating mixed smoothness, . . .

h − p Finite Elements Method (Babuska,. . . )piecewise analytic functions

Page 9: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Recent function spaces

Function spaces with variable integrability

p : Rn → (0,∞] - measurable functionLp(·)(R

n) : all f : Rn → [−∞,∞], such that there is a λ > 0

p(·)(f /λ) =

Rn

ϕp(x)

(|f (x)|

λ

)dx <∞

is finite, where

ϕp(t) =

tp if p ∈ (0,∞),

0 if p = ∞ and t ≤ 1,

∞ if p = ∞ and t > 1

. . . the Minkowski functional of {f :∫Rn |f (x)|

p(x)dx ≤ 1}. . .

Page 10: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Rn∞ := {x ∈ R

n : p(x) = ∞} and Rn0 := R

n \Rn∞

‖f |Lp(·)(Rn)‖ = inf{λ > 0 : p(·)(f /λ) ≤ 1}

= inf

{λ > 0 :

Rn0

(f (x)

λ

)p(x)

dx < 1 and |f (x)| < λ for a.e. x ∈ Rn∞

}

Norm if p(·) ≥ 1; a quasi-norm if p− := infz∈Rn p(z) > 0

W 1p(·)(R

n) = {f ∈ Lp(·)(Rn) : ∇f ∈ Lp(·)(R

n)}

Orlicz (1931), Kovacik & Rakosnık (1991)Diening & Ruzicka (≈ 2000)

Page 11: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Maximal operator in Lp(·)(Rn) & regularity conditions

Definition:(Regularity assumptions): g ∈ C (Rd )

(i) g is locally log-Holder continuous (g ∈ Clogloc (R

n))

|g(x) − g(y)| ≤c

log(e + 1/|x − y |), x , y ∈ R

n

(ii) g is globally log-Holder continuous (g ∈ C log (Rn)) if it islocally log-Holder continuous and

∃c > 0 and g∞ ∈ R : |g(x)− g∞| ≤c

log(e + |x |), x ∈ R

n

If 1/p(·) ∈ C log (Rn) and p− > 1, then M is bounded on Lp(·)(Rn)

. . . recent book Lebesgue and Sobolev spaces with variable

exponents by L. Diening, P. Hasto, P. Harjulehto, and M. Ruzicka.

Page 12: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Function spaces with generalised smoothness

Many different approaches, starting already in 1960’s

Spaces with generalised smoothness:

Gol’dman, Kalyabin, Leopold, Farkas, Moura, . . .Replace 2js by σj

Spaces of variable smoothness:

Unterberger, Leopold, Besov, Almeida, Samko, . . .Replace s by s(x)

2-microlocal spaces:

Peetre, Bony, Jaffard, Kempka, . . .Replace 2js by wj(x)

Page 13: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

New function spaces:

Variable smoothness AND integrability

0 < p− := infz∈Rn

p(z) ≤ p(x) ≤ supz∈Rn

p(z) =: p+ <∞, x ∈ Rn

Definition of Fs(·)p(·),q(·)(R

n) and Bs(·)p(·),q(R

n)

(L. Diening, P. Hasto, and S. Roudenko, 2009)s : Rn → R, p, q : Rn → (0,∞] - measurable functions

‖f |Fs(·)p(·),q(·)(R

n)‖ =

∥∥∥∥( ∞∑

j=0

2js(·)q(·)|(ϕj f )∨(·)|q(·)

)1/q(·)

|Lp(·)(Rn)

∥∥∥∥

‖f |Bs(·)p(·),q(R

n)‖ =

( ∞∑

j=0

‖2js(·)(ϕj f )∨(·)|Lp(·)(R

n)‖q)1/q

Page 14: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Definition of Bs(·)p(·),q(·)(R

n) (A. Almeida and P. Hasto, 2010)

‖f |Bs(·)p(·),q(·)(R

n)‖ = ‖2js(·)(ϕj f )∨(·)|ℓq(·)(Lp(·))‖

(fν)ν∈N0 . . . sequence of Lp(·)(Rn) functions

ℓq(·)(Lp(·))(fν) =∞∑

ν=0

inf

{λν > 0 : p(·)

(fν

λ1/q(·)ν

)≤ 1

}

If q+ <∞:

ℓq(·)(Lp(·))(fν) =∑

ν

‖|fν |q(·)|L p(·)

q(·)

The (quasi-)norm in the ℓq(·)(Lp(·)) spaces is defined as usual by

‖fν |ℓq(·)(Lp(·))‖ = inf{µ > 0 : ℓq(·)(Lp(·))(fν/µ) ≤ 1}

Page 15: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Properties of As(·)p(·),q(·)(R

n)

Hardy-Littlewood maximal operator M is not bounded on

Lp(·)(ℓq(·)) and ℓq(·)(Lp(·)) for q(·) variable!

Instead - convolutions with radial decaying kernels!

ην,m(x) := 2nν(1 + 2ν |x |)−m

Page 16: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Theorem:(i) (DHR09) For m > n and 1/p, 1/q ∈ C log(Rn) with1 < p− ≤ p+ <∞ and 1 < q− ≤ q+ <∞:

‖(ην,m ∗ fν)ν∈N0 |Lp(·)(ℓq(·))‖ . ‖(fν)ν∈N0 |Lp(·)(ℓq(·))‖

(ii) (AH10 & KV11) For m > n + clog(1/q) and1/p, 1/q ∈ C log(Rn) with p(·) ≥ 1:

‖(ην,m ∗ fν)ν∈N0 |ℓq(·)(Lp(·))‖ . ‖(fν)ν∈N0 |ℓq(·)(Lp(·))‖

r -trick:Theorem: Let r > 0, ν ≥ 0 and m > n. Then

|g(x)| ≤ c(r ,m, n)(ην,m ∗ |g |r )1/r (x)

for all g ∈ S ′(Rd ) with supp g ⊂ {ξ : |ξ| ≤ 2ν+1}.

Page 17: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Properties of the new function spaces

◮ Independence on the decomposition of unity

◮ Boundedness of the ϕ-transform (. . . Frazier & Jawerth . . . )

◮ Atomic & molecular decomposition

◮ Wavelet decomposition

◮ Traces

◮ Sobolev embeddings

◮ Local means

◮ Differences

◮ Fourier multipliers

Page 18: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Traces

Traces on hyperplanes

Theorem(DHR): Under regularity conditions on p, q and s and if

s(·)−1

p(·)− (n − 1)

(1

min(p(·), 1)− 1

)> 0

then

tr Fs(·)p(·),q(·)(R

n) = Fs(·)− 1

p(·)

p(·),p(·) (Rn−1)

Page 19: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Sobolev Embeddings

(V09, AH10)

s1(x) ≤ s0(x), s0(x)−n

p0(x)= s1(x)−

n

p1(x), x ∈ R

n

Fs0(·)p0(·),q(·)

(Rn) → Fs1(·)p1(·),q(·)

(Rn)

Bs0(·)p0(·),q(·)

(Rn) → Bs1(·)p1(·),q(·)

(Rn)

infx∈Rn

(s0(x)− s1(x)) > 0 =⇒ Fs0(·)p0(·),q0(·)

(Rn) → Fs1(·)p1(·),q1(·)

(Rn)

Page 20: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Local means

Definition of B- and F-spaces works with ϕ∨j ∗ f

‖f |B sp,q(R

n)‖ = ‖2js(ϕ∨j ∗ f )|ℓq(Lp)‖

Under several conditions (smoothness, vanishing moments,Tauberian conditions) this may be replaced by ψj ∗ f

Especially, ψj may have compact support → local means

Connected with the boundedness of the Peetre maximal operator

Both these techniques extended to Bs(·)p(·),q(·)(R

n) and Fs(·)p(·),q(·)(R

n)

in (KV11)

Page 21: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Characterisation by differencesFirst order differences:

∆1hf (x) = f (x + h)− f (x), x ∈ R

n

Higher order differences:

∆Mh f (x) = ∆1

h(∆M−1h f )(x), M = 2, 3, . . .

Ball means of differences

dMt f (x) = t−n

|h|≤t

|∆Mh f (x)|dh =

B

|∆Mth f (x)|dh,

B = {y ∈ Rn : |y | < 1}, t > 0 and M ∈ N

σp := n

(1

min(p, 1)− 1

)and σp,q := n

(1

min(p, q, 1)− 1

)

Page 22: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Theorem: (cf. Triebel, Theory of function spaces; many forerun-ners: Nikol’skij, Lizorkin, Stein, Strichartz, Kalyabin, Besov, ...)(i) Let 0 < p <∞, 0 < q ≤ ∞ and σpq < s < M. Then

‖f |F sp,q(R

n)‖∗ := ‖f ‖p +

∥∥∥∥∥

(∫ ∞

0t−sq

(dMt f (x)

)q dt

t

)1/q ∣∣∣∣Lp(Rn)

∥∥∥∥∥

is an equivalent quasinorm on F sp,q(R

n).(ii) Let 0 < p, q ≤ ∞ and σp < s < M. Then

‖f |B sp,q(R

n)‖∗∗ := ‖f |Lp(Rn)‖+

∥∥∥∥(2ksdM

2−k f (x))∞k=−∞

|ℓq(Lp)

∥∥∥∥

is an equivalent quasinorm on B sp,q(R

n).

Page 23: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Triebel-Lizorkin spaces

‖f |Fs(·)p(·),q(·)(R

n)‖∗ := ‖f ‖p(·)

+

∥∥∥∥∥

(∫ ∞

0t−s(x)q(x)

(dMt f (x)

)q(x) dtt

)1/q(x) ∣∣∣∣Lp(·)(Rn)

∥∥∥∥∥

Discretized counterpart

‖f |Fs(·)p(·),q(·)

(Rn)‖∗∗ := ‖f ‖p(·) +

∥∥∥∥(2ks(x)dM

2−k f (x))∞k=−∞

∣∣∣∣Lp(·)(ℓq(·))∥∥∥∥

Besov spaces

‖f |Bs(·)p(·),q(·)(R

n)‖∗∗ := ‖f ‖p(·) +

∥∥∥∥(2ks(x)dM

2−k f (x))∞k=−∞

|ℓq(·)(Lp(·))

∥∥∥∥

Page 24: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Theorem (KV11): Let 1/p, 1/q ∈ C log(Rn) with p+, q+ <∞,

s ∈ Clog

loc (Rn), M ∈ N with M > s+ and

s− > σp−,q− ·

[1 +

clog(s)

n·min(p−, q−)

]

Then

Fs(·)p(·),q(·)(R

n) = {f ∈ Lp(·)(Rn) ∩ S ′(Rn) : ‖f |F

s(·)p(·),q(·)(R

n)‖∗ <∞}

and ‖ · |Fs(·)p(·),q(·)(R

n)‖ and ‖ · |Fs(·)p(·),q(·)(R

n)‖∗ are equivalent on

Fs(·)p(·),q(·)(R

n). The same holds true for ‖f |Fs(·)p(·),q(·)(R

n)‖∗∗.

Page 25: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Theorem (KV11): Let 1/p, 1/q ∈ C log(Rn), s ∈ Clogloc (R

n), M ∈ N

with M > s+ and

s− > σp− ·

[1 +

clog(1/q)

n+

clog(s)

n· p−

]

Then

Bs(·)p(·),q(·)(R

n) = {f ∈ Lp(·)(Rn)∩S ′(Rn) : ‖f |B

s(·)p(·),q(·)(R

n)‖∗∗ <∞}

and ‖ · |Bs(·)p(·),q(·)(R

n)‖ and ‖ · |Bs(·)p(·),q(·)(R

n)‖∗∗ are equivalent on

Bs(·)p(·),q(·)(R

n).

Page 26: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Decomposition techniquesSequence spaces

m ∈ Zn, j ∈ N0: Qj ,m cube in R

n with sides parallel to thecoordinate axes, centred at 2−jm and with side length 2−j

χj ,m := χQj,mits characteristic function

λ = {λj ,m : j ∈ N0,m ∈ Zn}

‖λ|fs(·)p(·),q(·)‖ :=

∥∥∥∥( ∞∑

j=0

m∈Zn

|2js(·)λj ,mχj ,m(·)|q(·)

)1/q(·)

|Lp(·)(Rn)

∥∥∥∥

=

∥∥∥∥∑

m∈Zn

2js(·)|λj ,m|χj ,m(·)|Lp(·)(ℓq(·))

∥∥∥∥

‖λ|bs(·)p(·),q(·)

‖ :=

∥∥∥∥∑

m∈Zn

2js(·)|λj ,m|χj ,m(·)|ℓq(·)(Lp(·))

∥∥∥∥

Page 27: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

ϕ-transform: Sϕf =(〈f , ϕj ,m〉

)j ,m

ϕj ,m. . . shifts and dilations of basic function(s) ϕ

Theorem: (DHR09)

Sϕ : Fs(·)p(·),q(·)(R

n) → fs(·)p(·),q(·)

Theorem: (K10): Atomic, molecular and wavelet decomposition

of Fs(·)p(·),q(·)(R

n) and Bs(·)p(·),q (and of 2-microlocal variants of these)

open for Bs(·)p(·),q(·)(R

n)

Page 28: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Outlook:

Spaces on domains:

- rather difficult due to the use of Fourier transform in thedefinition- usually defined by restriction- characterisation by differences- traces (at least for C∞-domains)- extension operators (at least for C∞-domains)- wavelets on domains- rough domains: Lipschitz?, or with boundary described again in

the terms of Fs(·)p(·),q(·)-spaces?

Duality

Mapping properties of classical operators

Page 29: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Approximation theory

Theoretical concepts of numerical analysis:

◮ widths

◮ entropy numbers

◮ best k-term approximation (through sequence spaces)

◮ linear vs. non-linear approximation

◮ greedy algorithms?

Page 30: Besov and Triebel-Lizorkin spaces of variable smoothness ...msekce.karlin.mff.cuni.cz/~vybiral/Vort/Conf/Tabarz.pdf · Lebesgue spaces (Lp) Continuous and continuously differentiable

Outline History and motivation Recent & new function spaces Properties Outlook

Literature

◮ L. Diening, P. Hasto, S. Roudenko: Function spaces of variable smoothness and

integrability, J. Funct. Anal. 256 (2009), (6), 1731–1768.

◮ A. Almeida, P. Hasto: Besov spaces with variable smoothness and integrability,J. Funct. Anal. 258 (2010), no. 5, 1628–1655.

◮ J. Vybıral: Sobolev and Jawerth embeddings for spaces with variable smoothness

and integrability, Ann. Acad. Sci. Fenn. Math. 34 (2009), no. 2, 529–544.

◮ H. Kempka: Atomic, molecular and wavelet decomposition of 2-microlocal

Besov and Triebel-Lizorkin spaces with variable integrability, Funct. Approx. 43

(2010), (2), 171–208.

◮ H. Kempka, J. Vybıral: A note on the spaces of variable integrability and

summability of Almeida and Hasto, submitted.

◮ H. Kempka, J. Vybıral: Spaces of variable smoothness and integrability:

Characterizations by local means and ball means of differences, submitted.

◮ J.-S. Xu: Variable Besov and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fenn.Math. 33 (2008), no. 2, 511–522.

◮ D. Drihem: Atomic decomposition of Besov spaces of variables smoothness and

integrability, preprint.

◮ T. Noi, Fourier multiplier theorems for Besov and Triebel-Lizorkin spaces with

variable exponents, preprint.