14
benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

Embed Size (px)

Citation preview

Page 1: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

benchmark of

bolted bearing connection models in

wind turbines

Athens, 1 March 2006

Marcel van DuijvendijkAlfred Kalverboer

Theo de Gruiter

Page 2: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

2

bolted bearing connection

• pitch bearing• yaw bearing

• design driver• expensive

• phenomena • 4 models• bolt strength

• reliable & economic

connection

Page 3: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

3

physical bearing phenomena

• boundary conditions• bending load• stiffness distribution• blade interaction

• contact angle• varies with load• varies along circumference• ovalisation

• pre-stress• bearings and bolts• deformations• contact loss between components

phenomena

Page 4: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

4

spring section model

• Germanischer Lloyd• boundary conditions

• axial load

• cyclic symmetry

• contact angle• balls as pressure-only springs

• fixed contact angle

• pre-stress• bolts

• constant component contact

along circumference

Germanischer Lloyd

Department WE

spring section

Page 5: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

5

2.5D harmonic axi-symm. model

• Mecal FEM model and spreadsheet• boundary conditions

• bending Load• Non-axi-symmetric stiffness

• contact angle• balls as axial springs, radial forces• harmonic loading 0Ø, 1Ø and 2Ø• spreadsheet for bearing behaviour up to 2Ø • load dependent• realistic ovalisation

• pre-stress• bolts• constant contact along circumference

Microsoft Office Excel Worksheet

+

2.5D

Page 6: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

6

11contact section model

• boundary conditions• axial load

• cyclic symmetry

• contact angle• balls as solids

• ball-raceway contact

• load dependent

• pre-stress• bolts and bearing

• constant component contact along circum.

contact section

Page 7: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

7

contact angle

Upper raceway

Lower raceway

High loadlow load

Page 8: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

8

180˚

• Mecal extension of contact section• boundary conditions

• axial, bending and shear loads

• half symmetry assumed

• contact angle• load dependent

• realistic ovalisation

• pre-stress• bolts and bearing

• realistic component contact

along circumference

180˚

Page 9: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

9

model comparisoncomparison

phenomena

boundary conditions

axial force ++ ++ ++ ++ ++bending moment + ++ ++shear load ++ ++varying stiffness + ++ ++blade interaction ++load dependent ++ ++ ++ ++ovalisation + ++ ++bearing pre-stress ++ ++ ++realistic comp. contact +/- +/- +/- ++ ++

speed calculation speed ++ +/- ++ - ++

pre-stress

contact angle

boundary conditions

Page 10: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

10

relative axial bearing displacementsdisplacements

0%

20%

40%

60%

80%

100%

120%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 100.0%

measurements spring section 2.5D contact section 180 degrees

Page 11: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

11

relative radial bearing displacementsdisplacements

0%

20%

40%

60%

80%

100%

-100.0% -80.0% -60.0% -40.0% -20.0% 0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Measurements spring section 2.5D contact section 180 degrees

Page 12: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

12

bolt stressbolt stress

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

-100.0% -80.0% -60.0% -40.0% -20.0% 0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

spring section 2.5D Contact section 180 degrees

Page 13: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

13

design strength reserve and costsdesign

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

fatigue extreme

Spring section 2.5D Contact section

Page 14: Benchmark of bolted bearing connection models in wind turbines Athens, 1 March 2006 Marcel van Duijvendijk Alfred Kalverboer Theo de Gruiter

14

conclusion & recommendations

• bearing connection• important

• reliable

• cost efficient

• 4 models• different phenomena

• different results

• 2.5D is best on conservative side• 180˚ model seems most promising• further model development and validation required