17
Belief Propagation on Markov Random Fields Aggeliki Tsoli

Belief Propagation on Markov Random Fields Aggeliki Tsoli

Embed Size (px)

Citation preview

Page 1: Belief Propagation on Markov Random Fields Aggeliki Tsoli

Belief Propagation on Markov Random Fields

Aggeliki Tsoli

Page 2: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 2

Outline

Graphical Models

Markov Random Fields (MRFs)

Belief Propagation

Page 3: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 3

Graphical Models

Diagrams Nodes: random variables Edges: statistical dependencies among random

variables

Advantages:1. Better visualization

conditional independence properties new models design

2. Factorization

Page 4: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 4

Graphical Models types

Directed causal relationships e.g. Bayesian networks

Undirected no constraints imposed on causality of events

(“weak dependencies”) Markov Random Fields (MRFs)

Page 5: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 5

Example MRF Application: Image Denoising

Question: How can we retrieve the original image given the noisy one?

Original image

(Binary)

Noisy image

e.g. 10% of noise

Page 6: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 6

MRF formulation Nodes

For each pixel i, xi : latent variable (value in original image) yi : observed variable (value in noisy image) xi, yi {0,1}

x1 x2

xi

xn

y1 y2

yi

yn

Page 7: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 7

MRF formulation Edges

xi,yi of each pixel i correlated local evidence function (xi,yi) E.g. (xi,yi) = 0.9 (if xi = yi) and (xi,yi) = 0.1 otherwise (10% noise)

Neighboring pixels, similar value compatibility function (xi, xj)

x1 x2

xi

xn

y1 y2

yi

yn

Page 8: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 8

MRF formulation

Question: What are the marginal distributions for xi, i = 1, …,n?

x1 x2

xi

xn

y1 y2

yi

yn

P(x1, x2, …, xn) = (1/Z) (ij) (xi, xj) i (xi, yi)

Page 9: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 9

Belief Propagation

Goal: compute marginals of the latent nodes of underlying graphical model

Attributes: iterative algorithm message passing between neighboring latent variables

nodes

Question: Can it also be applied to directed graphs? Answer: Yes, but here we will apply it to MRFs

Page 10: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 10

1) Select random neighboring latent nodes xi, xj

2) Send message mij from xi to xj

3) Update belief about marginal distribution at node xj 4) Go to step 1, until convergence

1) How is convergence defined?

Belief Propagation Algorithm

xi xj

yi yj

mij

Page 11: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 11

Message mij from xi to xj : what node xi thinks about the marginal distribution of xj

Step 2: Message Passing

xi xj

yi yj

N(i)\j

mij(xj) = (xi) (xi, yi) (xi, xj) kN(i)\j mki(xi)

Messages initially uniformly distributed

Page 12: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 12

Step 3: Belief Update

xj

yj

N(j)

b(xj) = k (xj, yj) qN(j) mqj(xj)

Belief b(xj): what node xj thinks its marginal distribution is

Page 13: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 13

1) Select random neighboring latent nodes xi, xj

2) Send message mij from xi to xj

3) Update belief about marginal distribution at node xj 4) Go to step 1, until convergence

Belief Propagation Algorithm

xi xj

yi yj

mij

Page 14: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 14

Example

2

- Compute belief at node 1.

1

3

4

m21

m32

m42

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

Fig. 12 (Yedidia et al.)

Page 15: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 15

Does graph topology matter?

BP procedure the same!

Performance Failure to converge/predict accurate beliefs [Murphy,

Weiss, Jordan 1999]

Success at decoding for error-correcting codes [Frey and Mackay

1998] computer vision problems where underlying MRF full of

loops [Freeman, Pasztor, Carmichael 2000]

vs.

Page 16: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 16

How long does it take?

No explicit reference on paper My opinion, depends on

nodes of graph graph topology

Work on improving the running time of BP (for specific applications) Next time?

Page 17: Belief Propagation on Markov Random Fields Aggeliki Tsoli

3/1/2008 MLRG 17

Questions?