14
Dept. for Speech, Music and Hearing Quarterly Progress and Status Report Beat theories of musical consonance Nordmark, J. and Fahl´ en, L. E. journal: STL-QPSR volume: 29 number: 1 year: 1988 pages: 111-122 http://www.speech.kth.se/qpsr

Beat theories of musical consonance - Royal Institute of ... · PDF fileBeat theories of musical consonance ... musicians felt that such a fundamental musical phenomenon as consonance

Embed Size (px)

Citation preview

Dept. for Speech, Music and Hearing

Quarterly Progress andStatus Report

Beat theories of musicalconsonance

Nordmark, J. and Fahlen, L. E.

journal: STL-QPSRvolume: 29number: 1year: 1988pages: 111-122

http://www.speech.kth.se/qpsr

STL-QPSR 1/1988

C. BEAT THEORIES OF MUSICAL CONSONANCE

J a n Nordmark* and Lennar t E. ~ a h l h n *

Abstract Helmholtz'

lease o n l i f e , consonance a n d 1965) based on

' b e a t t h e o r y of consonance h a s r e c e n t l y been g i v e n a new m a i n l y t h r o u g h t h e t h e o r y o f P lomp a n d L e v e l t ( " T o n a l c r i t i c a l b a n d w i d t h " , J.Acoust.Soc.Am. 3 8 , pp. 548-560, t h e c r i t i ca l -bandwid th concept. The i r e x p e r i m e n t s on pure

t o n e p a i r s a l l o w e d them t o c a l c u l a t e d i s s o n a n c e v a l u e s - f o r complex t o n e pairs on t h e assumpt ion t h a t t h e roughness produced by beats w a s addi- t i v e . I n a n a t t e m p t t o tes t t h e c o r r e c t n e s s o f t h i s a s s u m p t i o n t h e d i s s o n a n c e v a l u e s o f c o m p l e x d y a d s a s w e l l a s t e t r a d s w e r e r a t e d b y e i g h t e e n s u b j e c t s . There w a s a r e a s o n a b l e agreement f o r most dyads , b u t f o r o t h e r d y a d s a n d f o r t h e t e t r a d s t h e mode l c l e a r l y d i d n o t work. A comparison o f two- and four- tone c h o r d s showed t h a t consonant i n t e r v a l s m i t i g a t e t h e s h a r p n e s s o f s i m u l t a n e o u s d i s s o n a n c e s . The p e r i o d i c i t y model f o r p i t c h p e r c e p t i o n a p p e a r s t o o f f e r a mechan ism f o r b o t h t h e roughness and t h e p l e a s a n t n e s s o f i s o l a t e d chords.

S i n c e t h e e a r l y d i s c o v e r y t h a t c o n s o n a n c e is r e l a t e d t o s i m p l e numer ica l f r e q u e n c y r a t i o s , many s u g g e s t i o n s h a v e b e e n p u t f o r w a r d t o e x p l a i n t h e p a r t i c u l a r e f f e c t s o f t h e most common mus ica l i n t e r v a l s . The best known, t h a t o f H e l m h o l t z , was made i n terms o f beats. A s t w o p u r e t o n e s are g r a d u a l l y s e p a r a t e d i n f r e q u e n c y , t h e beats become more a n d more r a p i d a n d t h e s o u n d i n c r e a s i n g l y r o u g h , r e a c h i n g a r o u g h n e s s m a - ximum, a c c o r d i n g t o H e l m h o l t z , f o r a f r e q u e n c y d i f f e r e n c e o f 30-40 Hz.

A t l a r g e r f requency s e p a r a t i o n s t h e roughness d e c r e a s e s , and t h e sound becomes consonant f o r a l l i n t e r v a l r a t i o s . For complex t o n e s t h e s i t u a - t i o n is d i f f e r e n t . Tones w i t h s i m p l e i n t e r v a l r a t i o s , f o r i n s t a n c e t h e o c t a v e ( 2 : l ) r t h e f i f t h ( 3 : 2 ) , a n d t h e f o u r t h (4 :3 ) w i l l h a v e h a r m o n i c s t h a t o f t e n c o i n c i d e , and t h e r e w i l l be b e a t s between few a d j a c e n t harmo- n i c s . I n c o n t r a s t , d i s s o n a n t i n t e r v a l s , such as t h e major seven th , w i l l have n o o r f e w c o i n c i d i n g h a r m o n i c s , a n d many a d j a c e n t o n e s p r o d u c i n g beats, H e l m h o l t z ' t h e o r y was w i d e l y a c c l a i m e d a t t h e t ime, b u t n e v e r g a i n e d t o t a l a c c e p t a n c e i n t h e s c i e n t i f i c and m u s i c o l o g i c a l community.

Criticism was v o i c e d on some i m p o r t a n t p o i n t s . F i r s t , many r e s e a r c h workers b e l i e v e d t h a t c h o r d s made up o f pure t o n e s cou ld be set up which were d i s s o n a n t w i t h o u t h a v i n g b e a t s b e t w e e n t h e t o n e s . S e c o n d , i t w a s

p o i n t e d o u t t h a t t h e 30 Hz f requency s e p a r a t i o n producing maximal d i s s o - nance o n l y seemed t o a p p l y f o r t h e medium frequency range. Th i rd , some m u s i c i a n s f e l t t h a t such a fundamental m u s i c a l phenomenon as consonance c o u l d n o t p o s s i b l y b e b a s e d on t h e mere a b s e n c e o f d i s t u r b i n g n o i s e among t h e partials o f t h e tones.

* Temporary a s s o c i a t e s , Music Acous t i cs Group.

STL-QPSR 1/1988

Recent psychoacous t i c s t u d i e s have g r e a t l y reduced t h e r e l e v a n c e o f much o f t h i s c r i t i c i sm. I t is a b o v e a l l t h e work b y P l o m p & L e v e l t (1965) w h i c h h a s made t h e b e a t t h e o r y o f c o n s o n a n c e t h e m o s t w i d e l y a c c e p t e d today. Plomp and L e v e l t c o u l d c o n f i r m t h a t consonance f o r p u r e t o n e s was a f u n c t i o n o f t h e d i s t a n c e b e t w e e n t h e t o n e s r a t h e r t h a n o f

f requency r a t i o s . The d i s s o n a n c e a s s i g n e d b y some c r i t i c s t o c e r t a i n combina t ions o f pure t o n e s t h e a u t h o r s a t t r i b u t e d t o t h e h igh d e g r e e o f mus ica l t r a i n i n g t h e c r i t i cs had r e c e i v e d , which made them i d e n t i f y t h e i n t e r v a l s heard and c l a s s i f y them accord ing t o t h e i r preconceived i d e a s

o f w h a t t h e c o n s o n a n c e v a l u e s s h o u l d be. L i k e H e l m h o l t z , t h e y f o u n d a clear maximum i n t h e f requency s e p a r a t i o n c u r v e f o r d i s sonance , b u t one which v a r i e d s y s t e m a t i c a l l y accord ing t o t h e f requency range. Plomp and L e v e l t c o u l d show t h a t it w a s p r o p o r t i o n a l t o t h e c r i t i ca l bandwidth, a psychophysical concep t based on d a t a from s t u d i e s on a u d i t o r y masking, l o u d n e s s a n d t h e ear's a b i l i t y t o h e a r o u t i n d i v i d u a l c o m p o n e n t s i n a complex t o n e . A s a m e a s u r e o f t h e l i m i t f o r i n t e r a c t i o n b e t w e e n t o n e s c r i t i c a l b a n d w i d t h is c l e a r l y r e l e v a n t t o a u d i t o r y b e a t s . The maximum v a l u e f o r d i s s o n a n c e being f i x e d a t abou t 25% o f t h e c r i t i ca l bandwidth it w a s p o s s i b l e t o draw a normal ized c u r v e f o r consonance and d i s s o n a n c e as a f u n c t i o n o f f r e q u e n c y s e p a r a t i o n b e t w e e n p u r e t o n e s . Us ing t h i s c u r v e one may compute a t h e o r e t i c a l v a l u e f o r dyads of complex t o n e s by

f i n d i n g t h e v a l u e f o r e v e r y p a i r o f a d j a c e n t harmonics o f t h e two com- plex t o n e s and adding them up. The assumption is t h e n t h a t d i s s o n a n c e is t h e sum o f c o n t r i b u t i o n s from a l l p a i r s o f i n t e r f e r i n g harmonics.

F i g . 1. Normalized curve representing d issonance o f p u r e t o n e i n t e r v a l s a s a f u n c t i o n o f f requency d i f f e r e n c e i n u n i t s of t h e c r i t i c a l bandwidth ( a f t e r Plomp & L e v e l t ) . The g raph , i n accordance wi th Hutchinson & Knopoff, shows t h e v a r i a t i o n i n d i s sonance r a t h e r t h a n consonance.

STL-QPSR 1/1988

The c u r v e w e computed f o r complex t o n e s c o n s i s t i n g o f s i x harmonics (Fig . 2 ) a g r e e s w i t h t h a t o f P l o m p a n d L e v e l t w i t h s h a r p n e s s c l e a r l y r e l a t e d t o consonance o f t h e i n t e r v a l s . The d i s s o n a n c e maxima are broad-

er and n o t q u i t e i n agreement w i t h t h e common r a n k o rder ing . I n p a r t i c - u l a r t h e m a j o r s e v e n t h is n o t i c e a b l y less d i s s o n a n t a c c o r d i n g t o t h i s c u r v e t h a n ea r l i e r e x p e r i m e n t s a n d m u s i c a l p r a c t i c e h a v e l e d u s t o expect . I n v iew o f t h e s e d i s c r e p a n c i e s we dec ided t o e x t e n d t h i s method o f c a l c u l a t i n g d i s s o n a n c e t o o t h e r combina t ions o f complex tones.

1. Method A. S t i m u l i

The s i g n a l s u s e d a s s t i m u l i i n t h e e x p e r i m e n t were g e n e r a t e d i n real t i m e b y a c u s t o m - b u i l t d i g i t a l s i g n a l p r o c e s s o r c o n t r o l l e d b y a p e r s o n a l computer. The s i g n a l p rocessor can be programmed by microcode to ac t a s a f i l t e r , g e n e r a t o r o r some o t h e r d e v i c e . I n t h e p r e s e n t exper iment it was used t o g e n e r a t e a bank o f sine-wave o s c i l l a t o r s . The two DA-converters used are 16-bi t s p e c i a l a u d i o c o n v e r t e r s . A sampl ing f requency o f 25 KHz was used throughout t h e exper iment .

The s e t - u p was d e s i g n e d , b u i l t a n d programmed b y o n e o f t h e au- t h o r s .

3. S u b j e c t s and procedure . Eighteen s u b j e c t s , m o s t l y s t a f f and s t u d e n t s a t t h e Dept. o f Speech

Communication a n d M u s i c A c o u s t i c s t o o k p a r t i n t h e e x p e r i m e n t s . A l l

r e p o r t e d a n i n t e r e s t i n m u s i c a n d a l m o s t e v e r y o n e had e x p e r i e n c e o f performing music. About h a l f t h e g r o u p had some knowledge o f t h e t h e o r y o f muslc, b u t o n l y t w o had s t u d i e d harmony s y s t e m a t i c a l l y .

The l i s t e n i n g c o n d i t i o n s were chosen s o a s t o cor respond as c l o s e l y as p o s s i b l e t o t h o s e i n t h e P lomp a n d L e v e l t e x p e r i m e n t . The s u b j e c t s judged e a c h s t i m u l u s on a 7 - p i n t scale, 7 corresponding t o most d i s s o - n a n t , a n d 1 t o m o s t c o n s o n a n t ( a c t u a l l y t h e r e v e r s e o f t h e P lomp a n d

L e v e l t scale). No d e f i n i t i o n o f d i s s o n a n c e was g i v e n on t h e i n s t r u c t i o n

s h e e t , a n d n o n e o f t h e s u b j e c t a s k e d f o r one. The l i s t e n i n g t o o k p l a c e

i n a sound proof boo th a t a s e n s a t i o n l e v e l o f a p p r o x i m a t e l y 60 dB. The s t i m u l i were a l l t o n e s w i t h s i x p a r t i a l s o f e q u a l ampl i tude. They were p r e s e n t e d f o r a b o u t f o u r s e c o n d s , w i t h a n e l e v e n s e c o n d i n t e r v a l i n which t h e s u b j e c t s had to r e c o r d t h e i r r a t i n g s on a prepared shee t . The s t i m u l i were p r e s e n t e d on two s e p a r a t e o c c a s i o n s i n a d i f f e r e n t o rder . A

test s e s s i o n w i t h t h e f o u r t e e n dyads preceded t h e f i r s t exper iment .

2. Experiment 1 I n t h e f i r s t e x p e r i m e n t t h e s u b j e c t s l i s t e n e d t o f o u r t e e n i n t e r -

v a l s . The l o w e r t o n e w a s a l w a y s 240 Hz. T w e l v e were t h e i n t e r v a l s

STL-QPSR 1/1988

w i t h i n an o c t a v e , and two were minor n i n t h s , an i n t e r v a l n o t p l o t t e d i n t h e Plomp and L e v e l t study. One o f t h e s e w a s similar t o t h e o t h e r t w e l v e i n being based on complex t o n e s w i t h s i x p a r t i a l s , t h e o t h e r c o n s i s t e d o f t o n e s where t h a t p a r t i a l i n e a c h t o n e which c o n t r i b u t e d most t o t h e t o t a l d i s s o n a n c e v a l u e had been removed. The computed d i s s o n a n c e v a l u e

was t h e r e b y reduced from 2.35 f o r t h e two s i x - p a r t i a l t o n e s t o 0.68 f o r t h e two f i v e - p a r t i a l ones.

The r e s u l t s a re shown i n F i g s . 2 a n d 3 . I n t h e f i r s t f i g u r e t h e r a t e d d i s s o n a n c e v a l u e s h a v e b e e n a d d e d t o t h e c o m p u t e d c u r v e f o r t h e d i s s o n a n c e v a l u e s f o r two s i x - p a r t i a l t o n e s over a range o f j u s t o v e r an octave. The s e c o n d f i g u r e p l o t s t h e r a t e d v a l u e s as a f u n c t i o n o f com- puted v a l u e s .

o ra ted value - computed curve

frequency di f ference (sernitones)

F i g . 2 . Computed and r a t e d v a l u e s o f d i s sonance as a f u n c t i o n o f f requency d i f f e r e n c e .

There is f o r most i n t e r v a l s a r e a s o n a b l y good agreement between t h e computed a n d r a t e d d i s s o n a n c e . The r a n k o r d e r f o r r a t e d c o n s o n a n c e is

t h e t r a d i t i o n a l o n e , e x c e p t f o r t h e m i n o r s e v e n t h , w h i c h r e c e i v e d t h e same r a t i n g as t h e minor s i x t h , which is commonly c o n s i d e r e d more conso-

nant. The m a j o r s e v e n t h a n d t h e m i n o r n i n t h w i t h no p a r t i a l r e m o v e d ,

however, were r a t e d c o n s i d e r a b l y more d i s s o n a n t t h a n we would e x p e c t from t h e c o m p u t e d v a l u e . But much more r e m a r k a b l e is t h e case o f t h e minor n i n t h w i t h o n e p a r t i a l r emoved f r o m e a c h c o m p l e x t o n e . Here, i n s p i t e o f a d i f f e r e n c e i n c o m p u t e d v a l u e o f more t h a n 70% t h e t w o n i n t h i n t e r v a l s were j u d g e d e q u a l l y d i s s o n a n t . I t is d i f f i c u l t t o r e c o n c i l e t h i s r e s u l t w i t h a beat t h e o r y o f consonance.

STL-QPSR 1/1988

computed dissonance

F i g . 3 . Rated d i s sonance v a l u e s for dyads a s a f u n c t i o n of computed v a l u e s .

Experiment 2 The n i n e t e e n c h o r d s i n t h e second exper iment were a l l combina t ions

o f f o u r complex t o n e s w i t h s i x partials. A chord was somet imes used more t h a n o n c e i n d i f f e r e n t a r r a n g e m e n t s ( i n v e r s i o n s ) o r w i t h d i f f e r e n t tuning. The m a j o r t r i a d o c c u r r e d w i t h a d d e d m a j o r s i x t h ( c h o r d 1 2 ) , minor s e v e n t h (81 1 0 , 1 5 , 1 6 ) , m a j o r s e v e n t h (71 1 4 ) , a n d o c t a v e ( 1 , 18) . The minor t r i a d was used w i t h added major s i x t h (11, 13, 1 7 ) , minor

s e v e n t h (41 9 ) a n d o c t a v e ( 2 ) . A l l t h e commonly u s e d c h o r d s w i t h i n o n e

o c t a v e c a n b e f o u n d , w i t h t h e e x c e p t i o n o f t h e d i m i n i s h e d a n d t h e aug- mented c h o r d s . I n a d d i t i o n t h e r e w e r e t w o c h o r d s e x c e e d i n g a n o c t a v e ,

one a major t r i a d w i t h t h e t h i r d above t h e o c t a v e i n pythagorean t u n i n g , t h e o t h e r a n o n - t r a d i t i o n a l chord (5). The n a r r o w l y spaced c l u s t e r chord is, o f c o u r s e , a l s o a n o n - t r a d i t i o n a l one. The r e s u l t s c a n b e s e e n i n Table 1. (The n o t e s are a b o u t o n e w h o l e - t o n e h i g h e r t h a n t h e a c t u a l f requency i n o r d e r t o r e f e r t h e c h o r d s t o C r a t h e r t h a n B f l a t . ) The j u s t major (1) and minor ( 2 ) c h o r d s were r a t e d p r e d i c t a b l y low i n d i s s o - nance, w h i l e t h e c l u s t e r c h o r d (19) a n d t h e i r r e g u l a r c h o r d (3 ) were r a t e d c o r r e s p o n d i n g l y high. The minor s e v e n t h c h o r d s were g e n e r a l l y f e l t t o be f a i r l y consonan t , w i t h t h e e x c e p t i o n o f No. 10, where t h e n a t u r a l s e v e n t h (7 :4) p robab ly c o n t r i b u t e d t o a s l i g h t l y u n p l e a s a n t e f f e c t . The tempered s e v e n t h c h o r d s were judged q u i t e consonant , t h e t h i r d i n v e r s i o n ( 1 6 ) e v e n more s o t h a n t h e r o o t p o s i t i o n ( 1 5 ) . Among t h e o t h e r c h o r d s t h e m a j o r n i n t h c h o r d w i t h o u t t h e t h i r d ( 6 ) s t a n d s o u t a s b e i n g con-

STL-QPSR 1/1988

than even t h e f o u r t h f o r t h e kind of complex tones w e are dea l ing wi th , concludes t h a t t h e p s y c h o a c o u s t i c a l c o n c e p t o f d i s s o n a n c e h a s t o be

modified s o a s t o i n c l u d e t h e m u s i c a l harmony a s p e c t . W e t h i n k , how- eve r , t h a t t h e r e is n o t n e c e s s a r i l y a c o n f l i c t be tween t h e psycho- a c o u s t i c d a t a and musical theory i n t h i s p a r t i c u l a r case. Terhardt does no t t ake i n t o account t h e f a c t t h a t t h i s c a l c u l a t e d va lue is ou t of l i n e

not o n l y w i t h t h e r a t e d v a l u e i n t h e s t u d y , b u t even more w i t h e v e r y e a r l i e r s tudy where t h e i n t e r v a l has been rated. The va lue i n our s tudy is, of course, i n complete agreement w i th t h e t r a d i t i o n a l view. It seems more n a t u r a l t o c o n c l u d e t h a t t h e model f o r t h e c a l c u l a t i o n s c a n n o t account f o r t h e r e s u l t s and mus t , i n some r e s p e c t s a t l e a s t , be con- s ide red d e f i c i e n t .

Hutchinson & Knopoff (1978) have a l s o ca l cu la t ed the dissonance of

dyads b a s e d on a v e r s i o n o f t h e c r i t i c a l bandwid th model m o d i f i e d by means o f a change i n t h e s h a p e o f t h e c r i t i c a l b a n d w i d t h c u r v e o v e r an extended f r e q u e n c y r ange . A s a consequence t h e d i s s o n a n c e v a l u e f o r a g iven i n t e r v a l may d i f f e r by a f a c t o r o f n e a r l y t e n o v e r a r a n g e o f t h r e e oc taves , which would seem t o make t h e model i r r e l e v a n t f o r musical purposes.

I f t h e c a l c u l a t e d dissonance by t h e va r ious proponents of t h e bea t theory a t times a r e s t r a n g e l y a t odds wi th musical experience, our own computed v a l u e s l i s t e d i n T a b l e I seem t o j u s t i f y a more sweeping con- c lus ion: performance of music would be impossible i f t h e b e a t theory , a t l e a s t i n i ts p r e s e n t fo rm, were c o r r e c t . Plomp and L e v e l t p o i n t o u t

t h a t t h e s t eepness of t h e curve around t h e oc tave and t h e f i f t h (Fig. 2) make t h e s e i n t e r v a l s much more s e n s i t i v e t o a dev ia t ion from t h e c o r r e c t frequency r a t i o than o t h e r consonant i n t e r v a l s , such a s t h e t h i r d , which

rnay e x p l a i n why w e t o l e r a t e impure t h i r d s . But o u r n u m e r i c a l c a l c u l a -

t i o n s show t h a t even d e v i a t i o n s smaller than those which normally occur i n musical performance imply a change i n dissonance which may be con- s i d e r a b l y g r e a t e r than a change from a chord which w e would unquestion-

a b l y cons ider being consonant i n t o a d i s sonan t one. Even i f w e would be p r e p a r e d t o s e p a r a t e consonance i n t o t h e two

components sensory consonance and harmony, a s suggested by Terhardt it is d i f f i c u l t t o s e e what p o s s i b l e r e l e v a n c e t h e f o r m e r c o n c e p t would have i f it is based on t h e b e a t theory g iven t h e extreme s e n s i t i v i t y of consonance t o w h a t , a f t e r a l l , a r e c o n s t a n t l y o c c u r r i n g v a r i a t i o n s i n

in tona t ion . The experimental r e s u l t s i n t h i s s tudy merely confirm t h e inadequa-

c y of t h e bea t model. The change from a seventh chord i n j u s t i n tona t ion (10) i n t o a t empered one ( 1 5 ) even r e s u l t s i n a l o w e r estimate o f dissonance i n s p i t e o f an i n c r e a s e i n computed v a l u e . I t is t r u e t h a t a s l i g h t l y m i s t u n e d ma jo r t e t r a d ( 6 ) was judged s l i g h t l y more d i s s o n a n t than t h e chord i n j u s t i n tona t ion , bu t t h e inc rease is still f a r smaller than t h e computed change.

STL-QPSR 1/1988

Moreover, t hese are c e r t a i n l y not changes i n i n tona t ion which would be uncommon i n performance of music. There is a l s o the ques t ion whether a s l i g h t l y m i s t u n e d ma jo r c h o r d c a n i n any s e n s e be c o n s i d e r e d d i s -

sonant. In t h i s c a s e it is l i k e l y t h a t some s u b j e c t s r eac t ed t o t he out- of-tuneness r a t h e r than what they normally perceived a s dissonance.

S t i l l t h e most i m p o r t a n t f i n d i n g is t h e l a c k o f c o r r e s p o n d a n c e between t h e rank order ing f o r t h e computed and t h e r a t e d consonance of t h e chords. This poses a problem. Plomp and Level t have shown beyond any doubt t h a t d i s s o n a n c e f o r complex t o n e s is r e l a t e d t o t h e p r e s e n c e o f

harmonics. What t h e n c a n a c c o u n t f o r t h e emergence o f d i s s o n a n c e when harmonics are added t o pure tones o the r than b e a t s among adjacent harmo- n i c s ?

The p r e s u m p t i o n o f a d d i t i v i t y f o r t h e r o u g h n e s s o f b e a t s , t e n t a - t i v e l y a d o p t e d by Plomp and L e v e l t , seems t o be s u p p o r t e d by o t h e r s t u d i e s , such a s t h a t of Terhardt (1968)r which shows t h a t t he roughness produced by amplitude-modulated tones i n c e r t a i n c i rcumstances is addi- t i ve . Y e t , t h e f a c t t h a t i n our f i r s t experiment t h e s t r o n g e s t b e a t s i n

a dyad could be removed seemingly without a f f ec t ing t h e perceived d isso- nance i m p l i e s t h a t t h e r e can be no s imple a d d i t i v i t y of roughness pro-

duced by b e a t s between ad jacen t p a r t i a l s . But i f t h e i n t e r a c t i o n between ad jacen t components is not r e s p n s -

i b l e f o r dissonance, how can t h e harmonics e x c e r c i s e t h e i r inf luence?

We a r e l e d t o t h e conclusion t h a t harmonics achieve t h e e f f e c t of dissonance no t p r i m a r i l y from t h e ind iv idua l i n t e r a c t i o n w i t h ad jacent harmonics, b u t by c o l l e c t i v e l y i n t e r a c t i n g w i t h a n o t h e r g r o u p o f par - t i a l s when t h e i n t e r v a l between t h e fundamentals is a d i s sonan t one.

Removing t h e fundamentals of two complex tones , moreover does not l eave j u s t t h e d i s s o n a n c e u n a f f e c t e d , b u t a l s o t h e p i t c h o f t h e t o n e s , which st i l l c o r r e s p o n d s t o t h e a b s e n t fundamen ta l s . The l a t t e r e f f e c t has been c a l l e d t h e r e s i d u e o r t h e p e r i o d i c i t y p i t c h phenomenon.

The term re s idue was introduced by Schouten (1940) t o i n d i c a t e t h a t

t h e h i q h e r h a r m o n i c s , wh ich c a n n o t b e p e r c e i v e d s e p a r a t e l y , a r e pe r - ceived c o l l e c t i v e l y a s one component ( t h e r e s idue ) w i th a p i t c h de t e r - mined by t h e p e r i o d i c i t y o f t h e c o l l e c t i v e waveform and e q u a l t o t h e fundamental tone . I t was l a t e r shown t h a t l o w e r h a r m o n i c s a r e more important than the higher ones i n determining t h e pi tch. This is what w e would expec t i f frequency r e s o l u t i o n is e s s e n t i a l f o r t h e percept ion of low p i t c h , bu t i t is hard ly t h e proof , a s is o f t e n maintained, t h a t t h e hearing ou t of i nd iv idua l harmonics is necessary f o r t he e f f e c t . Peri- o d i c i t y p i t c h may be p resen t even when t h e ind iv idua l p a r t i a l s cannot be

reso lved (Nordmark, 197d). I t is, f o r i n s t ance , d i f f i c u l t t o s e e how t h e harmonics of complex tones making up a minor second can be resolved. A l l

harmonics o f one t o n e are a t a d i s t a n c e from t h e o t h e r o f a f r a c t i o n o f a c r i t i c a l band - a c o n c e p t u sed t o d e f i n e t h e l i m i t s o f f r e q u e n c y resolution.

STL-QPSR 1/1988

It is t h e r e f o r e t empt ing t o assume t h a t a l l t h e p a r t i a l s o f a t o n e

can a c t t o g e t h e r c o l l e c t i v e l y b o t h t o c o n t r i b u t e t o t h e s e n s a t i o n o f p i t c h a n d , i n t h e p r e s e n c e o f o t h e r c o m p l e x t o n e s , t o t h e s e n s a t i o n o f consonance a n d d i s s o n a n c e . The r o u g h n e s s w e a s s o c i a t e w i t h d i s s o n a n c e

can be unders tood t o be main ly t h e r e s u l t o f i n t e r f e r e n c e on t h e b a s i l a r

membrane between t h e c o l l e c t i v e waveforms o f t h e c o n s t i t u e n t t o n e s , w i t h o n l y a m i n o r c o n t r i b u t i o n f r o m t h e i n d i v i d u a l beats. A c o n s e q u e n c e o f t h i s v i e w is t h a t we shou ld e x p e c t complex t o n e s made up o f inharmonic p a r t i a l s t o form less d i s t i n c t d i s s o n a n t i n t e r v a l s .

There are problems, however, w i t h any form o f t h e a d d i t i v i t y hypo- t h e s i s . A c o m p a r i s o n b e t w e e n t h e d y a d C-B, t h e rnajor s e v e n t h , a n d t h e

t e t r a d C-E-G-B ( 7 ) s h o w s t h a t t h e t e t r a d h a s a l o w e r r a t i n g (3.02) t h a n t h e d y a d (5.35) w h e r e a s w e w o u l d , o f c o u r s e , e x p e c t t h e o p p o s i t e , a s

any a d d i t i o n o f t o n e s shou ld o n l y i n c r e a s e dissonance. Fur thermore, t h e t h i r d i n v e r s i o n o f t h e chord , where B is t h e t o n e j u s t below C (14)r was judged much l e s s d i s s o n a n t (4.15) t h a n t h e m i n o r s e c o n d w i t h o u t t h e t h i r d ( E ) a n d t h e f i f t h ( G ) , w h i c h a t 5.95 w a s t h e m o s t d i s s o n a n t d y a d o f a l l . A s i m i l a r o b s e r v a t i o n h a s b e e n made b y K u n i t z ( 1 9 6 0 ) , who

p o i n t e d o u t t h a t any a d d i t i o n o f consonant i n t e r v a l s , such as E and G to t h e C-B major seven th , d e c r e a s e s dissonance.

Would t h e same b e t r u e i f we a d d a t o n e w h i c h f o r m s a d i s s o n a n t i n t e r v a l w i t h one o r more o f t h e c o n s t i t u e n t s o f a chord? U n f o r t u n a t e l y

t h e e x p e r i m e n t s d i d n o t i n c l u d e examples o f s i m p l e a d d i t i o n s o f d i s s o - nances. However , a c o m p a r i s o n o f c h o r d s 9 a n d 1 9 , w h i c h are i d e n t i c a l e x c e p t f o r o n e t o n e , g o e s some way t o w a r d s a n s w e r i n g t h e q u e s t i o n . I n t h i s case t h e c h o r d w i t h o n e d i s s o n a n t i n t e r v a l is p e r c e i v e d as less t h a n h a l f a s d i s s o n a n t as t h e one w i t h t h r e e dissonances . Can w e t h e r e - f o r e c o n c l u d e t h a t t h e a d d i t i o n o f a t o n e o r t o n e s t o o t h e r t o n e s w i t h which t h e y form consonant i n t e r v a l s r e d u c e s d i s sonance? We would t h e n e x p e c t a major chord t o sound more consonant t h a n t h e major t h i r d a l o n e , and t h e m i n o r c h o r d more c o n s o n a n t t h a n t h e m i n o r t h i r d . The r e s u l t s g i v e some s m a l l s u p p o r t f o r t h i s conclus ion. The r a t e d d i s s o n a n c e v a l u e o f t h e m i n o r c h o r d , f o r i n s t a n c e , was 2.28 c o m p a r e d w i t h 2.7 f o r t h e minor t h i r d . There is a similar d i f f e r e n c e f o r t h e major chords.

With d i s s o n a n c e a d d e d t o d i s s o n a n c e t h e r e is , a s w e h a v e s e e n , sometimes a n a d d i t i v e e f f e c t . A t o t h e r t i m e s t h e e f f e c t a p p e a r s t o b e

t h e o p p o s i t e . One s u c h e x a m p l e would b e t h e a d d i t i o n o f a D a n d a n F

s h a r p t o t h e m a j o r s e v e n t h i n t e r v a l C-B. Our i m p r e s s i o n is t h a t t h e r e s u l t i n g chord is d i s s o n a n t , b u t less s h a r p and perhaps more p l e a s i n g

and m u s i c a l l y meaningful. What then is t h e r e a s o n f o r t h e s e unexpected v a r i a t i o n s i n conso-

nance and p l e a s a n t n e s s ? There must o b v i o u s l y be some o t h e r f a c t o r invo lved , one f o r want o f

a n e x p l a n a t o r y term w e may s i m p l y call t h e m u s i c a l f a c t o r , and which is responsible f o r t h e reduced u n p l e a s a n t n e s s o f d i s s o n a n t i n t e r v a l s when

consonant o n e s are added. I n some ways we have come close t o Terhardt ' s (1984) s e p a r a t i o n o f m u s i c a l c o n s o n a n c e i n t o t w o c o m p o n e n t s , s e n s o r y

consonance and harmony. The d i f f i c u l t y f o r u s w i t h h i s p a r t i c u l a r d e f i - n i t i o n is t h a t s e n s o r y consonance, as t h e psychophysical basis o f p lea- s a n t n e s s f o r a l l k i n d s o f s o u n d s , is c o n s i d e r e d t o be t h e mere a b s e n c e o f r o u g h n e s s . T h i s d e f i n i t i o n is t o o n a r r o w f o r o u r p u r p o s e . To make s e n s e o f o u r r e s u l t s w e h a v e t o i n c l u d e m u s i c a l f a c t o r s e v e n i n i s o -

l a t e d , s ta t ic chord , f a c t o r s which T e r h a r d t would c o n s i d e r t o be p a r t o f t h e ha rmony c o m p o n e n t a n d t o b e o f less i m p o r t a n c e f o r s i n g l e c h o r d s . The d i f f e r e n c e i n o u r r e s p e c t i v e approach, however, is n o t o n l y one o f emphasis. I t a l s o r e f l e c t s o u r d i f f e r i n g v i e w s on t h e o r i g i n o f r o u g h - n e s s and harmony. We t h i n k t h e p e r i o d i c i t y concep t is r e l e v a n t t o b o t h

roughness , a s d e s c r i b e d e a r l i e r , a n d t o h a r m o n i c e f f e c t s , s u c h as t h e n a t u r a l n e s s and p l e a s a n t n e s s o f c e r t a i n i n t e r v a l s o r chords. No "expla-

n a t i o n " can be g i v e n a t p r e s e n t f o r t h e phenomena of o c t a v e s i m i l a r i t y or c o n s o n a n c e o f i n t e r v a l s w i t h s i m p l e o r c l o s e t o s i m p l e n u m e r i c a l r a t i o s . But it is a t l eas t more n a t u r a l f r o m t h i s p o i n t o f v i e w t o l i n k t h e s e e f f e c t s t o r e l a t i o n s between t h e t i m e i n t e r v a l s g i v i n g rise t o t h e p i t c h o f t h e c o n s t i t u e n t t o n e s i n a c h o r d t h a n t o a s s u m e t h a t t h e y are e n t i r e l y due t o e x p e r i e n c e o r c u l t u r a l h a b i t s .

I n s p i t e o f t h e a t t r a c t i v e n e s s o f p e r i o d i c i t y as a un i fy ing concep t f o r a number o f r e l a t e d phenomena, we must be aware o f its l i m i t a t i o n s .

Consonance i n music h a s many meanings, some o f which are o n l y d i s t a n t l y r e l a t e d t o t h e phenomena c o n s i d e r e d here. Dissonan t chords , f o r example,

are o f t e n t h e m u s i c a l l y most p l e a s i n g , and consonant c h o r d s somet imes are d i s s o n a n t from a t h e o r e t i c a l p o i n t o f view.

The w i d e l y h e l d b e l i e f t h a t consonance e x i s t s as a s e p a r a t e e n t i t y

t o be d e f i n e d , measured, and e x p l a i n e d is a l m o s t c e r t a i n l y based on an

i l l u s i o n .

Acknowledgements The a s s i s t a n c e o f Kajsa Bacos i n c o l l e c t i n g t h e d a t a f o r t h i s s t u d y

is g r a t e f u l l y acknowledged.

Refe rences Hutchinson, W. & Knopof f , L. ( 1 9 7 8 ) : "The a c o u s t i c c o m p o n e n t o f w e s t e r n consonance" I n t e r f a c e 7 , pp. 1-29. - Kameoka, A. & K u r i y a g a w a , M. ( 1 9 6 9 a ) : "Consonance t h e o r y P a r t I: Conso- nance o f d y a d s " J.Acoust.Soc.Am. 4 5 1 pp. 1451-1459. - Kameoka, A. & Kuriyagawa, M. (1969b): "Consonance t h e o r y P a r t 11: Conso- nance o f complex t o n e s and its c a l c u l a t i o n method", J.Acoust.Soc.Am. - 45, pp. 1460-1469.

Kuni tz , H. (1960): D i e I n s t r u m e n t a t i o n , Bre i tkopf & H a r t e l , ~ e i p z i g .

STL-QPSR 1/1988

Nordmark, J. (1978) : " Frequency and p e r i o d i c i t y a n a l y s i s " , pp. 243-282 i n (E.C. C a r t e r e t t e & M.D. Fr iedman, eds.) Handbook o f P e r c e p t i o n I V : Hearing, Academic Press , New York.

Plomp, R. & L e v e l t , W.J.M. (1965) : "Tonal consonance and c r i t i c a l band- width", J.Acoust.Soc.Am. 38, pp. 548-560. - Schouten, J.F. (1940): "The r e s idue , a new component i n s u b j e c t i v e sound a n a l y s i s " , Proc.Kon.Ned.Akad.Wetensch. 43, pp. 356-365. - Terhardt , E. (1968) : "Uber akus t i s che Rauhigkeit und Schwankungsstarke", Acustica 20, pp. 215-224. -

Terhardt , E. (1984): " 'The concept of musical consonance: a l i n k between music and psychoacoust i c s " , Music Percept ion 1 pp. 276-295. -