22
D. Jin JILA, NIST and the University of Colorado $ NSF, NASA, NIST BCS-BEC Crossover in Cold Atoms

BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

D. Jin

JILA, NIST and the University of Colorado

$ NSF, NASA, NIST

BCS-BEC Crossover in Cold Atoms

Page 2: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

Investigate many-body quantum physics with a model system

Motivation: Why study atomic gases?

BEC

Mott insulator

Rapidly rotating BECs

Page 3: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

Fermi superfluidity

Fermi condensate

Fermi gas in an optical lattice

Vortices

Page 4: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

1. Create an ultracold Fermi gas

2. Realize and detect Cooper pairing

Challenges

Page 5: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

1. True ground state is a solid.

2. Spin degree of freedom is frozen out.

3. Collisions/interactions are only s-wave.

Creating an ultracold Fermi gasUltracold (100 nK!) gas challenges:

spin ↑

spin ↓kT

Page 6: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

Creating an ultracold Fermi gas

Collisions/interactions are only s-wave.

kT

non-s-wave

Spin-polarized fermions stop colliding.

R

s-wave

V(R)centrifugal

barrier

R

V(R)

Page 7: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

Creating an ultracold Fermi gas

Use a stable mixture of two spin-states.

Fermions

T/TF=0.8

T/TF=0.3

T/TF=0.1

EF

40K

B. DeMarco and D. S. Jin, Science 285, 1703 (1999)

Page 8: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

Apparatus

Page 9: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

1. T/TF is not that low.

2. 40K atoms have weak, repulsive interactions.

3. Detecting the phase transition is not so easy.

Cooper pairing of atomsCooper pairing challenges:

BEC BCS?

Page 10: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

Interactionss-wave scattering length, a

a > 0 repulsive, a < 0 attractiveLarge |a| → strong interactions

V(R)

R

a

Page 11: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

Controlling interactions

0

scattering length, a

a > 0 repulsive, a < 0 attractiveLarge |a| → strong interactions

40K

Page 12: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

A magnetic-field tunable atomic scattering resonance

Channels are coupled by the hyperfine interaction.

Magnetic-field Feshbach resonance

→ ←colliding atoms in channel 1

molecule state in channel 2

Page 13: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

Ebinding

molecules

→ ←

attractive

repulsive

ΔB>

Magnetic-field Feshbach resonance

repulsive

free atoms

Page 14: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

Magnetic-field Feshbach resonance

molecules

→ ←

attractive

repulsive

ΔB>

free atoms

s-wave scattering length, a

Ebinding

Page 15: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

215 220 225 230-3000

-2000

-1000

0

1000

2000

3000

scat

terin

g le

ngth

(ao)

B (gauss)

Magnetic-field Feshbach resonance

C. A. Regal and D. S. Jin, PRL 90, 230404 (2003)

repulsive

attractive

spectroscopic measurement of the mean-field energy shift

Page 16: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

Molecules!

220 221 222 223 224

-500

-400

-300

-200

-100

0

atoms molecules

Ene

rgy

(kH

z)

B (gauss)

Measured using rf photodissociation

C. Regal et al., Nature 424, 47 (2003)

Page 17: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

Magnetic-field Feshbach resonance

molecules

→ ←

attractive

repulsive

ΔB>

free atoms

s-wave scattering length, a

Ebinding

Page 18: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

Fermi Condensate2004

strongerattractive interactions

Imaging atom pairs

Bose-Einstein Condensate

C. A. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004)

Page 19: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

BCS-BEC Crossover

1 0 -10

0.1

0.2

Interaction strength 1/kFa

Ent

ropy

T/T

F

-0.0200.0100.0250.0500.0750.1000.1250.1500.175

condensate fraction

00.01

0.05

0.1

0.15

C.A. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004)

Page 20: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

1 0 -10

0.1

0.2

Interaction strength 1/kFa

Ent

ropy

T/T

F

-0.0200.0100.0250.0500.0750.1000.1250.1500.175

BCS-BEC Crossovercondensate

fraction0

a BCS-BEC crossover theory

Q. Chen, C.A. Regal, M. Greiner, D.S. Jin & K. Levin, PRA 73, 041601 (2006).

Initi

al

C.A. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004)

Page 21: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

Probing the BCS-BEC crossover

Thermodynamic measurements

Vortices

Collective excitations

Probes ofpairing

Condensate fractionUnbalanced

spin population

1 0 -10

0.1

0.2

Interaction strength 1/kFa

Ent

ropy

T/T

F

Unitarity andUniversality

Correlations inatom shot noise

Page 22: BCS-BEC Crossover in Cold Atomsconferences.illinois.edu/bcs50/pdf/jin.pdf · 10 -1 0 0.1 0.2 Interaction strength 1/k F a Entropy T/T F-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150

PeopleJ. Goldwin

M. Olsen

Brian DeMarco Cindy Regal Markus Greiner