44
Bayesian inference of biogeographical histories for hundreds of discrete areas Michael Landis Nick Matzke Brian Moore John Huelsenbeck Evolu>on 06/23/13 [email protected]

Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Bayesian  inference  of  biogeographical  histories  for  hundreds  of  discrete  areas  

Michael  Landis  Nick  Matzke  Brian  Moore  

John  Huelsenbeck  

Evolu>on  06/23/13  

[email protected]    

Page 2: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Biogeography  

“Every  species  has  come  into  existence  coincident  both  in  space  and  5me  with  a  pre-­‐exis5ng  closely  allied  species.”  

                 AR  Wallace,  1855  

Page 3: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Con>nental-­‐scale  biogeography  

Octodon  degus  Photo  by  José  Cañas  

(Mol  Phylo  Evol  2012)  

Cuniculus taczanowskiiCuniculus pacaGalea musteloidesCavia apereaCavia porcellusCavia tschudiiMicrocavia australisDolichotis patagonumKerodon rupestrisHydrochoerus hydrochaerisDasyprocta leporinaMyoprocta acouchyCoendou bicolorErethizon dorsatumSphiggurus melanurusChinchilla lanigeraLagidium viscaciaLagostomus maximusDinomys branickiiEuryzygomatomys spinosusClyomys laticepsTrinomys setosusTrinomys paratusTrinomys eliasiTrinomys yonenagaeTrinomys iheringiTrinomys dimidiatusCapromys piloridesMyocastor coypusThrichomys apereoidesHoplomys gymnurusProechimys quadruplicatusProechimys simonsiProechimys longicaudatusProechimys robertiKannabateomys amblyonyxDactylomys boliviensisDactylomys dactylinusLonchothrix emiliaeMesomys hispidusMesomys occultusEchimys chrysurusToromys grandisPhyllomys blainvilliiMakalata didelphoidesPhyllomys brasiliensisMakalata macruraIsothrix barbarabrownaeIsothrix bistriataIsothrix sinnamariensisCtenomys steinbachiCtenomys boliviensisCtenomys haigiTympanoctomys barreraePipanacoctomys aureusOctomys mimaxSpalacopus cyanusAconaemys fuscusAconaemys sageiAconaemys porteriOctodon degusOctodon lunatusOctodon bridgesiOctodontomys gliroidesAbrocoma bennettiiAbrocoma cinerea

A B C D E F G H I

A

B

C

D

E

FG

HI

Supplemental Figure 1

a) b)

Page 4: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Global-­‐scale  biogeography  

Page 5: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

For  8  areas  

Page 6: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

For  80  areas  

Page 7: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

For  800  areas  

Page 8: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

For  8  zillion  areas  

Page 9: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Cuniculus taczanowskiiCuniculus pacaGalea musteloidesCavia apereaCavia porcellusCavia tschudiiMicrocavia australisDolichotis patagonumKerodon rupestrisHydrochoerus hydrochaerisDasyprocta leporinaMyoprocta acouchyCoendou bicolorErethizon dorsatumSphiggurus melanurusChinchilla lanigeraLagidium viscaciaLagostomus maximusDinomys branickiiEuryzygomatomys spinosusClyomys laticepsTrinomys setosusTrinomys paratusTrinomys eliasiTrinomys yonenagaeTrinomys iheringiTrinomys dimidiatusCapromys piloridesMyocastor coypusThrichomys apereoidesHoplomys gymnurusProechimys quadruplicatusProechimys simonsiProechimys longicaudatusProechimys robertiKannabateomys amblyonyxDactylomys boliviensisDactylomys dactylinusLonchothrix emiliaeMesomys hispidusMesomys occultusEchimys chrysurusToromys grandisPhyllomys blainvilliiMakalata didelphoidesPhyllomys brasiliensisMakalata macruraIsothrix barbarabrownaeIsothrix bistriataIsothrix sinnamariensisCtenomys steinbachiCtenomys boliviensisCtenomys haigiTympanoctomys barreraePipanacoctomys aureusOctomys mimaxSpalacopus cyanusAconaemys fuscusAconaemys sageiAconaemys porteriOctodon degusOctodon lunatusOctodon bridgesiOctodontomys gliroidesAbrocoma bennettiiAbrocoma cinerea

A B C D E F G H I

A

B

C

D

E

FG

HI

Supplemental Figure 1

a) b)

13,264  occurrences  available  (GBIF)  

86  occurrences  used  (Upham  &  PaYerson,  2012)  

Why  9  areas?  

Page 10: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Transi>on  between  two  ranges  

Ancestral   Observed  &  extant  

Founda>onal  work:  Ree  et  al.    (Evolu5on  2005)                          Ree  &  Smith  (Syst  Biol  2008)  

Range  

Character  

>me  

Page 11: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Transi>on  probability  

               

QInstantaneous  rate  matrix  

Matrix  exponen>a>on  accounts  for  all  intermediate  events.  

Page 12: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

For  few  areas,  no  problem  3  areas  

Page 13: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

For  more  areas,            explodes  Q

3  areas   10  areas  

210 ⇥ 210 = 1024⇥ 1024

Matrix  exponen>a>on  too  slow  for  more  than  ten  areas.  

Page 14: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

           Download  BayArea:  bayarea.googlecode.com      

Landis  et  al.  (Syst  Biol,  in  press)  

BayArea:  Method  for  more  areas  

Page 15: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

BayArea:  Method  for  more  areas  

Inspired  by  Robinson  et  al.  (Mol  Biol  Evol  2003)  

Landis  et  al.  (Syst  Biol,  in  press)  

Page 16: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

BayArea:  Method  for  more  areas  

Inspired  by  Robinson  et  al.  (Mol  Biol  Evol  2003)    Key  concepts:  1.  Sample  biogeographic  histories,    H

Landis  et  al.  (Syst  Biol,  in  press)  

Page 17: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

BayArea:  Method  for  more  areas  

Inspired  by  Robinson  et  al.  (Mol  Biol  Evol  2003)    Key  concepts:  1.  Sample  biogeographic  histories,    2.  Compute  likelihood,    L�,H

H

Landis  et  al.  (Syst  Biol,  in  press)  

Page 18: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

BayArea:  Method  for  more  areas  

Inspired  by  Robinson  et  al.  (Mol  Biol  Evol  2003)    Key  concepts:  1.  Sample  biogeographic  histories,    2.  Compute  likelihood,    3.  Approximate                                                    using  

 Markov  chain  Monte  Carlo  (MCMC)  

L�,H

P (�, H | D)

H

Landis  et  al.  (Syst  Biol,  in  press)  

Page 19: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

1.  Sample  biogeographic  histories,  H

Landis  et  al.  (Syst  Biol,  in  press)  

Nielsen  (Syst  Biol  2002)    

Page 20: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

L�,H2.  Compute  likelihood,  

Range  evolu>on  events  from  range                          :                                          sum  of  rates  leaving                                  prob  any  event  at  >me                  prob  next  event  is  

               =  product  of  event  types  &  >mes  over  tree  L�,H

ri/rre�rt

j

Landis  et  al.  (Syst  Biol,  in  press)  

r =X

rj

Page 21: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

P (�, H | D)

L�,Hhigh  L�,Hlow  

3.  Approximate                                              using  MCMC  P (�, H | D)

Landis  et  al.  (Syst  Biol,  in  press)  

Page 22: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Can  we  infer  distance  effects?    

Distance-­‐dependent  dispersal  model    Redistributes  the  rate  of  area  gain…  

           

Simula>on:  600  areas,  50  replicates,  8  distances        

Landis  et  al.  (Syst  Biol,  in  press)  

½    ¼    0   1   2   3   4   6  

Nearby  

Collapses  to  “independence”  model  

Anywhere  

Page 23: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

BayArea  recovers  true  parameters  

Landis  et  al.  (Syst  Biol,  in  press)  

00.25

0.51

23

46

0.0035 0.0040 0.0045 0.0050 0.0055 0.0060

Data sim

ulated under distance power, β

Mean posterior of rate of gain, λ1

00.25

0.51

23

46

0.035 0.040 0.045 0.050 0.055 0.060

Data sim

ulated under distance power, β

Mean posterior of rate of loss, λ0

Distance  effe

cts   0

0.250.5

12

34

6

0 2 4 6

Data sim

ulated under distance power, β

Mean posterior of distance power, β

0  ¼    ½      1  2  3  4  6  

Rate  of  area  loss   Rate  of  area  gain   Distance  effects  

Page 24: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Bayes  factors  iden>fy  distance  effects  

0

25

50

75

100

0 0.25 0.5 1 2 3 4 6

Simulation dataset per

% o

f sim

ulat

ions

favo

ring

MD

BFD0 support for MD

Favors M0

Insubstantial

Substantial

Strong

Very strong

Decisive

0

25

50

75

100

0 0.25 0.5 1 2 3 4 6

Simulation dataset per

% o

f sim

ulat

ions

favo

ring

MD

BFD0 support for MD

Favors M0

Insubstantial

Substantial

Strong

Very strong

Decisive

0   ¼   ½   1   2   3   4   6  

100%  

0%  

50%  

25%  

75%  

Landis  et  al.  (Syst  Biol,  in  press)  

Bayes  factors  support  for  distance  model  

%  of  sim

ula>

ons  sup

ported

 

Page 25: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Malesian  Rhododendron  Vireya  

Landis  et  al.  (Syst  Biol,  in  press)  

Re-­‐analysis  of  Webb  &  Ree  (2012)  work    65  species,  20  areas  

 

Page 26: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Malesian  Rhododendron  Vireya  

Landis  et  al.  (Syst  Biol,  in  press)  

Re-­‐analysis  of  Webb  &  Ree  (2012)  work    65  species,  20  areas  

 Wallace’s  Line  

 Known  dispersal  barrier    Vireya  crossing?      

Page 27: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Malesian  Rhododendron  Vireya  

Landis  et  al.  (Syst  Biol,  in  press)  

Re-­‐analysis  of  Webb  &  Ree  (2012)  work    65  species,  20  areas  

 Wallace’s  Line  

 Known  dispersal  barrier    Vireya  crossing?  

 Data  from  

 Brown  et  al.  (J  Biogeogr  2012)    Webb  &  Ree    (Chapter  8  in  Bio5c  Evolu5on  and                          Environmental  Change  in  Southeast                          Asia  2012)        

Page 28: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Distance  maYers  for  Vireya  dispersal  

0.10 0.15 0.20 0.25

Rate of area loss, λ0

0.005 0.015 0.025

Rate of area gain, λ1

-4 -2 0 2 4

Distance power, βRate  of  area  loss   Rate  of  area  gain   Distance  

Landis  et  al.  (Syst  Biol,  in  press)  

Prior  

Posterior  

Page 29: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

1.00.50.0Node maps:Posterior probabilityof presence per area

Branches:% of inferred rangeeast of Wallace’s Line

0.0 0.5 1.0

W E

W

E

B)

Wallace’s  Line:    3+  crossings  West              East    

Wallace’s  Line  &  Lydekker’s  Line:    1  crossing  West            East  

East  of  Wallace’s  Line  West  of  Wallace’s  Line  

Posterior  of    ancestral  ranges  

Page 30: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Phylowood:  biogeographic  anima>ons  

Page 31: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Future  direc>ons  Rate-­‐modifiers  for  other  traits/features    Incorpora>ng  on  paleo-­‐etc.-­‐ical  data    Occupancy  models  to  handle  “false  absences”    Specia>on  models  (allopatry  vs  sympatry)    Adding  to  RevBayes  (easy  to  develop  models)  

Page 32: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Summary  Allows  hundreds  of  areas  for  analysis    Joint  posterior  of  parameters  and  ancestral  ranges    Simple  distance-­‐dependent  dispersal  model    Efficient  model  tes>ng  framework    Open-­‐source  soqware  available      

Page 33: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Thanks!  Ques>ons?  

   Contact  

[email protected]  twiYer.com/landismj  

 

BayArea                  Biogeography  for  many  areas  Nick  Matzke              bayarea.google.code.com      Brian  Moore  John  Huelsenbeck  

 Phylowood              Biogeographic  anima>ons  

 Trevor  Bedford            mlandis.github.com/phylowood    Helpful  folks  

Bas>en  Boussau  Tracy  Heath  Josh  Schraiber  Sebas>an  Höhna  

         

Page 34: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested
Page 35: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Extra  slides  

Page 36: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Malesian  paleogeography  ES42CH10-Lohman ARI 26 September 2011 14:33

Land

Deep seaTrenches

Shallow seaLakes

Volcanoes

Carbonateplatforms

Highlands

110˚E 120˚E 130˚E100˚E 110˚E 120˚E 130˚E100˚E

110˚E 120˚E 130˚E100˚E

10˚S

20˚S

10˚S

20˚S20˚S

10˚S

20˚S

110˚E 120˚E 130˚E100˚E

10˚S

20˚S

10˚S

20˚S

10˚S

a b

c d

e f

60 Mya Paleocene

40 Mya Late Eocene

30 MyaMiddle Oligocene

20 MyaEarly Miocene

10 MyaLate Miocene

5 MyaEarly Pliocene

Figure 2Six Cenozoic reconstructions of land and sea in the Indo-Australian Archipelago.

www.annualreviews.org • Indo-Australian Biogeography 207

Ann

u. R

ev. E

col.

Evol

. Sys

t. 20

11.4

2:20

5-22

6. D

ownl

oade

d fr

om w

ww

.ann

ualre

view

s.org

by U

nive

rsity

of C

alifo

rnia

- B

erke

ley

on 1

2/06

/12.

For

per

sona

l use

onl

y.

Lohman  et  al.  (2011)  

We  assume  constant  geography,  but…  

Page 37: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Vireya  results  Assume  Vireya  root  age  is  55  Mya    Ancestral  range  posterior  

Joint  WL  and  LL  crossing  once  ~40  Mya  All  other  WL  crossings  <  15  Mya  

 Plausible  biogeographical  scenario  

Single  long  distance  dispersal  event  around  40  Mya  As  Sundi  and  Sahul  Shelf  converge,  repeated  short      dispersals  

 

Page 38: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Dispersal-­‐ex>nc>on  model  

R(a)Yi,Yj

=

8>>><

>>>:

�0 if Yj,a = 0

�1 if Yj,a = 1

0 if Yi and Yj di↵er at more than one area

0 if Yj = (0, 0, . . . , 0)

iid,  Jukes-­‐Cantor,  forbids  ex>nc>on  

Page 39: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Rate-­‐modified  dispersal  model  

only a single area can be gained or lost. In other words, each row of Q contains up to N positive,

non-zero entries, which correspond to the rates at which any one of the N areas switches between

absent and present (i.e., the N 0 ! 1 and 1 ! 0 positive entries of the row). Additionally, each

row contains a single, negative diagonal entry, which accounts for the time during which no change

in geographic range occurs, defined as Qii = � Pi 6=j Qij , and ensures that each row of of Q sums

to zero. The remaining entries in Q have a value of zero, as they entail an instantaneous change in

geographic distribution involving two or more areas.

We define a distance-dependent dispersal model, MD, where the rate of gaining a particular area

(0 ! 1) depends on the relative proximity of available areas to those currently occupied by a lineage;

that is, the rate of colonizing a nearby area just outside the perimeter of the current geographic

range should be greater than that of colonizing a relatively remote area. The precise nature of the

relationship between geographic distance and dispersal probability might be specified in numerous

ways (see, e.g., Wallace 1887; MacArthur and Wilson 1967; Hanski 1998). Our distance-dependent

model specifies a simple relationship in which the probability of dispersal between two areas is

inversely related to the geographic distance between them.

Let R(a)Yi,Yj

be the rate of change from the geographic range Yi to the geographic range Yj , where

Yi and Yj di↵er only at the single area index a (again, reflecting the fact that this is a one-change-

at-a-time model). Also, let �0 2 ✓ and �1 2 ✓ be the respective rates at which an individual area

is lost or gained within a geographic range, and ⌘(Yi, Yj , a, �) be a dispersal-rate modifier that

accounts for correlative distance e↵ects. We define the instantaneous dispersal rate as

R(a)Yi,Yj

=

8>>>>>>>>>><

>>>>>>>>>>:

�0 if Yj,a = 0

�1⌘(Yi, Yj , a, �) if Yj,a = 1

0 if Yi and Yj di↵er at more than one area

0 if Yj = (0, 0, . . . , 0)

(1)

and the distance-dependent dispersal rate modifier as

⌘(Yi, Yj , a, �) =NX

n=1

1{Yi,n=1}d(Gn, Ga)��

⇥PN

m=1 1{Yj,m=0}PN

m=1 1{Yj,m=0}

⇣PNn=1 1{Yi,n=1}d(Gn, Gm)��

⌘ (2)

7

Per-­‐area  rate  of  gain  depends  on  current  biogeographical  range.  

Page 40: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

L�,HCompute  likelihood,  

0111 2 3

0011 2 3

1011 2 3

1011 2 3

Page 41: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

Distance-­‐dependent  dispersal  model  

Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here,

we are interested in computing the rate of Yi = (1, 1, 0, 0) transitioning to Yj = (1, 1, 0, 1). The

first term computes the sum of inverse distances raised to the power � between the area of interest

(i.e., 4) and all currently occupied areas (i.e., areas 1 and 2). The second term then normalizes this

quantity by dividing by the sum of inverse distances raised to the power � between all occupied-

unoccupied area-pairs (i.e., the denominator), then multiplying by number of currently unoccupied

areas (i.e., 2, the numerator).

0 01 2

3 40 0

1 2

3 4

0 01 2

3 4

⌘(Yi = (1, 1, 0, 0) ! Yj = (1, 1, 0, 1), a = 4, �) =

d(G1, G4)�� + d(G2, G4)

��

| {z }

⇥ 2

d(G1, G3)�� + d(G2, G3)

��

| {z } + d(G1, G4)�� + d(G2, G4)

��

| {z }

1 1

1 1 1 1

28

Rate-­‐modifier  

Normaliza>on  

Page 42: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

BayArea  recovers  rate  of  area  gain  

0 0.25 0.5 1 2 3 4 6

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

Data simulated under distance power, β

Mea

n po

ster

ior o

f rat

e of

gai

n, λ1

Posterior  rate  of  area  gain  

True  rate  

True  distance  effects  

Landis  et  al.  (Syst  Biol,  in  press)  

Page 43: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

0 0.25 0.5 1 2 3 4 6

0.035

0.040

0.045

0.050

0.055

0.060

Data simulated under distance power, β

Mea

n po

ster

ior o

f rat

e of

loss

, λ0

BayArea  recovers  rate  of  area  loss  

True  distance  effects  

Posterior  rate  of  area  loss  

True  rate  

Landis  et  al.  (Syst  Biol,  in  press)  

Page 44: Bayesian(inference(of( biogeographical(histories(for ......Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here, we are interested

BayArea  recovers  distance  effects  

0 0.25 0.5 1 2 3 4 6

02

46

Data simulated under distance power, β

Mea

n po

ster

ior o

f dis

tanc

e po

wer

, β

True  value  Po

sterior  o

f  distance  effe

cts  

True  distance  effects  Landis  et  al.  (Syst  Biol,  in  press)