29
Basic Pavement Design/Technical Concepts Andy Johnson, Ph.D., P.E. Pavement Design Engineer Portland Cement Association – SE Region FDR Symposium, Birmingham, Alabama October 6, 2015 1

Basic Pavement Design/Technical Concepts

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Basic Pavement Design/Technical Concepts

Basic Pavement Design/Technical Concepts

Andy Johnson, Ph.D., P.E.Pavement Design EngineerPortland Cement Association – SE Region

FDR Symposium, Birmingham, AlabamaOctober 6, 2015

1

Page 2: Basic Pavement Design/Technical Concepts

Road Mix■ Pulverize■ Spread cement  ■ Add water as necessary 

for Optimum Moisture and Mix

■ Grade and compact■ Cure■ Overlay

Page 3: Basic Pavement Design/Technical Concepts

What are the main pavement design parameters?

• Two broad categories:– Structural– Functional 

3

Page 4: Basic Pavement Design/Technical Concepts

Functional Pavement Aspects

• Ride• Friction• Rutting• Noise

4

Page 5: Basic Pavement Design/Technical Concepts

Structural Pavement Aspects

• Protect subgrade from permanent deformation

5

text

0

10

20

45o 10-14”

ContactPressure

(PSI)

100 PSIContactRadius

~5 inches

2 to 3 timesthickness ofpavement

+/- 20 ft

Pressure ~3 to 7 psi

100 psi

8” slab

Page 6: Basic Pavement Design/Technical Concepts

Structural Pavement Aspects

• Resist fatigue damage from repeated traffic loading

T

T TC

C C

Critical Stress/Strain

Page 7: Basic Pavement Design/Technical Concepts

Pavement Design

• For most pavements consisting of bound materials, fatigue damage is the controlling factor.

• The larger the stress or strain at the critical point, the fewer load repetitions to failure.

• The relationship between material response and damage is referred to as a transfer function.

Page 8: Basic Pavement Design/Technical Concepts

Pavement Design

• At one extreme, a pavement can fail in one load repetition.  This is a consideration for airfield pavement, but not so much for highways.

• At the other extreme, the load‐induced response in the pavement can be so low that the fatigue life is “infinite”.

Page 9: Basic Pavement Design/Technical Concepts

Pavement Design

• For asphalt, the “infinite” condition is determined by the endurance limit and expressed in microstrain.

• Researchers differ somewhat on what the endurance limit is, but the range is generally 70 to 150 microstrain and depends on the mix design.

Page 10: Basic Pavement Design/Technical Concepts

Pavement Design

• For concrete and cement‐treated bases, the fatigue life is generally expressed as the ratio of horizontal stress to the modulus of rupture.

• It is often assumed that if the ratio is less than 0.45 to 0.50, the fatigue life is also infinite.

Page 11: Basic Pavement Design/Technical Concepts

Sample Pavement Structure

10” FDR

Subgrade

11

2” Asphalt Surface

0-50 50

Horizontal Stress (psi)Negative = Tension

Positive = Compression

-79

Page 12: Basic Pavement Design/Technical Concepts

Sample Pavement Structure

• A compressive strength of 750 psi is assumed to have a modulus of elasticity of 865,000 psi and a modulus of rupture of 173 psi.

• Estimated stress in our example is 79 psi, for a ratio of 0.46.

• Using AASHTO MEPDG transfer function, this would give 22.5 million repetitions to failure.

• Estimated asphalt strain is 57 microstrain, well below typical endurance limits for fatigue.

Page 13: Basic Pavement Design/Technical Concepts

Pavement thickness design procedures 

• “New” AASHTO Design Guide–Mechanistic‐Empirical Design– Evaluates effects of pavement materials, traffic  loading conditions, environmental factors, design features, and construction practices– Not yet fully calibrated to local conditions– Chemically stabilized base performance model needs further development

Page 14: Basic Pavement Design/Technical Concepts

AASHTO PavementME Results

Page 15: Basic Pavement Design/Technical Concepts

Pavement thickness design procedures 

• 1993 AASHTO Pavement Design Guide– Structural Numbers– Layer coefficients– SCDOT – 0.26/inch–VDOT – 0.30/inch–NCAT – 0.37/inch

Page 16: Basic Pavement Design/Technical Concepts

FDR mix design• Samples taken at different points along the project by contractor to get representative data

• Certified lab mixes samples together to attain a composite sample for testing at varying cement rates

• Unconfined compressive strength is measured after 8 days of curing

• Lab test results submitted to the agency/owner for evaluation and recommendations

• Cement spread rate is specified

Page 17: Basic Pavement Design/Technical Concepts

FDR mix design guidance

• PCA publication: Soil Cement Laboratory Handbook– Recommend 300 to 400 psi UCS at 7 days

• SCDOT has published procedures– Uses 600 psi UCS as target for design, not acceptance!!  Considering reducing to lower value.

Page 18: Basic Pavement Design/Technical Concepts

What’s the catch?

• Reflective cracking:– When Portland cement and water cure, the resulting product has a slightly lower volume than what went in.

– The pavement is restrained by friction to its original length.  It wants to shrink, but can’t.

– This creates tensile stresses in the pavement.– If the tensile stresses exceed the tensile strength at a given point in time and space, the pavement will crack.

Page 19: Basic Pavement Design/Technical Concepts

What’s the catch?

• Reflective cracking:– These cracks are NOT the same as fatigue cracks and have high load transfer efficiency.

– Concern is that these cracks will lose their LTE over time, water will get into pavement and subgrade.  This water could lead to softening of the subgrade and damage.

– Also the cracks reflect through the asphalt overlay and may allow water damage.

Page 20: Basic Pavement Design/Technical Concepts

AASHTO PavementME Results

Page 21: Basic Pavement Design/Technical Concepts

Dealing with reflective cracking

• Several strategies available– Stress absorbing interlayer– Geosynthetics– Pre‐cracking/microcracking– Crack sealing– Use lower cement content/greater depth– Don’t worry about it…

Page 22: Basic Pavement Design/Technical Concepts

SC-311, Dorchester Co, SCFebruary 2015Age ~8 years

Page 23: Basic Pavement Design/Technical Concepts

SC-311, Dorchester Co, SCFebruary 2015Age ~8 years

Page 24: Basic Pavement Design/Technical Concepts

Old Pardue RdLancaster Co, SCFebruary 2015Age ~10 years

Crack

Page 25: Basic Pavement Design/Technical Concepts

Crack Sealing?

Page 26: Basic Pavement Design/Technical Concepts

Cracking is not limited to FDR

• Patching, milling, and overlay can also develop reflective cracking over patch boundaries and existing cracks.

• Unlike FDR‐related shrinkage cracking, the reflected cracks are often promptly structural in nature.

• Need to consider the FDR cracking behavior in perspective with the alternatives.

Page 27: Basic Pavement Design/Technical Concepts

Other issues

• Rideability– Good smoothness is achievable.– Technology is improving the grade control capabilities of the FDR process.

– Motor grader operator skill is essential to getting a smooth ride.

Page 28: Basic Pavement Design/Technical Concepts

Conclusions

• FDR can provide a very long‐lasting base, even under high traffic conditions.

• In mild climates, like South Carolina and Alabama, reflected shrinkage cracks are primarily an aesthetic issue.

• Shrinkage cracking may be mitigated by a variety of means, if necessary.

Page 29: Basic Pavement Design/Technical Concepts

Questions?

Andy Johnson, Ph.D., P.E.Pavement Design [email protected](803) 556‐2889