Basic of Acoustics

Embed Size (px)

Citation preview

  • 8/22/2019 Basic of Acoustics

    1/22

    BASICS OF ACOUSTICS

  • 8/22/2019 Basic of Acoustics

    2/222

    CONTENTS

    1. preface

    2. room acoustics versus building acoustics

    05

    0506060708090910

    11

    11141616

    18

    03

    04

    3. fundamentals of acoustics

    4. room acoustic parameters

    5. index

    3.1 Sound

    3.2Soundpressure

    3.3Soundpressurelevelanddecibelscale

    3.4Soundpressureofseveralsources

    3.5Frequenc y

    3.6Frequencyrangesrelevantforroomplanning

    3.7Wavelengthsofsound

    3.8Levelvalues

    4.1 Reverberationtime

    4.2Soundabsorption

    4.3 Soundabsorptioncoefcientandreverberationtime

    4.4 Ratingofsoundabsorption

  • 8/22/2019 Basic of Acoustics

    3/223

    1. PREFACE

    Noiseorunwantedsoundsisperceivedasdisturbingandannoyinginmanyfieldsoflife.Thiscanbeobservedinprivateaswellasinworkingenvironments.Severalstudiesaboutroomacousticconditionsandannoyancethroughnoiseshowtherelevanceofgoodroomacousticconditions.Decreasingsuccessinschoolclassroomsoraffectingefficiencyatworkisoftenrelatedtoinadequateroomacousticconditions.ResearchresultsfromclassroomacousticshavebeenoneofthereasonstoreviseGermanstandardDIN18041onAcousticqualityofsmallandmedium-sizedroomfrom1968anddecreasesuggestedreverberationtimevaluesinclassroomswiththenew2004versionofthestandard.Furthermorethestandardgaveadetailedrangeforthefrequencydependenceofreverberationtimeandalsoextendedtherangeofroomstobeconsideredinroomacousticdesignofabuilding.

    Theacousticqualityofaroom,betteritsacousticadequacyforeachusage,isdeterminedbythesumofallequipmentandmaterialsintherooms.Inthesenseofgoodacousticstheroomsshouldcontributetoperceivespeech,musicorothersoundsasnottooloudortooquietandthewecancommunicatewithmucheffortandfeelcomfortable.

    ThisbrochurehasbeendevelopedbyCrationBaumanwiththeintentiontogiveanintroductionandprofessionalsupportinthefieldofroomacousticsthatsometimeshastheconnotationofbeingconfusingortoomulti-dimensional.Itilluminatesimportanttermsandexplainsbasicsandinterrelationshipsofroomacoustics.

    WithitspaletteofcreativetextilesforroomsCrationBaumanndeliversacousticallyeffectiveaswellasartisticattractivesolutionsforroomacousticquestions.Thebandwidthoftheacousticefficiencyoftextileapplicationsisoftenunderestimated.ForthisCrationBaumannofferswithitslargedocumentationofacousticpropertiesforitsmaterials-thatisavailableseparatelyagreatpotentialinmodernsolutionsforacousticsbytextiledesigninaroom.

  • 8/22/2019 Basic of Acoustics

    4/224

    2. ROOM ACOUSTICS VERSUS BUILDING ACOUSTICS

    Thedifferencebetweentheeldsofroomacousticsandbuildingacousticsbecomesobviousonlywhenwetakeacloserlookatacousticalquestions.Inbuildingacoustics,thequestionalwaysis:

    Whatportionofthesoundreachestheothersideofthecomponentinquestion?Thekeypropertyisthesoundinsulationofthecomponent.Essentially,itisabouttheabilityofcomponentswalls,ceilings,doors,windows,etc.tominimisethesoundtransmissionbetweentworooms.Ahighdegreeofsoundinsulationisusuallyachievedusingsolid,heavycomponentswhichhinderthepropagationofsound.

    ThesoundinsulationofpartitionsforairbornesoundisdescribedbythesoundtransmissionlossorratedsoundreductionlossRwthatcanbemeasuredonsiteorinlaboratoryorevencalculated.

    Backgroundnoiselevel

    Buildingacoustics:

    Soundtransmissionbetween

    adjacentrooms

    Transmitted

    Soundlevel

    SoundlevelSoundlevel

    80dB

    60dB

    Thequestioninroomacoustics,ontheotherhand,is:

    Whatsurfaceshelptocreateoptimumlisteningconditionsinaroom?Thekeypropertyinthiscaseisthesoundabsorptionprovidedbythematerialsusedintheroom.Soundabsorption

    describestheabilityofmaterialstoabsorbsoundortoconverttheincidentsoundenergyintootherformsofenergy.Soundabsorptionisachievedbymeansofsoundabsorbers

    Roomacoustics:

    Acousticqualitywithinaroom

    Backgroundnoiselevel

    ThesoundabsorptionofasurfaceisdescribedbythefrequencydependentsoundabsorptioncoefcientorsimpliedbyaaveragevaluessuchasworNRC.Thesoundabsorptioncoefcientusuallyismeasuredinspeciallaboratoryroom,so-calledreverberationchambers.

    Thetermssoundinsulationandsoundabsorptionarewell-denedandrelatetotheeldsofbuildingacousticsandroomacousticsrespectively.Ifwefeelannoyedbynoisefromanadjacentroom,increasingthesoundinsulationessentiallyhelpstoimprovethissituation.Thesoundabsorptioninaroomcangenerallyonlydecreasethelevelinroombyasmallamount.Decreasingsoundlevelsinaroombyroomacousticmeansisinprinciplemuchsmallerthananyoptimizationofthepartion.

  • 8/22/2019 Basic of Acoustics

    5/225

    3. FUNDAMENTALS OF ACOUSTICS

    3.1SOUND

    Soundcancompriseharmonioustones,music,bangs,noise,crackling,butalsospokenwords.Allofthesesoundeventscauseaslightvariationinairpressurewhichpropagateswithinthesurroundingsofitssource.Wethereforerefertothesoundpressureofatone,ofnoise,speechormusic.Thelouderthesoundevent,theheavieristhispressurevariationandthehigheristhesoundpressure.

    Asarule,soundalwayspropagatesintoallthreedirectionsofspace.Withmanysoundsourcesthesoundradiationde-pendsontheorientationofthesource;inmostcasesitissufcient,however,toassumeroughlyauniform,omnidirec-tionalsoundradiation.Soundsourcesofthistypearereferredtoasomnidirectionalsoundsources.Todayitisalsopos-sibletoselectverytightlyrestrictedsoundradiationdirectionsbymeansofspecialloudspeakerssothattheradiatedsoundcanbedirectedspecicallytoaparticularposition.Thismethodisused,forexample,whenttinglectureroomswithelectroacousticequipment.Here,ithastobetakenintoaccountthatthesoundenergydecreasesconsiderablywithincreasingdistancefromthesoundsource.Intheareasoccupiedbytheaudience,however,thesounddistributionshouldbeasuniformaspossible.Toachievethiseffect,alargernumberofloudspeakersmayhavetobeused.

    Asarule,soundalwayspropagatesintoallthreedirectionsofspace.Withmanysoundsourcesthesoundradiationdependsontheorientationofthesource;inmostcasesitissufcient,however,toassumeroughlyauniform,omnidi-

    rectionalsoundradiation.Soundsourcesofthistypearereferredtoasomnidirectionalsoundsources.Inprincipalonehastodifferentiatebetweenairbornesound,soundinliquidsandsoundinsolidbodies.Generallysoundisapropagationofpressureanddensityvariationinanelasticmedium.Ifsoundtravelsthroughawalloranotherpartitiontheairbornsoundisconvertedtovibrationofthewallandthenradiatedfromthevibratingwallasairbornsoundtotheroom.

    Unwantedsoundeventscanbenamedasnoise.Thisdenitionshowsthattheperceptionofsoundshasstrongsubjectiveaspects.Psychoacousticsasabranchofacoustics,oralsonoiseeffectresearch,dealswiththerelationshipbetweenoursubjectiveperceptionandthesoundsignalswhichareobjectivelypresent.Oftenadifferencebetweenwantedsoundsuchasmusicinaconcertoravoiceofaspeakerundunwantedsoundliketrafcnoiseormusicoftheneighbourismade.

  • 8/22/2019 Basic of Acoustics

    6/226

    3.2SOUNDPRESSURE

    Soundcancompriseharmonioustones,music,bangs,noise,crackling,butalsospokenwords.Allofthesesoundeventscauseaslightvariationinairpressurewhichpropagateswithinthesurroundingsofitssource.Wethereforerefertothesoundpressureofatone,ofnoise,speechormusic.Thelouderthesoundevent,theheavieristhispressurevariationandthehigheristhesoundpressure.Theminimumsoundpressurethatahumanbeingcanperceiveisaround20Pa=0.00002Pascal,averylowvalueshowinghighsensitivityofthehumanauditorysystem.Soundpressurevaluesof20Pascalwilldamagethehearingsystemforveryshortexposuretimes.

    Time(sec)

    SoundpressureinPascal

    3.3SOUNDPRESSURELEVELANDDECIBELSCALE

    Thestrengthofasound,thesoundpressure,usuallyisgivenassoundpressurelevelorsoundlevel.Asoundpressurelevelof0decibelrefersbydenitiontothesoundpressurelevelwherehumanperceptionbegins.Thisdenitionprovidesascalebetween0decibel(abbr.:dB)andabout140dB.Constantsoundlevelsofmorethan80dBorveryshortnoisesofmorethan120dBcanirreversiblydamagetheauditorysystem.

    Decibel

    intolerable

    veryloud

    loud

    quiet

    veryquiet

    inaudiable

    aircraftengine

    discotheque,jackhammer

    tickingwatch

    breathing

    whispering

    140dB(A)

    120dB(A)

    100dB(A)

    80dB(A)

    60dB(A)

    40dB(A)

    20dB(A)

    0dB(A)

    loudcommunication,

    busyofce

    quietcommunicationquietlibrary

    absolutesilence

    heavytrafc

    *DefinitionseeChapter5

    *

  • 8/22/2019 Basic of Acoustics

    7/227

    3.4SOUNDPRESSUREOFSEVERALSOURCES

    Anincreaseinthenumberofsoundsourcesbyafactoroftwoalwaysresultsinanincreaseofthelevelby3dB,afactorofteninanincreaseby10dB,andafactorofonehundredinanincreaseby20dB.

    SOUNDPRESSUREINCREASEFORIDENTICALSOUNDSOURCES

    Thefollowingtablegivesasimpleruleofthumbfortheadditionoftwosoundlevels.Firstofallthedifferencebetweenthetwolevelsshouldbecalculated.

    Example:Fortwosourcesof45dBand52dB,respectively,thedifferenceof7dBmeansanincreaseby1dB,whichisaddedto52dBandthusresultsinatotallevelof53dB.

    Numberofidenticalsoundsources Soundpower Soundpressure Soundpressurelevel

    100 10+20dB

    10 3,2+10dB

    4 2+6dB

    2 1,4+3dB

    1 10dB

    ExampleAlarmclock IncreaseofdBvalue

    1 62dB

    2 62+3=65dB

    3 62+5=67dB

    4 62+6=68dB

    5 62+7=69dB

    10 62+10=72dB

    15 62+12=74dB

    20 62+13=75dB

    50 62+17=79dB

    100 62+20=82dB

    Soundpressureleveldifference 0to1 2to3 4to9 morethan10

    Levelincrease(tobeaddedtothehighervalue) +3dB +2dB +1dB +0dB

  • 8/22/2019 Basic of Acoustics

    8/228

    3.5FREUENCY

    Thefrequencyofasoundwavedescribesthenumberifpressurechangesoroscillationspersecond.Itisoftenabbrevi-atedbytheletterfandhastheunit1Hertz(short:Hz).Afrequencyof1000Hzmeans1000oscillationspersecond.Thesoundpressureorsoundlevelisperceivedasloudnessandisoneimportantdimensionfortheperceptionofsound.Equallyimportantisthefrequencycontentofthesoundorspectrum.Puretonesaresoundwithonlyonefrequency.

    Thesensitivityofthehumanauditorysystemishighlydependentonfrequency.Itisparticularlypronouncedinthefrequencyrangeofhumanspeechbetween250Hzand2000Hz.Thisisveryusefulwhenwelistentosomeonespeak,butdisruptionsinthisfrequencyrangeareperceivedasparticularlyannoyingandcanstronglyaffectcommunication.Withtoohighorlowfrequencies,ourhearingabilitydecreases.

    Anoiseloudnessratingwhichistomeetthedemandsofthehumanauditorysystemneedstotakeintoaccountthefrequencycharacteristicofthehumanauditorysystem.Themediumfrequencies,atwhichthehumanauditorysystemisparticularlysensitive,areweightedmoreheavilythanthehighandlowfrequencies.ThisweightingresultsinthetermdB(A)forsoundpressurelevels,i.e.theso-calledA-weightedsoundpressurelevel.Nearlyallregulations,guidelines,standardvalues,limitvalues,recommendationsandreferencestosoundpressurelevelsusevaluesexpressedindB(A).

    Infrasound Audiblerange[ 2020.000Hz] Ultrasound

    FrequenciesmeasuredinHertz(Hz)

    10Hz 100Hz 1.000Hz 10.000Hz 100.000Hz

    Bat

    Triangle

    Organ

    Violin

    Contrabass

    Grandpiano

    Malevoice

    Femalevoice

    Phone

  • 8/22/2019 Basic of Acoustics

    9/229

    3.6FREUENCYRANGESRELEVANTFORROOMPLANNING

    Thefrequencyrangetobetakenintoaccountwhenplanningaroomisbasedonthehumanauditorysystemontheonehandandwhatistechnicallysensibleandfeasibleontheother.Frequenciesabove5000Hzareattenuatedbytheairtosuchadegreethatitisnotsensibletotakethemintoaccountwhenplanningtheacousticsofaroom.Below100Hz,otherphysicalimplicationsofsoundpropagationneedtobetakenintoaccount.

    Theinternationallystandardisedtestmethodsfordeterminingthesoundabsorptionbyparticularmaterialsarebasedonthefrequencyrangefrom100Hzto5000Hz.Correspondinglyithasbeendecidedtofocusroomacousticplanningonthefrequencyrangebetween100Hzand5000Hz,asarule.

    Relevantfrequencyranges

    10Hz 100Hz 1.000Hz 10.000Hz 100.000Hz

    Relevantfrequencyrangesfrom100upto5.000Hzforroomplanning.

    3.7WAVELENGTHSOFSOUND

    Eachfrequencyofsoundisassociatedwithasoundwaveofaparticularwavelength.Inair,a100Hzwavehasanextensionof3.40meters,whereasa5000Hzwavehasanextensionofonlyabout7centimeters.Accordingly,thesoundwavesrelevantforroomacousticshavealengthofbetween0.07mand3.40m.Aswecansee,thedimensionsofsoundwavesarewellwithintherangeofthedimensionsofroomsandfurnishings.Thefollowinggureshowstherangeofallsoundwavelengthsrelevantforroomacoustics.

    Wavelengthsl

    l

    l

    Time(sec)

    SoundpressureinPascal

  • 8/22/2019 Basic of Acoustics

    10/2210

    3.8LEVELVALUES

    Therelevantparameterforanobjectiveassessmentofthenoiseimpactataworkstationistheso-calledratinglevel,whichconsists,ontheonehand,ofthemeasured,time-averagedsoundpressurelevelinaroomand,ontheotherhand,ofadjustmentsinaccordancewiththecharacteristicofthenoiseaswellasitsdurationofimpact.

    Theratinglevelisusuallybasedonaratingperiodof8hours.Highbackgroundnoiselevelsinofceroomswilllikelyaffecttheintellectualefciency.Forthisreason,severalregula-tionsandstandardscontainrecommendationsregardingthemaximumpermissiblebackgroundsoundpressurelevel.

    ThefollowingtableshowsthevaluesoftherecommendedbackgroundnoiselevelinaccordancewithDINEN11690:

    Conferenceroom Officeroom Openplanoffice

    dB(A)

    100

    50

    30-35dB(A)30-40dB(A)

    35-45dB(A)

    65-70dB(A)

    Industrialworkplace

  • 8/22/2019 Basic of Acoustics

    11/2211

    4. ROOM ACOUSTIC PARAMETERS

    4.1REVERBERATIONTIME

    Thereverberationtimeisthebasisforratingsofroomacousticquality.Putsimply,thereverberationtimeindicatestheperiodoftimeittakesforasoundeventtobecomeinaudible.Technically,thereverberationtimeThasbeendenedasthetimerequiredforthesoundpressurelevelinspacetodecayby60dB.Thismeansthat,ifaroomisexcitedwithabangof95dB,thereverberationtimeindicatestheperiodoftimewithinwhichthenoiseleveldropsto35dB.Thiscanbeafewtenthsofaseconduptoseveralseconds.Thereverberationtimecanbedeterminedforeachenclosedspace.

    Thisobjectivelymeasurablequantityallowsdifferentroomstobecomparedwitheachotherandtheirroomacoustic

    qualitytobeassessed.Whileareverberationof4to8secondsisquitenormalforachurch,thevaluesaimedatforthereverberationtimeinconferenceorofceroomsarequitedifferent.Thefollowingtableprovidesanoverviewofthetypicalreverberationtimesofdifferentroomtypes.

    Ithasadirecteffectonspeechintelligibilityinaroom.Ingeneral,speechintelligibilityinaroomdecreaseswithin-creasingreverberationtime.Thisdoesnotmean,however,thattheshortestpossiblereverberationtimeisalwaysthebestsolution!Verypoorspeechintelligibilityusuallydoessuggest,though,thatthereverberationtimeistoolong.

    Thesubjectiveimpressionofthesoundqualityofaroomallowseventhenon-experttodrawconclusionsastohowthereverberationtimeprogresseswithinthedifferentfrequencyranges.If,forexample,speechinaroomsoundsblurred,andifitisverydifculttounderstandeachother,itcanbeassumedthatthereverberationtimeistoolong.Acousticallydryinthiscontextmeansthatthesoundisabsorbedunnaturallyfast.Ifthishappensonlyathighfrequencies,theroomsoundsholloworbooming,whereasatlowfrequenciesitsoundspiercingandsharp.

    Reverberationtime

    0 1,0 2,0Time(sec)

    typicalreverberationtimeforofcerooms:0,50,8sec

    Reverberationtime:1,8sec

    60dB(A)

    100

    50

    in(dB)Soundpressurelevel

    Typeofroom Reverberationtime(exemplary)

    Church approx.48seconds

    Classroommediumsized 0,6seconds

    Ofceroomdependingonsize 0,50,8seconds

    Concerthallforclassicalmusic approx.1,5seconds

    Performance Reverberationtimeatlowfrequencies

    Reverberationtimeathighfrequencies

    Subjectiveimpression

    speech toolongtoolongtooshorttooshort

    toolongtooshorttoolongtooshort

    blurred,difculttounderstandhollow,buteasytounderstandpiercing,clanking,sharp,difculttounderstanddry,buteasytounderstand

  • 8/22/2019 Basic of Acoustics

    12/2212

    Onwhichfactorsdoesthereverberationtimedepend?Thereverberationtimedependsmainlyonthreefactors:-thevolumeoftheroom,-thesurfacesoftheroomand-thefurnitureintheroom.

    Aroomusuallybecomesmorereverberantwithincreasingheight.Absorbingsurfacessuchascarpets,curtainsandsoundabsorbingceilings,butalsofurnitureorpeoplepresentintheroomreducethereverberationtime.

    0 0,5 1,0 1,2 Time(sec)

    Reverberationtime:0,5secWITHproductsofCrationBaumann

    Reverberationtime:1,2secWITHOUTproductsofCrationBaumann

    100

    50

    SoundlevelindB

  • 8/22/2019 Basic of Acoustics

    13/2213

    Theshapeofaroomisusuallyofminorimportanceforthereverberationtime.Onlyiftheroomacousticrequire-mentsareveryhigh(e.g.inconcerthalls)oriftheshapeisveryunusual,e.g.vaultedsurfacesorheavilyvaryingroomheights,doesshapebecomeanessentialfactor.TherecommendationsgiveninDIN18041shouldalwaysformthebasisforanyroomacousticplanning.DIN18041Acousticqualityinsmalltomedium-sizedroomsformsthebasisfortherecommendationsregardingtheacousticdesignofsmalltomedium-sizedrooms.Withregardtotheoptimumreverberationtime,DIN18041distinguishesbetweenthreedifferentroomcategories:music,speechandcommunicationandteaching.Roomsoftheusagetypemusicaremusicclassroomsandhallsformusicpresentations.Speechinthebroadestsensecomprisesallroomswhereaspeakerspeaksinfrontofanaudience.Communicationandteachingcomprisesalltypeswhereseveralpeoplespeakatthesametime,i.e.teachingroomsaswellasconferencerooms,multipleoccupancyofces,servicepoints,callcentersandroomswithaudiovisualpresentationsorelectroacousticuses.

    Twoexamples:

    Example1:

    Aconferenceroom(usagetype:communicationandteaching)withavolumeof250m3shouldhaveareverberationtimeof0.60s.

    Example2:Achambermusichall(usagetype:music)withavolumeo550m3shouldhaveareverberationtimeof1.30s.

    2,6

    2,4

    2,2

    2,0

    1,8

    1,6

    1,4

    1,2

    1,0

    0,8

    0,6

    0,4

    0,2

    30 100 1.000 5.000 10.000 30.000

    ReverberationtimeTSOLL

    ins

    Roomvolume V in m

    Music

    Speech

    Teaching, Communication

  • 8/22/2019 Basic of Acoustics

    14/2214

    4.2SOUNDABSORPTION

    Thesoundabsorptioncoefcientdescribesthepropertyofamaterialtoconvertincidentsoundintootherformsofenergye.g.thermalorkineticenergyandthustoabsorbit.

    Case1:Soundcompletelyabsorbed(soundabsorptioncoefcient=1)noreection

    Theotherextremeisfullsoundreection.Alltheincidentsoundisreected.

    Case2:Soundcompletelyreected(soundabsorptioncoefcient=0)

    Case3:Soundpartlyabsorbed(soundabsorptioncoefcient=between0and1)

    Soundcompletelyabsorbed

    Soundcompletelyreected

    Soundpartiallyabsorbed

    Thefrequency-dependentsoundabsorptioncoefcientofamaterialisdeterminedbymeansofaspecialacousticmaterialtestmethodtheso-calledreverberationroommethod.Forthistest,amaterialsampleisplacedintothereverberationroom,whosereverberationtimehasbeendeterminedpreviouslywithoutthesample.Fromthechangeinthereverberationtimewiththesamplepresentintheroom,thesoundabsorptioncoefcientScanbedeterminedforeachone-thirdoctavebetween100Hzand5000Hz.Thisyields18one-thirdoctavevalueswhichuniquelydescribetheabsorptionbehaviorofthematerial,i.e.towhatextentandatwhatfrequenciesthematerialabsorbsthesound.

    Solvingroomacousticproblemswithmeasurementsshouldalwaysuseon-thirdoctavebandresolutioninfrequencyasmanyproblemsoccurinsmallfrequencybandsandrequireadequatesolutions.

  • 8/22/2019 Basic of Acoustics

    15/2215

    Octaveaveragefrequency

    one-thirdoctavebandstep octavebandstep

    400 500 630 800 1.000 1.250 1.600 2.000 2.500 3.150 4.000 5.000200 250 315100 125 160

    Itisnotonlythechoiceofmaterial,however,whichisresponsibleforthesoundabsorptioninaroom.Whatismostimportantisthetotalareaofthismaterialpresentintheroom.Theequivalentsoundabsorptionareahasbeenintro-ducedtoprovideameasureforthesoundabsorbingperformanceofasoundabsorberactuallypresentintheroom.ItisdenedastheproductofthesoundabsorptioncoefcientSofamaterialandthesurfaceofthismaterial.

    Calculationoftheequivalentsoundabsorptionofsurfacesinaroom:

    A=s11+s22+s33++sn+n+A1+A2++An

    Atotalequivalentsoundabsorptionareainarooms1surfacesizeofmaterial1,e.g.acousticceiling1soundabsorptioncoefcientofmaterial1s2surfacesizeofmaterial2,e.g.carpet2soundabsorptioncoefcientofmaterial2Snsurfacesizeofmaterialnnsoundabsorptioncoefcientofmaterialn

    10Hz 100Hz 1.000Hz 10.000Hz 100.000Hz

    Relevantfrequencyrangesfrom100upto5.000Hzforroomplanning.

  • 8/22/2019 Basic of Acoustics

    16/2216

    4.3SOUNDABSORPTIONCOEFFICIENTANDREVERBERATIONTIME

    Inafullyfurnishedroomwithdifferentsurfaces,forexample,eachmaterial(e.g.carpets,plaster,acousticceiling,cur-tains,windows,shelves,etc.)canbeallocatedasoundabsorptioncoefcient,andbymultiplyingthiscoefcientbythesurfaceofthismaterial,theequivalentsoundabsorptionareacanbecalculated.Theequivalentsoundabsorptionareasofallmaterialsarethenaddedtodeterminethetotalequivalentsoundabsorptionareaoftheroom.ThereverberationtimeofaroomcanbederivedfromthecalculatedtotalequivalentsoundabsorptionareausingtheSabineformula.

    Sabineformula:

    TReverberationtimeVVolumeoftheroomATotalequivalentsoundabsorptionarea

    Asoundabsorberof10m 2withasoundabsorptioncoefcientof0.50hasanequivalentsoundabsorptionareaof5m2andthushasthesameeffectasasoundabsorberof20m2withasoundabsorptioncoefcientof0.25orasoundabsorberof5m2withasoundabsorptioncoefcientof1.00.Inafullyfurnishedroomwithdifferentsurfaces,forexample,eachmaterial(e.g.carpets,plaster,acousticceiling,curtains,windows,shelves,etc.)canbeallocatedasoundabsorptioncoefcient,andbymultiplyingthiscoefcientbythesurfaceofthismaterial,theequivalentsoundabsorptionareacanbecalculated.Theequivalentsoundabsorptionareasofallmaterialsarethenaddedtodeterminethetotalequivalentsoundabsorptionareaoftheroom.

    4.4RATINGOFSOUNDABSORPTION

    Intheprevioussectionstheadvantagesoflookingatthesound,thereverberationtimeandthesoundabsorptioncoef-cientinafrequency-dependentcontexthavebeenexplainedingreatdetail.Severalinterestedpartieshave,however,expressedtheirdesireforsimpliedvalues,whichmightnotpermitdifferentiatedplanning,butwouldallowroughcomparisonstobemadebetweendifferentsoundabsorbersorpreliminarystatementsregardingthebasicsuitabilityofproductsforparticularapplications.Suchvaluesshouldalsoenableasimpliedplanningofroomswithlowrequire-mentsregardingtheiracousticquality.Againstthisbackdrop,singlevaluesofsoundabsorptionhavebeendenedinEuropeandtheUSwhichdifferslightly.ThemostcommonsinglevalueofsoundabsorptioninEuropeistheso-calledweightedsoundabsorptioncoefcientw,whereasintheEnglish-speakingworlditistheNoiseReductionCoefcient(NRC)ortheSoundAbsorptionAver-age(SAA).

    Allprocedurestodetermineofsinglenumberratingsrelyontestsinthereverberationchamberwithon-thirdoctave

    bandresolution.

    Weightedsoundabsorptioncoefcientw(DINENISO11654):Inordertodeterminetheweightedsoundabsorptioncoefcientw,themeanvaluefortheoctavecentrefrequencybetween125Hzand4000Hzisdeterminedfromthreeone-thirdoctavevalues.18one-thirdoctavevaluesarethusconvertedinto6octavevalues.Themeanvalueoftherespectiveoctaveisthenroundedtothenearest0.05;itisreferredtoasthepracticalsoundabsorptioncoefcientp.Thepracticalsoundabsorptioncoefcientpbetween250Hzand4000HziscomparedtothereferencecurvegiveninDINEN11654.Thiscomparisongivesasinglevalueoftheweightedsoundabsorptioncoefcientw.Deviationsbymorethan0.25betweenthecurveandthereferencecurveareindicatedbymeansoftheshapeindicatorsL,MorH,dependingonwhethertheyoccurat250Hz(L),at500Hzor1000Hz(M),orat2000Hzor4000Hz(H).Theresultingvaluesare,forexample,w=0.65(H),w=0.20orw=0.80(LM).

    T=0,163 VA

  • 8/22/2019 Basic of Acoustics

    17/2217

    Deviationsbymorethan0.25betweenthecurveandthereferencecurveareindicatedbymeansoftheshapeindicatorsL,MorH,dependingonwhethertheyoccurat250Hz(L),at500Hzor1000Hz(M),orat2000Hzor4000Hz(H).Theresultingvaluesare,forexample,w=0.65(H),w=0.20orw=0.80(LM).

    Basedonthewvalue,soundabsorberscanbeclassiedintodifferentsoundabsorberclasses.wvaluesofmorethan0.90,forexample,belongtosoundabsorberclassA,valuesofbetween0.15and0.25belongtoclassE.

    Single-numbervaluescommonlyusedintheUS

    NRC(ASTM423):TheNRC(NoiseReductionCoefcient),whichiswidelyusedintheUS,isdeterminedbycalculatingthemeanvaluefromfourone-thirdoctavevaluesofthesoundabsorptioncoefcient(250Hz,500Hz,1000Hzand2000Hz)androundingtheresulttothenearest0.05.Ifthenumberisattheexactmid-pointofthenumbersdivisibleby0.05,thevalueisalwaysroundedup(example:0.625=>0.65;0.675=>0.70).

    SAA(ASTM423):AnothervalueusedintheUSistheSAA(SoundAbsorptionAverage).Itisdeterminedbycalculatingthemeanvaluefromtwelveone-thirdoctavevaluesofthesoundabsorptioncoefcientbetween200Hzand2500Hzandthenroundingtheresulttothenearest0.01.

    ADVANTAGEOFSINGLE-NUMBERVALUES:Soundabsorberscanberoughlyclassiedandthuscomparedwithoneanother.

    DISADVANTAGEOFSINGLE-NUMBERVALUES:Asingle-numbersoundabsorptionvalueisalwaysanextremelysimpliedvalue.Soundabsorberswithverydifferentabsorptionspectracanhaveidenticalsingle-numbervalues.Thismaysometimesresultintheuseofasoundabsorberwhichisnotsuitablefortheexistingconditions.Frequenciesbelow200Hzarenottakeninto

    account.

    Soundabsorberclass w-value

    A 0,901,00

    B 0,800,85

    C 0,600,75

    D 0,300,55

    E 0,150,25

    notclassied 0,000,10

  • 8/22/2019 Basic of Acoustics

    18/2218

    5. INDEx

    A-WEIGHTEDSOUNDPRESSURELEVELdB(A)TheA-weightedsoundpressurelevelistheweightedaveragevalueofthesoundpressurelevel(dB)asafunctionofthefrequencyofasound.Theweightingtakesintoac-counttheabilityofthehumanauditorysystemtoperceivesoundpressurelevelsortonesofdifferentfrequenciestoadifferentdegree.Thissensitivityisparticularlypronouncedinthemediumfrequencyrange,i.e.therangeofhumanspeech.NearlyallregulationsandguidelinesindicatevaluesexpressedindB(A).

    EUIVALENTSOUNDABSORPTIONAREATheequivalentsoundabsorptionareaAisdenedastheproductofthesoundabsorptioncoefcient ofamaterialandthesurfaceSofthismaterial.

    AURALISATIONAuralisationisamethodforsimulatingtheacousticproper-tiesofaroom.Withthismethod,theeffectsofcertainacoustictreatmentscanbeauralisedasearlyasthedesignstage.

    BUILDINGACOUSTICSBuildingacousticsisabranchofbuildingphysics,oracous-tics,whichdealswiththeeffectofthestructuralconditionsonthepropagationofsoundbetweentheroomsofabuild-

    ingorbetweentheinteriorofaroomandtheoutsideofthebuilding.

    RATINGLEVEL(L r)

    TheratinglevelLr(Lforlevel,rforrating)istherelevantparameterforobjectivelyassessingthenoiseimpactataworkplace.Apartfromweightingthesoundpressurelevelasafunctionofthefrequency(seeA-weightedsoundpressurelevel),adeterminationofthesoundpressureleveltakesintoaccountcertainadjustmentswhichdependonthecharacteristicofthesound(e.g.impulsivenessorclearprominenceofindividualtones)anditsdurationofimpact.

    TheratinglevelisalsoexpressedindB(A).

    DECIBEL(dB)Logarithmicallydenedunitofmeasurementwhichex-pressesthesoundpressurelevel.Therelevantscaleforhumanbeingsis0dBto140dB.0dBreferstoasoundpressureof20Pa.

    SINGLENUMBERVALUESOFSOUNDABSORPTIONSo-calledsinglenumbervaluesareusedforasimpliedrepresentationofthefrequency-dependentparameterofthesoundabsorptioncoefcientaswellasforaroughcomparisonofdifferentsoundabsorbers.InEurope,theweightedsoundabsorptioncoefcient winaccordancewithDINENISO11654iscommonlyused.IntheUS,theNRCandSAAvaluesarewidelyused.Alloftheabovevaluesarebasedonmeasurementsofthesoundabsorptioninone-thirdoctaveandoctaveincrements.Foradetailedacousticplanningofaroomitisnecessarytoknowthesesoundabsorptionvaluespreciselyinone-thirdoctaveoratleastinoctaveincrements(seeoctaves).

    FREUENCYFrequencyindicatesthenumberofsoundpressurechanges

    persecond.Soundeventswithahighfrequencyareperceivedbythehumanearashigh-pitchedtones,soundeventswithalowfrequencyaslow-pitchedtones.Soundssuchasnoise,roadtrafc,etc.,normallycompriseagreatnumberoffrequencies.Themeasurementunitoffrequencyishertz(Hz),1Hz=1/s.Humanspeechisintherangebetween250Hzand2000Hz.Theaudiblerangeofhumanbeingsisbetween20Hzand20000Hz.

    REVERBERATIONROOMReverberationroomsarespeciallaboratoryroomswithwalls

    whichreecttheincidentsoundwavestoaveryhighdegree.Reverberationroomshaveparticularlylongreverberationtimesacrosstheentirefrequencyrange.

    REVERBERATIONROOMMETHODThereverberationroommethodisusedfordeterminingthefrequency-dependentsoundabsorptioncoefcient.Asampleofthematerialtobetestedisplacedintothereverberationroom.Thesoundabsorptionofamaterialcanthenbecalculatedfromthechangeinthereverberationtimeoftheroom.

    BACGROUNDNOISELEVELUsually,soundswhichdonotcontainanymeaningfulinformationarereferredtoasbackgroundnoise(e.g.noisefromairconditioningortrafc).ThebackgroundnoiselevelismeasuredindBor,byweightingitsfrequenciesinaccor-dancewiththehumanauditorysystem,indB(A).Thebackgroundnoiselevelindicatesthesoundpressurelevelwhichhasbeenexceededduring95%ofthemeasurementperiod.Ithasadirecteffectonspeechintelligibility.

  • 8/22/2019 Basic of Acoustics

    19/2219

    ACOUSTICUALITYTheacousticqualityofaroomreferstoitssuitabilityforaparticularuse.Itisinuencedbythepropertiesoftheboundarysurfaces(walls,ceiling,oor)andthefurnishingsandbypersonspresentintheroom.

    NOISENoisecomprisesallsoundswhich,duetotheirloudnessandstructure,areconsideredasharmfulorannoyingorstress-fulforhumanbeingsandtheenvironment.Itdependsonthecondition,preferencesandmoodofapersonwhethersoundsareperceivedasnoiseornot.Theperceptionofsoundsasnoiseandthewayinwhichpeopleareaffectedbyitdepend,ontheonehand,onphysicallymeasurablequantitiessuchasthesoundpressurelevel,pitchofatone,tonalityandimpulsiveness.Ontheotherhand,certainsubjectivefactorsalsoplayarole:atbedtimenoiseisper-ceivedasextremelyannoying.Thesameistrueforactivitieswhichrequireahighlevelofconcentration.Ifwelikecertain

    sounds,wewillnotperceivethemasannoyingevenathighvolumes;soundswhichwedonotlikeareannoyingtousevenatlowvolumes(e.g.certaintypesofmusic).Further-more,howwefeelataparticulartimealsoinuencesoursensitivitytonoise.Ifanactivityisdisruptedordisturbedbyoneormoresounds,thisisreferredtoasnoisepollution.Weareparticularlysensitivetonoiseifverbalcommunica-tionisaffected,e.g.ifaloudconversationattheneighbor-ingtablemakesitdifcultforustolisten,andifwehavetoconcentrateorwanttosleep.

    REVERBERATIONTIMEPutsimply,thereverberationtimeindicatestheperiodoftimeittakesforasoundeventtobecomeinaudible.Technically,thereverberationtimeThasbeendenedasthetimerequiredforthesoundpressurelevelinspacetodecayby60dB.

    OCTAVEBANDSAcousticparameterssuchasthesoundpressurelevelorthesoundabsorptioncoefcientareusuallyexpressedinincrementsofoctavesandone-thirdoctaves.Thepreciseknowledgeofacousticpropertiesinthesmallestpossible

    frequencystepsofsoundisaprerequisiteforadetailedacousticdesign.Forroomacousticstherelevantoctavefrequenciesare125Hz,250Hz,500Hz,1000Hz,2000Hzand4000Hz.Theoctaveincrementsareobtainedbydoublingthepreviousfrequency.Eachoctavecomprisesthreeone-thirdoctavevalues(seealsosinglevalues).

    POROUSABSORBERSPorousabsorberscomprise,forexample,mineralbres,foams,carpets,fabrics,etc.Theeffectoftheporousabsorbersisduetothefactthatsoundisabletoenterthe

    openstructuresofthematerialwhere,bythefrictionofairparticles,thesoundenergyisconvertedintothermalenergyatthesurfaceofthepores.Porousabsorbersachievetheirbesteffectatmediumandhighfrequencies.

    PSYCHOACOUSTICSBranchofacousticsornoiseeffectresearchwhichdealswiththesubjectiveperceptionofobjectivelypresentsoundsignals.Furthermore,psychoacousticsstudiestheinuenceofalistenerspersonalattitudesandexpectationsontheperceptionofsoundevents.

    RESONANCEABSORBERThistermcomprisesalltypesofabsorbersusingaresonancemechanismsuchasanenclosedairvolumeoravibratingsurface.Resonanceabsorbersaremainlysuitableforab-sorbingsoundofmediumtolowfrequencies.Themaximumeffectofresonanceabsorbersisusuallyrestrictedtoacer-tainfrequencyrange(seealsoporousabsorbers).

    SOUNDABSORBERSoundabsorbersarematerialswhichattenuateincidentsoundorconvertitintootherformsofenergy.Adistinctionhastobemadebetweenporousabsorbersandresonance

    absorbersorcombinationsoftheseabsorbertypes.

    SABINEFORMULAIfthevolumeandthetotalequivalentsoundabsorptionareaofaroomareknown,thereverberationtimecanbeestimatedusingtheSabineformula,whereTistherever-berationtime,VisthevolumeoftheroomandAisthetotalequivalentsoundabsorptionarea.Thecloserelationshipbetweenthevolumeofaroom,thesoundabsorptionofthesurfacesofthisroom,andthereverberationtimewasdiscoveredthephysicistWallace

    ClementSabine(1868-1919).Hefoundoutthattherever-berationtimeTisproportionaltotheroomvolumeVandinverselyproportionaltotheequivalentsoundabsorptionareaA:T=0,163xV/ATheequivalentsoundabsorptionareaAisthesumofallsurfacesSpresentintheroom,eachmultipliedbyitscor-respondingsoundabsorptioncoefcient :A=1S1+2S2+3S3++nSn

    SOUNDABSORPTIONCOEFFICIENTThesoundabsorptioncoefcient ofamaterialindicates

    theamountoftheabsorbedportionofthetotalincidentsound.=0meansthatnoabsorptionoccurs;theentireincidentsoundisreected.If=0,5,50%ofthesoundenergyisabsorbedand50%isreected.If =1,theentireincidentsoundisabsorbed,thereisnolongeranyreection.

    SOUNDATTENUATIONSoundattenuationdescribestheabilityofmaterialstoabsorbsoundortoconvertthesoundenergypresentintootherformsofenergy,i.e.ultimatelyintothermalenergy(seealsosoundinsulation).

  • 8/22/2019 Basic of Acoustics

    20/2220

    SOUNDINSULATIONSoundinsulationreferstotherestrictionofthepropagationofsoundthroughtheboundariesofaroom.Soundinsula-tionis,therefore,ameasuretoseparateroomsacousticallyfromunwantedsoundfromadjacentroomsortheoutside.Thishasnothingtodo,however,withtherequiredacousticsoundattenuationwithinaroom(seealsosoundabsorp-tion).Soundinsulationisafundamentalparameterofbuildingacoustics.Adistinctionhastobemadebetweenairbornesoundinsulationandimpactsoundinsulation.Airbornesoundiscreatedbysoundsourcespresentintheroomwhicharenotimmediatelyconnectedtotheboundarysurfaces,e.g.peoplewhoaretalking.Impactsound,ontheotherhand,resultsfromstructure-bornesound(footfalls,knocking),whichinturnexcitesthewallsorceilingstoradiateairbornesound.Airbornesoundinsulationandimpactsoundinsulationbothhavetofulltherequirementsestablishedinrelevantbuildinglaws.

    SOUNDPRESSURE

    Allsoundeventshaveincommonthefactthattheycauseslightvariationsinairpressurewhichcanpropagateinelasticmediasuchasairorwater.Wethereforerefertothesoundpressureofatone.Theheavierthepressurevariationsare,thelouderisthesoundevent.Thefasterthevariationsoccur,thehigheristhefrequency.

    SOUNDEVENTSGeneraltermfortones,music,bangs,noise,crackling,etc.

    SOUNDSHIELDINGAsoundshieldisbasicallyanobstaclewhichinterruptsthe

    directpropagationofsoundfromasourcetoareceiver.Itcanconsistinamovablepartitionoranattachmenttobeplacedontopofadesk.Cabinetsandotherlarge-surfacepiecesoffurniturecanalsofunctionassoundshields.Soundshieldscanbeprovidedwithasoundabsorbingsurfacewhichadditionallyreducesthepropagationofsound.

    SOUNDSPECTRUMThesoundspectrumdescribesthefrequencycompositionofthesound.Puretonesaresoundeventsofasinglefre-quency.Asuperpositionoftonesofdifferentfrequenciesis

    referredtoasnoiseorsound.

    SOUNDWAVESVariationsinairpressurewhicharecausedbysoundeventsarereferredtoassoundwaves.Thelengthofthesoundwavesdenesthefrequencyandtheirheightdenesthelevel.Longsoundwaveshavealowfrequencyandareper-ceivedaslow-pitchedtones.Shortsoundwaveshaveahighfrequencyandareperceivedashigh-pitchedtones.Inair,a100Hzwavehasanextensionof3.40meters,whereasa5000Hzwavehasanextensionofapproximately7centimeters.

    SOUNDMASINGSoundmaskingspecicallyusesnatural(e.g.birdstwitter-ing)orarticial(e.g.noise)soundsinordertoblanketothersounds.Thismethodcanbeused,forexample,todrownoutinformation-containingsoundsiftheotherbackgroundnoiseistooweaktomaskthem.

    SOUNDPRESSURELEVEL(LP)Thesoundpressurelevel(Lforlevelandpforpressure)isalogarithmicquantityfordescribingtheintensityofasoundevent.Thesoundpressurelevelisoftenalsoreferredto

    assoundlevel,whichisactuallynotquitecorrect.Thesoundpressurelevelisexpressedindecibels(abbreviatedasdB).Soundpressuresaremeasuredusingmicrophones.Themeasurablelevelrangestartsatjustbelow0dBandendsatapproximately150to160dB.

  • 8/22/2019 Basic of Acoustics

    21/2221

    MANYTHANSFORTHESUPPORTTOTHEAUSTIBROOLDENBURG

    ThephysicistsDr.CatjaHilgeandDr.ChristianNockefoundedanacousticconsultingcompanyinOldenburg(Germany)in2001.Theyworkasspecializedengineersforarchitects,expertwitnessesforcourtsandconsultantsintheeldofacoustics.Architecturalacousticsforclassrooms,ofcesandotherfacilitieshasbecomeonemajorfocusofthecompany.

    ContactdataAkustikbroOldenburg,atharinenstr.10,26121Oldenburg,Germanyt+494417779041,f+494417779042,info @akustikbuero-oldenburg.de,www.akustikbuero-oldenburg.de

    CopyrightEGGERHolzwerkstoffeGmbH&Co.OG,St.JohanninTirol,sterreich

  • 8/22/2019 Basic of Acoustics

    22/22

    CrationBaumannisrenownedforhighqualitytextilesforinteriordesign.Thankstoourin-housedesignstudioandourownproductionfacilities,unconventionalcreationsarepossible.Ouroffercomprisescustomizedsolutionsandinteriorshadingsystemsaswellaslightcontrol,dimming,andsoundabsorptionsolutions.CrationBaumannisalsosynonymouswiththeextravagant:600differentdesignsin6,000differentcolours.

    Foracompletelistingofourshowroomsworldwide,pleasevisit:www.creationbaumann.com

    CrationBaumannAG

    Bern-Zrich-Strasse23|CH-4901Langenthal

    Telefon +41 (0)62 919 62 62 | Fax +41 (0)62 922 45 47