1
BACKGROUND OBJECTIVES DESIGN / METHODS DISCUSSION AND CONCLUSIONS The PPK model is well predicted; pediatric anti-Xa exposure of dalteparin is well characterized by a 2 CPM structural model with allometrically scaled CL and V, a proportional residual error model and an additive term for endogenous anti-Xa activity. MAP Bayes estimates from the final model suggests that age-related differences exist in the Tmax of SC administered dalteparin. This has been poorly studied with other LMWHs due to the reliance on TDM-based, discrete sampling around the presumed Cmax (4 hours) based on adult data. Age-specific guidance on monitoring to assess the achievement of therapeutic Anti- Xa levels may be warranted if peak exposure is clinically relevant – this remains to be verified. Low-molecular-weight heparins (LMWHs) are increasingly being used for prophylaxis and treatment of thromboembolic events (TE) in children. The LMWH dalteparin offers the advantage of once-daily dosing. Prior to this trial, dalteparin has not been studied in pediatric patients and appropriate dosing or pharmacokinetics is not known. Anti-Xa activity is used as a surrogate for active dalteparin moieties (< 2000 D fraction) in plasma. A target peak exposure of 0.10-0.40 Anti-Xa IU/mL (C 4h , based on adult experience) has been used as the de facto dosing guidance for dalteparin though this has not been challenged clinically nor have dosing adjustment strategies been defined. 1.To determine the dose of dalteparin required to achieve satisfactory prophylactic anti- factor Xa level in children at increased risk of TEs. 2.To examine the PK of prophylactic doses of dalteparin and document the long-term safety up to 90 days administration J.S. Barrett, L.G. Mitchell, D. Patel, P. Cox, P. Vegh, M. Castillo, P. Massicotte Division of Clinical Pharmacology and Therapeutics, Children’s Hospital of Philadelphia; Pediatric Thrombosis Program and Critical Care Unit , Stollery Childrens Hospital; Hospital for Sick Children, Toronto, Canada A Population-based Analysis of Dalteparin Pharmacokinetics in Pediatric Patients at Risk for Thromboembolic Events Table 1: Study demographics (N=31 evaluable patients) RESULTS (continued) Study Design An open-label, dose-finding trial in children (>36 weeks gestational age-16 years) with objectively confirmed TE, requiring therapeutic dosages of anticoagulants Dose Adjustment phase : 1-7 days until a prophylactic plasma anti-Xa level is achieved. Maintenance phase : additional 5 (+3) days (following dose adjustment phase) during which detailed pharmacokinetic assessments will be performed. Follow-up Phase : For up to 90 days with prophylactic doses of dalteparin or until the end of required anticoagulation treatment, whichever comes first (prophylactic dose is adjusted monthly to ensure prophylactic anti- Xa levels are maintained). Model Building A PPK model was developed using anti-Xa data from all phases of the study (mostly from the dose adjustment phase) The model was developed using NONMEM (version RESULTS (continued) RESULTS Table 2: Parameter estimates of the final model DESIGN / METHODS (continued) Sampling Density Across Age Strata Figure 1: The more rigorous, sparse sampling design yielded adequate data density to define a structural model characterizing the entire dalteparin disposition profile. Sampling frequency for each age strata shown – Categories: (1) 0-2 months, (2) 2-12 months, (3) 1-5 yrs, (4) 6-10 yrs and (5) 11-18 yrs. The final dataset included 31 patients and 193 Anti-Xa observations. Table 4: Clinical Performance – Achieving Target Exposure 62.5 (25-100) 87.5 (73-100) 100 (50-100) 100 (50-100) 100 (100) M aintenance dose [IU /kg] 100 100 100 100 100 > 3 days 100 100 100 100 100 3 days 87.5 75 100 100 80 2 days 50 50 100 83.3 80 1 day % ofPatients in targetrange (cum ulative) 1.5 (1-3) 1 (1-3) 1 (1) 1 (1-2) 1 (1-3) Tim e to achieve targetrange [days] 3445 (2500-5500) 1825 (1370-2500) 730 (640-1400) 585 (447-876) 316 (260-390) M aintenance dose [IU ] 10-16 yrs (n=8) 5-10 yrs (n=4) 1-5 yrs (n=3) 2-12 m os (n=6) 0-2 m os (n=5) 62.5 (25-100) 87.5 (73-100) 100 (50-100) 100 (50-100) 100 (100) M aintenance dose [IU /kg] 100 100 100 100 100 > 3 days 100 100 100 100 100 3 days 87.5 75 100 100 80 2 days 50 50 100 83.3 80 1 day % ofPatients in targetrange (cum ulative) 1.5 (1-3) 1 (1-3) 1 (1) 1 (1-2) 1 (1-3) Tim e to achieve targetrange [days] 3445 (2500-5500) 1825 (1370-2500) 730 (640-1400) 585 (447-876) 316 (260-390) M aintenance dose [IU ] 10-16 yrs (n=8) 5-10 yrs (n=4) 1-5 yrs (n=3) 2-12 m os (n=6) 0-2 m os (n=5) C ontinuousC ovariates A ge (m osor yr) W eight(kg) A ge C ategory M ean Min M ax M ean Min M ax 1:0-2 m os(n=5) 0.7 0.1 1.9 3.2 2.6 3.9 2:2-12 m os(n=9) 7.1 2.9 10.9 6.6 4.7 9.3 3:1-5 yr(n=4) 2.9 1.1 4.4 12.1 6.4 14.6 4:6-10 yr(n=5) 7.3 5.5 9.6 22.5 13.7 34.3 5:11-18 yr (n=8) 14.2 11.5 16.3 58.1 41.4 100.0 O verall 7.4 0.1 16.3 22.6 2.6 100.0 C ategoricalC ovariates,N (% total) R ace Sex Caucasian,17 (% ) M ale = 21 (% ) B lack = 2 (% ) Fem ale = 10 (% ) A sian = 4 (% ) O ther* = 8 (% ) * Other (Native Canadian, Aboriginal, East Indian, Asian, missing) 0.0 0.2 0.4 0.6 0.8 O bserved P lasm a Fragm in (IU/m L) 0.0 0.2 0.4 0.6 0.8 Population Predicted Plasm a Fragm in (IU /m L) 1 1 1 1 1 1 1 1 1 1 1 1 1 22 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 9 9 9 1010 10 10 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 16 16 17 17 17 18 18 18 18 18 19 19 19 19 19 19 19 20 20 20 21 21 22 22 22 22 22 22 23 23 23 23 24 24 24 24 24 25 25 25 25 25 26 26 26 26 26 27 27 27 27 27 28 28 28 29 29 29 30 30 30 31 31 31 31 0.0 0.2 0.4 0.6 0.8 O bserved Plasm a Fragm in (IU/m L) 0.0 0.2 0.4 0.6 0.8 IndividualPredicted Plasm a Fragm in (IU /m L) 1 1 1 1 1 1 1 1 1 1 1 1 1 22 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 16 16 17 17 17 18 18 18 18 18 19 19 19 19 19 19 19 20 20 20 21 21 22 22 22 22 22 22 23 23 23 23 24 24 24 24 24 25 25 25 25 25 26 26 26 26 26 27 27 27 27 27 28 28 28 29 29 29 30 30 30 31 31 31 31 0.0 0.1 0.2 0.3 0.4 0.5 Predicted Plasm a Fragm in (IU/m L) -2 0 2 4 6 W eighted R esiduals 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 16 16 17 17 17 18 18 18 18 18 19 19 19 19 19 19 19 20 20 20 21 21 22 22 22 22 22 22 23 23 23 23 24 24 24 24 24 25 25 25 25 25 26 26 26 26 26 27 27 27 27 27 28 28 28 29 29 29 30 30 30 31 31 31 31 0 500 1000 1500 2000 Tim e (m inutes) -2 0 2 4 6 W eighted R esiduals 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 22 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6 66 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 16 16 17 17 17 18 18 18 18 18 19 19 19 19 19 19 19 20 20 20 21 21 22 22 22 22 22 22 23 23 23 23 24 24 24 24 24 25 25 25 25 25 26 26 26 26 26 27 27 27 27 27 28 28 28 29 29 29 30 30 30 31 31 31 31 0 5 10 15 20 25 Tim e AfterDose (m inutes) -2 0 2 4 6 W eighted R esiduals 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 16 16 17 17 17 18 18 18 18 18 19 19 19 19 19 19 19 20 20 20 21 21 22 22 22 22 22 22 23 23 23 23 24 24 24 24 24 25 25 25 25 25 26 26 26 26 26 27 27 27 27 27 28 28 28 29 29 29 30 30 30 31 31 31 31 0 5 10 15 20 25 Tim e AfterD ose (m inutes) 0.0 0.2 0.4 0.6 0.8 O bserved and Predicted Plasm a Fragm in (IU /m L) 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 9 9 9 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 15 15 15 15 15 16 16 16 16 16 16 16 17 17 17 18 18 18 18 18 19 19 19 19 19 19 19 20 20 20 21 21 22 22 22 22 22 22 23 23 23 23 24 24 24 24 24 25 25 25 25 25 26 26 26 26 26 27 27 27 27 27 28 28 28 29 29 29 30 30 30 31 31 31 31 Figure 2: Diagnostic plots confirm the suitability of the model to describe sources of variation in dalteparin PK across pediatric subpopulations: (A) PRED vs DV, (B) IPRED vs DV, (C) WRES vs PRED, (D) WRES vs TIME, (E) WRES vs TAD and (F) DV, PRED vs TAD. Some under-predicted high concentrations were observed (primarily after the initial dose adjustment phase) and unassociated with measured covariates. A B C D E F Figure 3: The discrete sampling practice of measuring Anti-Xa activity at 4h as a surrogate for peak exposure may mask age-related changes in Tmax. The concentration at 4 hours across the various age strata (left panel) does not discriminate the age- related changes in Tmax (right panel). Younger children reach peak exposure sooner and hence the concentration at 4 hours may underestimate peak anti-Xa activity and recommend dose adjustment when not warranted. Implications for Monitoring Practices and Dose Adjustment in Children 31.6 16.6 0.0166 0.0999 ω 2 prop EPS1 281.6 75.2 5.96 7.93 ω 2 Q ETA4 67.7 45.2 0.207 0.458 ω 2 KA ETA3 35.1 78.6 0.0967 0.123 ω 2 V ETA2 66.0 24.3 0.106 0.436 ω 2 CL ETA1 Inter-individual V ariance - 6.6 0.00226 0.0342 θ ENDO (IU/m L) ENDO - 24.9 0.127 0.511 θ KA (IU/m L) KA - 58.6 24.8 42.3 θ V2 (m L) V2 - 5.3 10.7 202 θ Q (mL/h) Q - 13.8 1310 9470 θ V (m L) V - 11.7 165 1410 θ CL (mL/h) CL F inal Model P arameter %CV % RSE SE Estim ate 31.6 16.6 0.0166 0.0999 ω 2 prop EPS1 281.6 75.2 5.96 7.93 ω 2 Q ETA4 67.7 45.2 0.207 0.458 ω 2 KA ETA3 35.1 78.6 0.0967 0.123 ω 2 V ETA2 66.0 24.3 0.106 0.436 ω 2 CL ETA1 Inter-individual V ariance - 6.6 0.00226 0.0342 θ ENDO (IU/m L) ENDO - 24.9 0.127 0.511 θ KA (IU/m L) KA - 58.6 24.8 42.3 θ V2 (m L) V2 - 5.3 10.7 202 θ Q (mL/h) Q - 13.8 1310 9470 θ V (m L) V - 11.7 165 1410 θ CL (mL/h) CL F inal Model P arameter %CV % RSE SE Estim ate Table 3: Model-Derived Secondary Parameters 0.032 (0.012-0.072) 0.033 (0.019-0.080) 0.036 (0.017-0.044) 0.036 (0.008-0.049) 0.038 (0.022-0.066) V/F [L/h/kg] 0.019 (0.007-0.032) 0.024 (0.017-0.076) 0.031 (0.018-0.042) 0.032 (0.005-0.053) 0.046 (0.03-0.072) C L/F [L/h/kg] 0.003 (0.001-0.013) 0.003 (0.001-0.006) 0.003 (0.002-0.005) 0.002 (0-0.005) 0.002 (0.001-0.003) AUC tau (IU /h) 1.08 (0.85-1.5) 0.90 (0.72-0.99) 0.77 (0.68-0.81) 0.61 (0.55-1.13) 0.50 (0.45-0.63) T 1/2 [h] 2.55 (2.22-3.10) 2.28 (2.00-2.41) 2.077 (1.93-2.15) 1.80 (1.69-2.61) 1.59 (1.48-1.83) T m ax [h] 0.335 (0.01-0.9) 0.285 (0.025-0.76) 0.255 (0.05-0.82) 0.264 (0.04-0.92) 0.13 (0.03-0.36) C m ax [IU/m L] 10-16 years (n=8) 5-10 years (n=4) 1-5 years (n=3) 2-12 m onths (n=6) 0-2 m onths (n=5) 0.032 (0.012-0.072) 0.033 (0.019-0.080) 0.036 (0.017-0.044) 0.036 (0.008-0.049) 0.038 (0.022-0.066) V/F [L/h/kg] 0.019 (0.007-0.032) 0.024 (0.017-0.076) 0.031 (0.018-0.042) 0.032 (0.005-0.053) 0.046 (0.03-0.072) C L/F [L/h/kg] 0.003 (0.001-0.013) 0.003 (0.001-0.006) 0.003 (0.002-0.005) 0.002 (0-0.005) 0.002 (0.001-0.003) AUC tau (IU /h) 1.08 (0.85-1.5) 0.90 (0.72-0.99) 0.77 (0.68-0.81) 0.61 (0.55-1.13) 0.50 (0.45-0.63) T 1/2 [h] 2.55 (2.22-3.10) 2.28 (2.00-2.41) 2.077 (1.93-2.15) 1.80 (1.69-2.61) 1.59 (1.48-1.83) T m ax [h] 0.335 (0.01-0.9) 0.285 (0.025-0.76) 0.255 (0.05-0.82) 0.264 (0.04-0.92) 0.13 (0.03-0.36) C m ax [IU/m L] 10-16 years (n=8) 5-10 years (n=4) 1-5 years (n=3) 2-12 m onths (n=6) 0-2 m onths (n=5)

BACKGROUND OBJECTIVES DESIGN / METHODS DISCUSSION AND CONCLUSIONS The PPK model is well predicted; pediatric anti-Xa exposure of dalteparin is well characterized

Embed Size (px)

Citation preview

Page 1: BACKGROUND OBJECTIVES DESIGN / METHODS DISCUSSION AND CONCLUSIONS The PPK model is well predicted; pediatric anti-Xa exposure of dalteparin is well characterized

BACKGROUND

OBJECTIVES

DESIGN / METHODS

DISCUSSION AND CONCLUSIONS

• The PPK model is well predicted; pediatric anti-Xa exposure of dalteparin is well characterized by a 2 CPM structural model with allometrically scaled CL and V, a proportional residual error model and an additive term for endogenous anti-Xa activity.

• MAP Bayes estimates from the final model suggests that age-related differences exist in the Tmax of SC administered dalteparin. This has been poorly studied with other LMWHs due to the reliance on TDM-based, discrete sampling around the presumed Cmax (4 hours) based on adult data.

• Age-specific guidance on monitoring to assess the achievement of therapeutic Anti-Xa levels may be warranted if peak exposure is clinically relevant – this remains to be verified.

• The model will form the basis of additional covariate identification in pediatric patients and used to support design of future trials particularly with emphasis on managing toxicities.

• Likewise, an external validation is planned from both standard of care dosing and TDM data and the results of a prospective dose-finding trial due to enroll by year’s end.

• Low-molecular-weight heparins (LMWHs) are increasingly being used for prophylaxis and treatment of thromboembolic events (TE) in children.

• The LMWH dalteparin offers the advantage of once-daily dosing.

• Prior to this trial, dalteparin has not been studied in pediatric patients and appropriate dosing or pharmacokinetics is not known.

• Anti-Xa activity is used as a surrogate for active dalteparin moieties (< 2000 D fraction) in plasma.

• A target peak exposure of 0.10-0.40 Anti-Xa IU/mL (C4h, based on adult experience) has been used as the de facto dosing guidance for dalteparin though this has not been challenged clinically nor have dosing adjustment strategies been defined.

1. To determine the dose of dalteparin required to achieve satisfactory prophylactic anti-factor Xa level in children at increased risk of TEs.

2. To examine the PK of prophylactic doses of dalteparin and document the long-term safety up to 90 days administration

J.S. Barrett, L.G. Mitchell, D. Patel, P. Cox, P. Vegh, M. Castillo, P. MassicotteDivision of Clinical Pharmacology and Therapeutics, Children’s Hospital of Philadelphia; Pediatric Thrombosis Program and Critical Care Unit , Stollery Childrens Hospital;

Hospital for Sick Children, Toronto, Canada

A Population-based Analysis of Dalteparin Pharmacokinetics in Pediatric Patients at Risk for Thromboembolic Events

Table 1: Study demographics (N=31 evaluable patients)

RESULTS (continued)

Study DesignAn open-label, dose-finding trial in children (>36 weeks gestational

age-16 years) with objectively confirmed TE, requiring therapeutic dosages of anticoagulants

Dose Adjustment phase: 1-7 days until a prophylactic plasma anti-Xa level is achieved.

Maintenance phase: additional 5 (+3) days (following dose adjustment phase) during which detailed pharmacokinetic assessments will be performed.

Follow-up Phase: For up to 90 days with prophylactic doses of dalteparin or until the end of required anticoagulation treatment, whichever comes first (prophylactic dose is adjusted monthly to ensure prophylactic anti-Xa levels are maintained).

Model Building

• A PPK model was developed using anti-Xa data from all phases of the study (mostly from the dose adjustment phase)

• The model was developed using NONMEM (version 6) and was based on a 2 CPM with first order absorption (ADVAN4 TRANS4) with allometrically-scaled CL and V, a proportional CV error model and endogenous anti-Xa activity.

• FOCE with - interaction used for method/estimation

RESULTS (continued)

RESULTS

Table 2: Parameter estimates of the final model

DESIGN / METHODS (continued)

Sampling Density Across Age Strata Figure 1: The more rigorous, sparse sampling design yielded adequate data density to define a structural model characterizing the entire dalteparin disposition profile. Sampling frequency for each age strata shown – Categories: (1) 0-2 months, (2) 2-12 months, (3) 1-5 yrs, (4) 6-10 yrs and (5) 11-18 yrs. The final dataset included 31 patients and 193 Anti-Xa observations.

Table 4: Clinical Performance – Achieving Target Exposure

62.5(25-100)

87.5(73-100)

100(50-100)

100(50-100)

100(100)

Maintenance dose [IU/kg]

100100100100100> 3 days

1001001001001003 days

87.575100100802 days

505010083.3801 day

% of Patients in target range (cumulative)

1.5(1-3)

1(1-3)

1(1)

1(1-2)

1(1-3)

Time to achieve target range [days]

3445(2500-5500)

1825(1370-2500)

730(640-1400)

585(447-876)

316(260-390)

Maintenance dose [IU]

10-16 yrs(n=8)

5-10 yrs(n=4)

1-5 yrs(n=3)

2-12 mos(n=6)

0-2 mos(n=5)

62.5(25-100)

87.5(73-100)

100(50-100)

100(50-100)

100(100)

Maintenance dose [IU/kg]

100100100100100> 3 days

1001001001001003 days

87.575100100802 days

505010083.3801 day

% of Patients in target range (cumulative)

1.5(1-3)

1(1-3)

1(1)

1(1-2)

1(1-3)

Time to achieve target range [days]

3445(2500-5500)

1825(1370-2500)

730(640-1400)

585(447-876)

316(260-390)

Maintenance dose [IU]

10-16 yrs(n=8)

5-10 yrs(n=4)

1-5 yrs(n=3)

2-12 mos(n=6)

0-2 mos(n=5)

Continuous Covariates Age (mos or yr) Weight (kg)

Age Category Mean Min Max Mean Min Max 1: 0-2 mos (n=5) 0.7 0.1 1.9 3.2 2.6 3.9 2: 2-12 mos (n=9) 7.1 2.9 10.9 6.6 4.7 9.3 3: 1-5 yr (n=4) 2.9 1.1 4.4 12.1 6.4 14.6 4: 6-10 yr (n=5) 7.3 5.5 9.6 22.5 13.7 34.3 5: 11-18 yr (n=8) 14.2 11.5 16.3 58.1 41.4 100.0

Overall 7.4 0.1 16.3 22.6 2.6 100.0

Categorical Covariates, N (% total) Race Sex

Caucasian, 17 (%) Male = 21 (%) Black = 2 (%) Female = 10 (%) Asian = 4 (%) Other* = 8 (%)

* Other (Native Canadian, Aboriginal, East Indian, Asian, missing)

0.0 0.2 0.4 0.6 0.8

Observed Plasma Fragmin (IU/mL)

0.0

0.2

0.4

0.6

0.8

Po

pu

latio

n P

red

icte

d P

lasm

a F

rag

min

(IU

/mL

)

11

1

1

11

1

1

1

1

11 1

22

2

2

2

2

2

2

22

3

3

3

3

3

33

4

4

4

4

5 5 5

5

5

5

6

66

6

6

6

6

7

77

7

7

7

77

7

7

7

7

7

7

77

8

88

8

8

8

8

8

8

8

89

9

9

101010

10

10

1010

10

10

1111

11

11

11

11

12

12

12

12

12

12

12

12

12

12

12

13

13

13

13

1313

1313

1414 14

14

14

1414

15 1515

15

15

16

1616

16

16

16

16

17

17

17

18

18

18

18

18

1919

19

19

19 19 1920

20

20

21

21

22

22

22

22

2222

23

23

23

23

2424

24

24

24

2525

25

25

25

2626

26

2626

27

27

27

2727

28 28

2829 29

29

3030

30

31

31

3131

0.0 0.2 0.4 0.6 0.8

Observed Plasma Fragmin (IU/mL)

0.0

0.2

0.4

0.6

0.8

Ind

ivid

ua

l Pre

dic

ted

Pla

sma

Fra

gm

in (

IU/m

L)

1

1

1

1

11

1

1

1

1

11 1

22

2

2

2

2

2

2

2

23

3

3

3

3

33

4

4

4

4

5

5

5

5

5

5

6

6

6

66

6

6

7

7

7 7

7

7

77

7

7

7

7

7

7

77

8

8 8

8

8

8

8

8

8

8

8

9

99

1010

1010

10

10

1010

10

11

11

11

11

11

11

12

12

12

12

12

12

12

12

12

12

12

13

13

13

13

13

1313

13

14

14

1414

14

1414

15

15

15

15

15

16

16

16

1616

16

1617

17

17

18

18

18

18

18

19

19

19

19

19 19 19

20

20

20

21

2122

22

22

22

2222

23

23

23

23

24

24

24

24

24

2525

25

25

25

26

26

26

2626

27

27

27

2727

28

28

282929

29

3030

30

31

3131

31

0.0 0.1 0.2 0.3 0.4 0.5

Predicted Plasma Fragmin (IU/mL)

-2

0

2

4

6

We

igh

ted

Re

sid

ua

ls

1

1

11

1

11

1

1

1

1

1

1

22

22

22

2

2

2

2

3

3

33

3

3

3

4

4

4

4

5

5

5

5

5

56

6

666

6 6

7

7

7

7

7

7

7

77

7

7

7

7

7

7

7

8

8

8

8

8

88

8

8

8

8

9

9

9

10

10

10

10

10

10

10

10

10

11

11

11

1111

11

1212

12

12

12

12

12

12

12

12

12

13

13

1313 13

13

13

13

1414

14

14

1414

14

15

15

15

15

15

16

16

16

16

16

16

16

1717

17

18

18

18

18

18

19

19

19

1919

19

19

202020

2121

22

222222

22

22

23

23

23

23

24

24

24

24

24

25

2525

2525

262626

2626

27

27

27

2727 28

28282929

29

30

30

3031

31

31

31

0 500 1000 1500 2000

Time (minutes)

-2

0

2

4

6

We

igh

ted

Re

sid

ua

ls

1

1

11

1

11

1

1

1

1

1

1

2 2

22

22

2

2

2

2

3

3

33

3

3

3

4

4

4

4

5

5

5

5

5

56

6

66 6

6 6

7

7

7

7

7

7

7

77

7

7

7

7

7

7

7

8

8

8

8

8

88

8

8

8

8

9

9

9

10

10

10

10

10

10

10

10

10

11

11

11

1111

11

1212

12

12

12

12

12

12

12

12

12

13

13

131313

13

13

13

1414

14

14

1414

14

15

15

15

15

15

16

16

16

16

16

16

16

1717

17

18

18

18

18

18

19

19

19

1919

19

19

202020

2121

22

222222

22

22

23

23

23

23

24

24

24

24

24

25

2525

2525

262626

2626

27

27

27

272728

2828292929

30

30

3031

31

31

31

0 5 10 15 20 25

Time After Dose (minutes)

-2

0

2

4

6

We

igh

ted

Re

sid

ua

ls

1

1

11

1

1 1

1

1

1

1

1

1

22

2 2

2 2

2

2

2

2

3

3

33

3

3

3

4

4

4

4

5

5

5

5

5

56

6

6 6 6

66

7

7

7

7

7

7

7

77

7

7

7

7

7

7

7

8

8

8

8

8

88

8

8

8

8

9

9

9

10

10

10

10

10

10

10

10

10

11

11

11

11 11

11

12 12

12

12

12

12

12

12

12

12

12

13

13

131313

13

13

13

1414

14

14

1414

14

15

15

15

15

15

16

16

16

16

16

16

16

1717

17

18

18

18

18

18

19

19

19

1919

19

19

2020 20

2121

22

2222 22

22

22

23

23

23

23

24

24

24

24

24

25

25 25

25 25

26 2626

2626

27

27

27

272728

28 2829 29

29

30

30

3031

31

31

31

0 5 10 15 20 25

Time After Dose (minutes)

0.0

0.2

0.4

0.6

0.8

Ob

serv

ed

an

d P

red

icte

d P

lasm

a F

rag

min

(IU

/mL

)

11

1

1

1

1

1

1

1

1

1

1

1

22

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

4

4

4

4

5

5

5

5

5

56

6

6

6

66

6

7

7

7

7

7

7

7

77

77

7

7

7 7

7

8

8

8

8

8

8

8

8

8

8

8

9

9

9

1010

10

10

10

10

10

10

1011

11

11

11

11

11

12

12

12

12

1212

12

12

12

12

12

13

13

13

13

13

13

13

13

14

14

1414

14

14

1415

15

15

15 15

16

16

16

16

1616

16

17

17

17 18

18

18

18

1819

19

1919

19

19

19

20

20

20

21

21

22

22

22

22

22

22

23

23

2323

24

24

2424

24

25

25

25

25

25

26

26

26

26 26

27

27

27

27 27

28

28

282929

29

30

30

30

31

31

31 31

Figure 2: Diagnostic plots confirm the suitability of the model to describe sources of variation in dalteparin PK across pediatric subpopulations: (A) PRED vs DV, (B) IPRED vs DV, (C) WRES vs PRED, (D) WRES vs TIME, (E) WRES vs TAD and (F) DV, PRED vs TAD. Some under-predicted high concentrations were observed (primarily after the initial dose adjustment phase) and unassociated with measured covariates.

A B C D

E F

Figure 3: The discrete sampling practice of measuring Anti-Xa activity at 4h as a surrogate for peak exposure may mask age-related changes in Tmax. The concentration at 4 hours across the various age strata (left panel) does not discriminate the age-related changes in Tmax (right panel). Younger children reach peak exposure sooner and hence the concentration at 4 hours may underestimate peak anti-Xa activity and recommend dose adjustment when not warranted.

Implications for Monitoring Practices and Dose Adjustment in Children

31.616.60.01660.0999ω 2propEPS1

281.675.25.967.93ω 2QETA4

67.745.20.2070.458ω 2KAETA3

35.178.60.09670.123ω 2VETA2

66.024.30.1060.436ω 2CLETA1

Inter-individual Variance

-6.60.002260.0342θENDO(IU/mL)ENDO

-24.90.1270.511θKA(IU/mL)KA

-58.624.842.3θV2(mL)V2

-5.310.7202θQ(mL/h)Q

-13.813109470θV(mL)V

-11.71651410θCL(mL/h)CL

Final Model Parameter

%CV%RSESEEstimate

31.616.60.01660.0999ω 2propEPS1

281.675.25.967.93ω 2QETA4

67.745.20.2070.458ω 2KAETA3

35.178.60.09670.123ω 2VETA2

66.024.30.1060.436ω 2CLETA1

Inter-individual Variance

-6.60.002260.0342θENDO(IU/mL)ENDO

-24.90.1270.511θKA(IU/mL)KA

-58.624.842.3θV2(mL)V2

-5.310.7202θQ(mL/h)Q

-13.813109470θV(mL)V

-11.71651410θCL(mL/h)CL

Final Model Parameter

%CV%RSESEEstimate

Table 3: Model-Derived Secondary Parameters

0.032(0.012-0.072)

0.033(0.019-0.080)

0.036(0.017-0.044)

0.036(0.008-0.049)

0.038(0.022-0.066)

V/F[L/h/kg]

0.019(0.007-0.032)

0.024(0.017-0.076)

0.031(0.018-0.042)

0.032(0.005-0.053)

0.046(0.03-0.072)

CL/F[L/h/kg]

0.003(0.001-0.013)

0.003(0.001-0.006)

0.003(0.002-0.005)

0.002(0-0.005)

0.002(0.001-0.003)

AUCtau

(IU/h)

1.08(0.85-1.5)

0.90(0.72-0.99)

0.77(0.68-0.81)

0.61(0.55-1.13)

0.50(0.45-0.63)

T1/2[h]

2.55(2.22-3.10)

2.28(2.00-2.41)

2.077(1.93-2.15)

1.80(1.69-2.61)

1.59(1.48-1.83)

Tmax

[h]

0.335(0.01-0.9)

0.285(0.025-0.76)

0.255(0.05-0.82)

0.264(0.04-0.92)

0.13(0.03-0.36)

Cmax

[IU/mL]

10-16 years(n=8)

5-10 years(n=4)

1-5 years(n=3)

2-12 months(n=6)

0-2 months(n=5)

0.032(0.012-0.072)

0.033(0.019-0.080)

0.036(0.017-0.044)

0.036(0.008-0.049)

0.038(0.022-0.066)

V/F[L/h/kg]

0.019(0.007-0.032)

0.024(0.017-0.076)

0.031(0.018-0.042)

0.032(0.005-0.053)

0.046(0.03-0.072)

CL/F[L/h/kg]

0.003(0.001-0.013)

0.003(0.001-0.006)

0.003(0.002-0.005)

0.002(0-0.005)

0.002(0.001-0.003)

AUCtau

(IU/h)

1.08(0.85-1.5)

0.90(0.72-0.99)

0.77(0.68-0.81)

0.61(0.55-1.13)

0.50(0.45-0.63)

T1/2[h]

2.55(2.22-3.10)

2.28(2.00-2.41)

2.077(1.93-2.15)

1.80(1.69-2.61)

1.59(1.48-1.83)

Tmax

[h]

0.335(0.01-0.9)

0.285(0.025-0.76)

0.255(0.05-0.82)

0.264(0.04-0.92)

0.13(0.03-0.36)

Cmax

[IU/mL]

10-16 years(n=8)

5-10 years(n=4)

1-5 years(n=3)

2-12 months(n=6)

0-2 months(n=5)