22
90nm Devices and Circuits for mm- Wave applications Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Embed Size (px)

Citation preview

Page 1: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

90nm Devices and Circuits for mm-Wave applications

Babak Heydari, Mounir Bohsali, Ehsan Adabi

Prof. Niknejad and Brodersen

Page 2: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

First 90nm Test Chip

Page 3: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

First chip Measured PerformancesCommon-Source (f = 100, W/L=100um/90nm)

7.746446.410.9100

8.336436.420.7100

8.256156.120.9100

7.727627.610.7100

6.510910.910.5100

2.4141.410.3100

MSG(dB)

Ids/w (uA/um)

Ids (mA)

Vds(V)

Vgs(V)

F

Page 4: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Measured PerformanceMinimum Noise Figure (Thanks to VTT)

Fmin - W/L=100um/90nm, 100 fingers

00.5

11.5

22.5

33.5

4

40 50 60 70 80

Freq (GHz)

NFm

in (d

B)

Fmin - W/L=80um/90nm, 80 fingers

0

0.5

1

1.5

2

2.5

3

3.5

4

40 50 60 70 80

Freq (GHz)

NFm

in (d

B)

Fmin - W/L=400um/90nm, 400 fingers

0

1

2

3

4

5

6

40 50 60 70 80

Freq (GHz)

NFm

in (d

B)

NFmin at 60GHz ~ 2.5dB

400 fingers device exhibits lower NF performance

Page 5: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Modeling and Second Test Chip

Page 6: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Small Signal Modeling

PortP2Num =2

PortP1Num =1

CC1C=74.85 fF

CC3C=24.03 fF

RR3R=90 Ohm

CC4C=41.54 fF

LL3

R=L=4.55 pH

LL2

R=L=6 pH

RR2R=1.27 Ohm

RR8R=408 m Ohm

LL1

R=L=9.594 pH

RR1R=1.43

CC6C=51.18 fF

RR4R=1.46

RR5R=30.92 Ohm

RR6R=47.21 Ohm

RR7R=38.21 Ohm

VCCSSRC3G=105.6 m S

CC5C=40.84 fF

• Using series inductances and resistances and three resistor substrate.

• Implementing a Matlab script to extract core transistor parameters from low frequency measurements.

• Using IC-CAP to extract parasitic and optimize

• S-Parameters where fitted up to 40Ghz and the model is frequency independent.

100u/90nm common source NMOS, Small Signal Model

Page 7: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Small Signal Modeling (II)

Magnitude of S-ParametersMeas/Sim up to 40Ghz

Phase of S-ParametersMeas/Sim up to 40Ghz

Page 8: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Modeling and Sensitivity Analysis

The effect of core parameters(Maximum stable gain and maximum unilateral gain)

Performance of the transistor is almost inversely proportional to the gate-drain capacitor. Cgs does not have a great impact on the fmax.

Effect of gm on fmax Effect of cgd on fmax

Page 9: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Modeling and Sensitivity Analysis(II)The effect of parasitics: ( Gate, drain, substrate and body resistances)

• Gate resistance is very important! ( Minimize as much as you can)• Substrate and source resistances effects are small.

Effect of Rgate Effect of Rdrain

Effect of Rsource Effect of Rsub

Page 10: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Second Test chip, ST-90nm– Layout improvements:

• Reduced taper size for transistors and capacitors• Increased number of poly contacts in transistor tapers• Increased number of vias in transistor tapers• Added bridge between ground planes for transmission lines and

transistorsVersion 1

draingate

large taper

Version 2 bridges

draingate

small taper

gate drain

source

Substrate taps

gnd

Gate vias: 1 column of poly contacts2 columns of via_x1 column of via_n

Gate vias: 3column of poly contacts3 columns of via_x2 column of via_n

Rgate_sim,model = 1.4 ohms Rgate_sim = 0.8 ohms

Version 1 Version 2100 finger common-source

Page 11: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Round Table Structures

Interdigitaded Cascode10u/90nm Building block to reduce parasitic resistances *

60u/90nm common source using the Building block

* This structure is widely used by Philips [IEDM 2004]

Page 12: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

New Structures in Test Chip IITL Source degenerated NMOS for modeling purpose for applications that source is not grounded.

• Common-Gate NMOS.

• PMOS Devices

• Different variations of MOS varactors.

• LC Tanks

Long Channel devices for NQS modeling purposes

Page 13: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

60GHz Preliminary Amplifier Design

Page 14: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Small Signal Modeling

PortP2Num =2

PortP1Num =1

CC1C=74.85 fF

CC3C=24.03 fF

RR3R=90 Ohm

CC4C=41.54 fF

LL3

R=L=4.55 pH

LL2

R=L=6 pH

RR2R=1.27 Ohm

RR8R=408 m Ohm

LL1

R=L=9.594 pH

RR1R=1.43

CC6C=51.18 fF

RR4R=1.46

RR5R=30.92 Ohm

RR6R=47.21 Ohm

RR7R=38.21 Ohm

VCCSSRC3G=105.6 m S

CC5C=40.84 fF

• Using series inductances and resistances and three resistor substrate.

• Implementing a Matlab script to extract core transistor parameters from low frequency measurements.

• Using IC-CAP to extract parasitic and optimize

• S-Parameters where fitted up to 40Ghz and the model is frequency independent.

100u/90nm common source NMOS, Small Signal Model

Page 15: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Transmission Line Model

Momentum Model ADS CPW

Page 16: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Three Stage 90nm CMOS LNA

PortP2Num=2Port

P1Num=1

TLINTL1

MM30_NMOSMOSFET1

TLINTL7

TLINTL9

TLINTL11

TLINTL18

TLINTL20

TLINTL17

MM30_NMOSMOSFET3

TLINTL16

TLINTL6TLIN

TL15

MM30_NMOSMOSFET2

TLINTL14

PortP2Num =2

PortP1Num =1

CC1C=74.85 fF

CC3C=24.03 fF

RR3R=90 Ohm

CC4C=41.54 fF

LL3

R=L=4.55 pH

LL2

R=L=6 pH

RR2R=1.27 Ohm

RR8R=408 m Ohm

LL1

R=L=9.594 pH

RR1R=1.43

CC6C=51.18 fF

RR4R=1.46

RR5R=30.92 Ohm

RR6R=47.21 Ohm

RR7R=38.21 Ohm

VCCSSRC3G=105.6 m S

CC5C=40.84 fF

Page 17: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

LNA Measurement BasedSimulation Results

m3freq=m3=14.117

59.00GHz

10 20 30 40 50 60 700 80

-60

-50

-40

-30

-20

-10

0

10

-70

20

freq, GHz

dB(S

(2,1

))

m3

m3freq=m3=14.135

58.80GHz

m2freq=m2=11.292

62.80GHzm4freq=m4=11.309

55.40GHz

56 57 58 59 60 61 62 63 6455 65

10

11

12

13

14

9

15

freq, GHz

dB(S

(2,1

))

m3

m2m4

m1freq=m1=5.508

60.40GHz

56 57 58 59 60 61 62 63 6455 65

5.5

6.0

6.5

7.0

5.0

7.5

freq, GHz

nf(2

)

m1

indep(S_StabCircle1) (0.000 to 51.000)

S_S

tabC

ircle

1

indep(L_StabCircle1) (0.000 to 51.000)

L_S

tabC

ircle

1

10 20 30 40 50 60 700 80

1.2

1.4

1.6

1.8

2.0

1.0

2.2

freq, GHz

Mu1

Power: 84mWVdd: 1VGain = 14 dBNF ~ 6 dBS11=-8db (60GHz)

Page 18: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

60 GHz Preliminary Power Amplifier

3-stage amp

3-stage amp

3-stage amp

3-stage amp

4-wayWilkinsonPower Divider

4-wayWilkinsonPower Combiner

2 dB insertion loss(63% efficiency)

13 dB power gain

Wilkinson Power combiner/divider simulation results

CPWSUBCPWSub1

Rough=0 umTanD=0.077T=0.85 umCond=5.7e7Mur=1Er=8.55H=6.57 um

CPWSub

RR1R=50 Ohm

RR2R=50 Ohm

RR3R=50 Ohm

RR4R=50 Ohm

CPWCPW4

L=658 umG=0.55 umW=10 umSubst="CPWSub1"

CPWCPW1

L=658 umG=0.55 umW=10 umSubst="CPWSub1"

CPWCPW2

L=658 umG=0.55 umW=10 umSubst="CPWSub1"

CPWCPW3

L=658 umG=0.55 umW=10 umSubst="CPWSub1"

Zo = 22.5Ω

Page 19: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

60 GHz 3-Stage Amplifier

PortP1Num=1

RR6R=47.21 Ohm

RR5R=30.92 Ohm

CC4C=41.54 f F

RR8R=408 mOhm

LL3

R=L=4.55 pH

CC3C=24.03 f F

PortP2Num=2

CC1C=74.85 f F

RR3R=90 Ohm

LL2

R=L=6 pH

RR2R=1.27 Ohm

LL1

R=L=9.594 pH

RR1R=1.43

CC6C=51.18 f F

RR4R=1.46

RR7R=38.21 Ohm

VCCSSRC3G=105.6 mS

CC5C=40.84 f F

BSIM3v3 model

extrinsic layout parasitics

50Ω match High pass output match

(Gate bias not shown)

Preliminary large-signal modelsmall-signal model

VddVdd Vdd

CPWSCCPW18

L=39.9 umG=3.6 umW=10 umSubst="CPWSub1"

CPWCPW11

L=16.4 umG=3.6 umW=10 umSubst="CPWSub1"

CPWCPW12

L=91.6 umG=3.6 umW=10 umSubst="CPWSub1"

CPWOCCPW7

L=470.2 umG=3.6 umW=10 umSubst="CPWSub1"

CPWCPW8

L=37.7 umG=3.6 umW=10 umSubst="CPWSub1"

CPWCPW9

L=83.2 umG=3.6 umW=10 umSubst="CPWSub1"

CPWSCCPW19

L=19.4 umG=3.6 umW=10 umSubst="CPWSub1"

CPWCPW14

L=24.8 umG=3.6 umW=10 umSubst="CPWSub1"

CPWCPW15

L=249.7 umG=3.6 umW=10 umSubst="CPWSub1"

CPWOCCPW16

L=519.5 umG=3.6 umW=10 umSubst="CPWSub1"

TLINTL3

F=60 GHzE=90Z=50.0 Ohm

TLINTL2

F=60 GHzE=90Z=50.0 Ohm

TLINTL1

F=60 GHzE=90Z=50.0 Ohm

PortP2Num=2

PortP1Num=1

CC3C=1.0 pF

CC2C=1.0 pF

EE_MOS1EEMOS3

Temp=Model=EEMOSM1

CC1C=1.0 pF

EE_MOS1EEMOS1

Temp=Model=EEMOSM1

EE_MOS1EEMOS2

Temp=Model=EEMOSM1

Page 20: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Measurement Based Simulation Results of 3-Stage PA

S21 at 60GHz = 13dBS11 at 60GHz = -10dBOutput Power = 17 mW (Vdd = 1V)Power Consumption = 90mWEfficiency = 19%

Page 21: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Future Work

• More accurate Large Signal Modeling• More realistic design by using real

coupling caps and bias network• Non-linearity analysis of PA and LNA• Investigating other structures in designs

using cascode and common gate devices

Page 22: Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. …s3.amazonaws.com/zanran_storage/bwrc.eecs.berkeley.edu/...Babak Heydari, Mounir Bohsali, Ehsan Adabi Prof. Niknejad and Brodersen

Acknowledgements

• BWRC Member Companies• STMicroelectronics and VTT• DARPA TEAM Program• Professor Niknejad and senior Members of

60GHz Project: Sohrab and Chinh