29
B3001/UNIT 9/1 NUMERICAL METHODS General Objective : Application of numerical methods to solve linear equation. Specific Objectives : On completion of this unit, you should be able to:- solve simultaneous linear equation using LU Method (Doolittle Method) solve simultaneous linear equation using LU Method (Crout Method) UNIT 9 OBJECTIVES

BA201 Engineering Mathematic UNIT10 - LU Decomposition

Embed Size (px)

DESCRIPTION

BA201 Engineering Mathematic

Citation preview

Page 1: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/1

NUMERICAL METHODS

General Objective : Application of numerical methods to solve linear equation.

Specific Objectives : On completion of this unit, you should be able to:-

solve simultaneous linear equation using LU

Method (Doolittle Method)

solve simultaneous linear equation using LU

Method (Crout Method)

UNIT 9

OBJECTIVES

Page 2: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 2

INPUT

9.0 INTRODUCTION

With Gaussian elimination and Gauss Jordan elimination, a linear system is

solved by operating systematically on the augmented matrix. In this section we shall

discuss a different approach, one based on factoring the coefficient matrix into a product

of lower and upper triangular matrices.

9.1 Solving linear systems by factorization (Doolittle Method)

If an n x n matrix A can be factored into a product of n x n matrices as A = LU

where L is lower triangular and U is upper triangular, then the linear system Ax = b can

be solved as follows

For matrix A, 3 x 3, LU can be shown as:

33

2322

131211

333231

2221

11

333231

232221

131211

00

00

00

u

uu

uuu

lll

ll

l

aaa

aaa

aaa

and A = L U

For 3 system of linear equations.

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

Page 3: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 3

Write in a matrix form:

333231

232221

131211

aaa

aaa

aaa

3

2

1

x

x

x

=

3

2

1

b

b

b

A =

333231

232221

131211

aaa

aaa

aaa

x =

3

2

1

x

x

x

and b =

3

2

1

b

b

b

If A is written as LU, then:

33

2322

131211

333231

2221

11

333231

232221

131211

00

00

00

u

uu

uuu

lll

ll

l

aaa

aaa

aaa

With Doolittle method, the diagonal L is given a value 1 as below

33

2322

131211

3231

21

333231

232221

131211

00

0

1

01

001

u

uu

uuu

ll

l

aaa

aaa

aaa

Thus, matrices L and U can be derived

333231

232221

131211

aaa

aaa

aaa

=

3323321331223212311131

2313212212211121

131211

uululululul

uuluulul

uuu

Page 4: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 4

Compare with matrix A:

1111 ua 1111 au

1212 ua 1212 au

1313 ua 1313 au

112121 ula 11

21

21u

al

22122122 uula 12212222 ulau

23132123 uula 13212323 ulau

113131 ula 11

31

31u

al

2232123132 ulula 22

123132

32u

ulal

332332133133 uulula 233213313333 ululau

To find lij and uij ;

11

1

1u

al i

i for i ≥ 2

jj

ijjijijiij

iju

ulululal

,11,2211 for 2 ≤ j ≤ i

jj au 11 first row of u

jiiijijiijij ulululau ,11,2211 for 2 ≤ i ≤ j

Page 5: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 5

From Ax = b:

333231

232221

131211

aaa

aaa

aaa

3

2

1

x

x

x

=

3

2

1

b

b

b

then,

00

0

1

01

001

33

2322

131211

3231

21

u

uu

uuu

ll

l

3

2

1

x

x

x

=

3

2

1

b

b

b

with substitution;

33

2322

131211

00

0

u

uu

uuu

3

2

1

x

x

x

=

3

2

1

y

y

y

For Ax = b then;

1

01

001

3231

21

ll

l

3

2

1

y

y

y

=

3

2

1

b

b

b

And the product will be:

3232131

2121

1

yylyl

yyl

y

=

3

2

1

b

b

b

From the matrix, you will find the values of y1, y2 and y3 from the equations

11 by

22121 byyl 12122 ylby

33232131 byylyl 23213133 ylylby

From matrix y, you will find the values of x

Page 6: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 6

33

2322

131211

00

0

u

uu

uuu

3

2

1

x

x

x

=

3

2

1

y

y

y

thus

333

323222

313212111

xu

xuxu

xuxuxu

=

3

2

1

y

y

y

then, xn ,

3333 yxu 33

3

3u

yx

2323222 yxuxu 22

3232

2u

xuyx

1313212111 yxuxuxu 11

3132121

1u

xuxuyx

Example 9.1:

Solve the following system of linear equation:

x1 + 3x2 + 3x3 = 4

2x1 –3x2 – 2x3 = 2

3x1 + x2 + 2x3 = 5

Solution:

Writing in an LU format,

213

232

331

3

2

1

x

x

x

=

5

2

4

for A =

213

232

331

x =

3

2

1

x

x

x

and b =

5

2

4

Page 7: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 7

If A = LU, then,

33

2322

131211

333231

2221

11

00

00

00

213

232

331

u

uu

uuu

lll

ll

l

By Doolittle method, the diagonal for matrix L is given a value of 1

33

2322

131211

3231

21

00

0

1

01

001

213

232

331

u

uu

uuu

ll

l

By multiplying the two matrices on the right

213

232

331

=

3323321331223212311131

2313212212211121

131211

uululululul

uuluulul

uuu

You will find the values of un

111 u 111 u

123 u 312 u

133 u 313 u

11212 ul 21

22

11

21 u

l

2212213 uul 9)3(233 122122 ulu

2313212 uul 8)3(222 132123 ulu

11313 ul 31

33

11

31 u

l

Page 8: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 8

223212311 ulul 889.09

)3)(3(11

22

1231

32

u

ull

33233213312 uulul 2332133133 2 ululu

111.0)8)(889.0()3)(3(2

Then matrix L =

1889.03

012

001

and U =

111.000

890

331

You will then find the values of yn.

1

01

001

3231

21

ll

l

3

2

1

y

y

y

=

5

2

4

1889.03

012

001

3

2

1

y

y

y

=

5

2

4

321

21

1

889.03

2

yyy

yy

y

=

5

2

4

Therefore,

41 y

22 21 yy 6)4)(2(22 y

5889.03 321 yyy 667.1)6)(889.0()4)(3(53 y

Next, you find the values of x:

Page 9: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 9

33

2322

131211

00

0

u

uu

uuu

3

2

1

x

x

x

=

3

2

1

y

y

y

111.000

890

331

3

2

1

x

x

x

=

667.1

6

4

3

32

321

111.0

89

33

x

xx

xxx

=

667.1

6

4

The values of x can be calculated through back substitution.

667.1111.0 3 x 15111.0

667.13

x

689 32 xx 149

)15)(8(62

x

433 321 xxx 7)15(3)14(341 x

Then , x1 = 7, x2 = 14 and x3 = -15.

Example 9.2:

Solve the linear equation below:

6x1 + 3x2 + x3 = 4

4x1 – 2x2 – 3x3 = 2

3x1 – 7x2 + 3x3 = 5

Page 10: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 10

Solution:

As e.g. 9.1, you write the equation in a matrix form:

373

324

136

3

2

1

x

x

x

=

27

28

13

where A =

373

324

136

and b =

27

28

13

Next, you have to find matrices for L, U, y and x.

For L and U, using A = LU, then

333231

232221

131211

33

2322

131211

3231

21

00

0

1

01

001

aaa

aaa

aaa

u

uu

uuu

ll

l

3323321331223212311131

2313212212211121

131211

uululululul

uuluulul

uuu

=

373

324

136

611 u 312 u 113 u

667.06

44

4

11

21

1121

ul

ul

4)3)(667.0(32

2

122122

221221

ulu

uul

667.3)1)(667.0(33

3

132123

231321

ulu

uul

Page 11: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 11

5.06

33

3

11

31

1131

ul

ul

292.10)667.3)(125.2()1)(5.0(33

3

2332133133

3323321331

ululu

uulul

Then, L =

1125.25.0

01667.0

001

and U =

292.1000

667.340

136

Calculating for y, from Ly = b

1125.25.0

01667.0

001

3

2

1

y

y

y

=

27

28

13

321

21

1

125.25.0

667.0

yyy

yy

y

=

27

28

13

131 y

333.19)13(667.028

28667.0

2

21

y

yy

125.24

)3)(5.0(77

7

22

123132

22321231

u

ull

ulul

Page 12: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 12

583.20)333.19(125.2)13(5.027

27125.25.0

3

321

y

yyy

If y =

583.20

333.19

13

, x can be find by using Ux = y, :

292.1000

667.340

136

3

2

1

x

x

x

=

583.20

333.19

13

3

32

321

292.10

667.34

36

x

xx

xxx

=

583.20

333.19

13

Using back substitution

2

292.10

583.20

583.20292.10

3

3

x

x

3

4

)2(667.3333.19

333.19667.34

2

32

x

xx

4)2()3(313

1336

1

321

x

xxx

Then x1 = 4, x2 = -3 and x3 = -2.

Page 13: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 13

Example 9.3:

Solve the linear equation below:

2x1 x2 4x3 = 8

x1 – 5x2 – 9x3 = -9

7x1 – 2x2 + 3x3 = 3

Solution:

As example 9.2, write in the form of augmented matrices, and simplified

calculation

For l and u :

21111 au

11212 au

41313 au

5.02

1

11

2121

u

al

5.4)1)(5.0(512212222 ulau

7)4)(5.0(913212323 ulau

5.32

7

11

31

31 u

al

333.05.4

)1)(5.3(2

22

123132

32

u

ulal

667.14)7)(333.0()4)(5.3(3233213313333 ululau

Formulae for y;

811 by

13)8)(5.0(912122 ylby

333.29)13)(333.0()8)(5.3(323213133 ylylby

Page 14: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 14

Then x:

2667.14

333.29

33

3

3

u

yx

65.4

)2)(7(13

22

3232

2

u

xuyx

32

)2)(4()6)(1(8

11

3132121

1

u

xuxuyx

“This method is well suited for digital computers and is the basis for many practical

computer programs.”

Page 15: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 15

ACTIVITY 9a

1. Using Doolittle method, find matrices for L and U .

a)

385

522

451

b)

291

405

152

2. Solve the system below by using Doolittle method and LU-decomposition:

a) 3x1 – 2x2 + 3x3 = 23

x1 + 4x2 + x3 = 17

2x1 + x2 + 3x3 = 25

b) 7x + 4y + 3z = 26

6x + 11y = 60

4x + 6y +12z = 68

Page 16: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 16

FEEDBACK 9a

1. a) L =

075.25

012

001

U =

75.1200

13120

451

b) L =

052.05.0

015.2

001

U =

72.100

5.15.120

152

2. a) x1 = 4 x2 = 2 x3 = 5

b) x = -1 y = 6 z = 3

Page 17: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 17

INPUT

9.2 CROUT METHOD

Like Doolittle, Crout method is another method of LU decomposition using

numerical analysis. Using Ax = b as the augmented matrices, you decompose L

and U for A.

Therefore,

LU = A

333231

232221

131211

33

2322

131211

333231

2221

11

00

00

00

aaa

aaa

aaa

u

uu

uuu

lll

ll

l

Using Crout’s Method, main diagonal of matrix U is given a value of 1, where

333231

232221

131211

23

1312

333231

2221

11

100

10

1

0

00

aaa

aaa

aaa

u

uu

lll

ll

l

By multiplying L and U,

332332133132123131

2322132122122121

1311121111

lulullull

ulullull

ulull

=

333231

232221

131211

aaa

aaa

aaa

Page 18: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 18

You can find the values for l and u by comparing the corresponding entries.

11

13

13131311

11

1212121211

1111

l

auaul

l

auaul

al

1221222222221221

2121

ulalalul

al

233213313333333323321331

1231323232321231

3131

22

132123

232323221321

ululalalulul

ulalalul

al

l

ulauaulul

Using corresponding step, then:

11 ii al for i = 1,2,…,n

11

1

1l

au

j

j for j = 2,3,…,n

ijjijijiijij ulululal ,11,2211 for 2 ≤ j ≤ n-1

jj

njiiijijiij

ijl

ulululau

,11,2211 for 2 ≤ j ≤ n

After solving for matrices L and U, use Ly = b to find matrix y

Ly = b

3

2

1

3

2

1

333231

2221

11

0

00

b

b

b

y

y

y

lll

ll

l

Page 19: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 19

333232131

222121

111

ylylyl

ylyl

yl

3

2

1

b

b

b

Where,

33

2321313

33333232131

22

121222222121

11

111111

l

ylylbybylylyl

l

ylbybylyl

l

bybyl

From Ux = y, you will find the variables of x.

Ux = y

3

2

1

23

1312

100

10

1

x

x

x

u

uu

3

2

1

y

y

y

3

3232

3132121

x

xux

xuxux

3

2

1

y

y

y

Through back substitution and comparing the entries, find the values of x

3132121113132121

3232223232

33

xuxuyxyxuxux

xuyxyxux

yx

Like Doolittle, your main task is to find matrices of L and U.

Page 20: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 20

Example 9.4:

Solve the system of linear equation below:

x1 – 3x2 + 2x3 = 8

4x1 – x2 – x3 = 9

3x1 + 2x2 + x3 = 21

Solution:

Write in the form of Ax = b

123

114

231

3

2

1

x

x

x

=

21

9

8

Find L and U,

LU = A

123

114

231

100

10

1

0

00

23

1312

333231

2221

11

u

uu

lll

ll

l

332332133132123131

2322132122122121

1311121111

lulullull

ulullull

ulull

123

114

231

111 l

31

33

3

11

12

1211

lu

ul

22

2

2

11

13

1311

lu

ul

421 l

Page 21: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 21

113411

1

122122

221221

ull

lul

818.0

11

2411

1

22

1321

23

23221321

l

ulu

ulul

331 l

113322

2

123132

321231

ull

lul

4818.0112311

1

2332133133

3323321331

ulull

lulul

Therefore,

L =

4113

0114

001

and U =

100

818.010

231

By using Ly = b, find the matrix of y

Ly = b

4113

0114

001

21

9

8

3

2

1

y

y

y

321

21

1

4113

114

yyy

yy

y

21

9

8

Page 22: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 22

81 y

09.2

11

849

9

2

222121

y

ylyl

5

4

)09.2(118321

21

3

333232131

y

ylylyl

Therefore, y =

5

09.2

8

You can find matrix x from Ux = y

Ux = y

100

818.010

231

3

2

1

x

x

x

5

09.2

8

3

32

321

818.0

23

x

xx

xxx

5

09.2

8

Using back substitution and comparing entries you will find the values of x ;

53 x

2)5(818.009.2

09.2818.0

2

32

x

xx

Page 23: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 23

4)5)(2()2)(3(8

823

1

321

x

xxx

Therefore,

x1 = 4, x2 = 2 and x3 = 5.

Example 9.5:

Solve the system of linear equation below:

2x1 + x2 + 6x3 = 4

5x1 – 2x2 – 8x3 = 6

6x1 – 7x2 + 3x3 = 2

Solution:

Using numerical analysis, solve for lij, uij, y iand xi.

From example 9.2, find l and u,

21111 al

5.02

1

11

1212

l

au

32

6

11

13

13 l

au

52121 al

5.4)5.0)(5()2(12212222 ulal

556.15.4

)3)(5(8

22

132123

23

l

ulau

63131 al

Page 24: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 24

10)5.0)(6()7(12313232 ulal

556.0)556.1)(10()3)(6(3233213313333 ululal

Then find yi and xi:

22

4

11

11

l

by

89.05.4

)2)(5(6

22

12122

l

ylby

2556.0

)89.0)(10()2)(6(2

33

2321313

3

l

ylylby

233 yx

4)2)(556.1(89.032322 xuyx

6)2)(3()4)(5.0(231321211 xuxuyx

Therefore,

x1 = 6, x2 = 4 and x3 = -2.

Page 25: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 25

ACTIVITY 9b

1. Using Crout method, find the decomposition of L and U for.

a)

211

412

122

b)

423

681

714

2. Using Crout’s Method, solve for system of linear equations below.

a) 4x1 – x2 + 3x3 = 38

3x1 + 4x2 + 6x3 = 35

x1 – 5x2 + 3x3 = 21

b) 2x + 9y – 3z = 5

4y – 2z = 0

4z – x –5y = 11

Page 26: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 26

FEEDBACK 9b

1. a) L =

5.201

032

002

U =

100

110

5.011

b) L =

667.1075.23

025.81

004

U =

100

515.010

75.125.01

2. a) x1 = 7 x2 = -1 x3 = 3

b) x = -2 y = 3 z = 6

Page 27: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 27

SELF ASSESSMENT

1 Using Doolittle and Crout’s Method, find matrices of L, U, y and x for system of

linear equations below:.

2

a. 2s – 5t + u = 12

3s – t – u = -8

3s – 4t + 2u = 16

b. 0.6v + 1.2I + 2.8R = 9816

3.2v – 0.4I + 3.0R = 11770

1.5v – 0.5I + 0.3R = 1200

Page 28: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 28

FEEDBACK

1. a) Doolittle Method

a- L =

1538.05.1

015.1

001

U =

846.100

5.25.60

152

y =

12

26

12

x =

5.6

5.1

1

b- L =

1515.05.2

0133.5

001

U =

608.000

933.118.60

8.22.16.0

y =

059.2097

41272

9816

x =

3450

15

230

b) Crout Method

i - L =

846.15.33

05.63

002

U =

100

385.010

5.05.21

y =

5.6

4

6

x =

5.6

5.1

1

Page 29: BA201 Engineering Mathematic UNIT10 - LU Decomposition

B3001/UNIT 9/5

Prepared by : Siti Sharmila Osmin/Nithya A/P Periasamy Page 29

ii- L =

608.05.35.1

08.62.3

006.0

U =

100

755.110

667.421

y =

3450

412.6069

16360

x =

3450

15

230