B1. Fan Laws and Fan Control - Robinson

Embed Size (px)

Citation preview

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    1/74

    Robinson Industries Fansfor You

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    2/74

    The Beginning - 1892

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    3/74

    Robinson IndustriesToday

    Heavy Duty Fan Manufacturer

    Global Support Capability w/ Intl. Representation

    113 Years in Fan Industry(1892 - Present)

    Four Locations:

    4 Fabrication Facilities

    1 Service Center

    Corporate HQ

    Zelienople, PA, USA

    Abilene, TX

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    4/74

    Robinson ProductRange

    Custom Built Special Purpose Centrifugal Fans

    Industries Served: Power, Cement , Paper, Chemical,

    Ceramic, Steel, Aluminum, Mining, Fertilizer

    Combustion Air Blowers

    Baghouse I.D. Fans

    Material Handling Exhausters

    Repair/Rebuild/Retrofit

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    5/74

    Gas Density Calculation

    Density = f (Temperature, Pressure, MolecularWeight)

    One Calculation Method Is:D = 0.075 x (460+70)/(460+T) x {(407-k*FASL+PI) / 407} x

    MW/28.96

    D = Density, lb./cu.ft. (note: standard air = .075 lbs/ft3)T = Temp at fan inlet, F (note: standard temp = 70 F)

    MW = Molecular Weight (note: dry air = 28.96)k = Altitude correction (note: =.013)PI= Fan inlet pressure, in-H2O gage( could be + or -)

    (Ref. Page 1 of Robinsons Fan Performance and Design Manual)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    6/74

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    7/74

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    8/74

    43 oF wb2

    60 oF db

    0.002 lb H2O/lb da3

    1

    Example: Tdry = 60 degF; Twet= 43 deg F; what is the

    absolute humidity ratio? What is the density?

    1. Enter the chart at the bottom at 60 oF dry bulb.

    2. Find 43 oF wet bulb along the saturation line and read down

    and to the right along 43

    o

    F until it intersects 60

    o

    F db.3. Plot this point, then read horizontally to the right to the

    read absolute humidity ratio W which is in pounds of

    water per pound of dry air (= .002 lb H2O /lb dry air)

    4. Read specific volume = 13.14 ft3per lb of dry gas

    5. Determine density = (1 + .002)/(13.14) = .076 lbs/ft3

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    9/74

    Fan System Assessment Tool(FSAT)

    This tool developed by the US

    Department of Defense and the Air Movingand Control Association, International

    helps evaluate fan and system efficiency.

    It also includes a segment that is helpful indetermining gas density.

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    10/74

    System Resistance

    Volume (CFM x 1000)

    500450400350300250200150100500

    StaticPressure(InH20)

    60

    50

    40

    30

    20

    40

    0BHP

    ROBINSON INDUSTRIES

    FAN : 83" x 14.38" FRD

    FOR : Basic Fan Laws I

    FAN SPEED : 1180

    TEMP. : 70

    DENSITY : 0.075

    SYSTEM RESISTANCE

    150,000 CFM

    40 SP

    Every system has

    resistance to flow.

    Most gas systems

    can be approximated

    by an equivalent

    orifice. The flow is

    turbulent and the

    pressure (P) requiredvaries as a function

    of the square of the

    volume flow-rate (Q).

    P = kQ2 (k is a

    system resistance

    constant.)

    (Ref. Page 16)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    11/74

    Fan and System Curves

    Volume (CFM) x 1000

    300250200150100500

    Pressure(InH20)

    50

    40

    30

    20

    10

    0

    ROBINSON INDUSTRIES, INC.

    FAN : 83" x 14.38" FRDFOR : Basic Fan Laws I

    FAN SPEED : 1180

    TEMP. : 70DENSITY : 0.075

    SP

    SYSTEM RESISTANCE

    150,000 CFM

    40 SP

    The actual

    operating

    point will

    be the

    intersection

    of the

    system

    resistance

    curve and

    the fancurve.

    (Ref. page 17)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    12/74

    Fan BHP Curve

    Volume (CFM) x 1000

    30025020015010050

    0

    BHP

    2000

    1600

    1200

    800

    400

    0

    1,257 BHP

    150000 CFM

    ROBINSON INDUSTRIES, INC.

    FAN : 83" x 14.38" FRD

    FOR : Basic Fan Laws I

    FAN SPEED : 1180

    TEMP. : 70

    DENSITY : 0.075

    BHP

    This shows thepower required

    to drive the fan.For mostcentrifugal fansthe BHPincreases as

    CFM increases.A Non-overloading fan

    has a BHP curvethat peaks and

    then drops off athigher flow.

    (Ref. page 17)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    13/74

    Fan CurvesConsiderations for a Good Operating Point

    Volume (CFM) x 1000300250200150100500

    Pressure(InH20)

    50

    40

    30

    20

    10

    BHP

    2000

    1600

    1200

    800

    400

    40 SP

    1257 BHP

    150000 CFM

    ROBINSON INDUSTRIES, INC.

    FAN : 83" x 14.38" FRD

    FOR : Basic Fan Laws I

    FAN SPEED : 1180

    TEMP. : 70

    DENSITY : 0.075

    Efficiency%

    100

    80

    40

    20

    0

    SP

    BHP

    Eff.

    Efficiency

    Stability

    Sound

    Size

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    14/74

    Lab Test Arrangement

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    15/74

    Laboratory AirPerformance Test

    Test Fan

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    16/74

    Laboratory AirPerformance Test

    Test Fan

    Orifice Plate (Throttling Device)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    17/74

    Pitot Traverse in Outlet Duct

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    18/74

    Fan Laws

    Static Pressure, Velocity Pressure

    (Dynamic Pressure), Total Pressure

    Density Change

    Speed Change

    Size Change

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    19/74

    Static, Velocity, and TotalPressure

    Pt = Ps + Pv Consider two planes

    1. fan inlet

    2. fan discharge (after evase)

    Fan Total Pressure: Ptdischarge- Ptinlet

    Fan Static Pressure:

    Psfan= Psdischarge- Ptinlet or,

    Psfan = Psdischarge- (Psinlet + Pvinlet) Fan Static Pressure Rise (or, Differential Static

    Pressure):

    PStatic Rise= PsdischargePsinlet

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    20/74

    Density Change

    VolumeCFM2= CFM1

    Static Pressure

    SP2= SP1x (Density2/Density1)Horsepower

    HP2= HP1x (Density2/Density1)

    Sound Power

    Lw2= Lw1+ 20 log x (Density2/Density1)

    (Ref. Page 25)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    21/74

    Density Change Example

    Problem:Find the new performance at 600F and

    0.0375 lbs/ft3 given the performance at

    70F and 0.075 lbs/ft3:

    Given: 880 RPM

    Flow = 125,000 cfmDensity = 0.075 lbs/ft3 @ 70F

    SP = 20 in-H2O

    BHP = 525 hp

    SolutionCFM2=CFM1=125,000 cfm; (Constant Volume Machine)

    SP2 = (20 in-H2O) x (0.0375/0.075) = 10 in-H2O

    HP2 = (525 hp) x (0.0375/0.075) = 262 hp

    (Ref. Page 25)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    22/74

    Density Change Example Curve

    Volume (CFM) x 1000

    25020015010050

    Pressure(InH20)

    25

    20

    15

    10

    5

    0

    BHP

    1000

    800

    600

    400

    200

    10

    20

    262 BHP

    525 BHP

    125000CFM

    ROBINSON INDUSTRIES, INC.

    FAN : 83" x 14.38" FRD

    FOR : Basic Fan Laws I

    FAN SPEED : 880

    TEMP. : See Below

    SP

    BHP

    T1 = 70 F

    D1 = 0.075

    T2 = 600 F

    D2 = 0.0375

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    23/74

    Speed Change(incompressible flow)

    Volume

    CFM2= (RPM2/ RPM1) x (CFM1)

    Static Pressure

    SP2= (RPM2/ RPM1)2x (SP1)

    Horsepower

    BHP2

    = (RPM2/ RPM

    1)3x (BHP

    1)

    Sound Power

    Lw2= Lw1+ 50 log (RPM2/ RPM1)(Ref. Page 23)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    24/74

    Speed Change Example

    Question: Customer will change speed from 1180 rpm to 880

    rpm. What will be the new performance?

    Given:The existing fan has the following performance.

    1180 rpm

    100,000 acfm

    20 in-H2O Static Pressure @ 70 degF

    432 bhp

    Solution:

    acfm2= (100,000) x (880/1180)1= 74,576 acfm

    Ps2 = (20.0) x (880/1180)2= 11.1 in-H2O

    bhp2= (432) x (880/1180)3= 179 bhp

    Note: The new performance is still on the original system resistance curve.The original efficiency is maintained.

    (Ref. Page 23 of Robinson Fan Performance and Design Manual)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    25/74

    Speed Change Example Curve

    Volume (CFM)1601208040

    Pressure

    InH20

    30

    25

    20

    15

    10

    5

    0

    BHP

    1200

    1000

    800

    600

    400

    200

    11.1 SP

    20 SP

    179 BHP

    432 BHP

    74576 CFM 100000 CFM

    ROBINSON INDUSTRIES, INC.

    FAN : 64" x 12.94" FRD

    FOR : Basic Fan Laws I

    FAN SPEED : 1180 & 880

    TEMP. : 70

    DENSITY : 0.075

    SP

    BHP

    SYSTEM RESISTANCE

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    26/74

    Size Change Fan Law

    VolumeCFM2= (Size2/ Size1)

    3x (CFM1)

    Static Pressure

    SP2= (Size2/ Size1)2x (SP1)Horsepower

    BHP2= (Size2/ Size1)5x (BHP1)

    Sound PowerLw2= Lw1 + 70 log (Size2/ Size1)Note: All fan dimensions change in proportion to the wheel

    diameter. Used to size fans from lab prototype tests.

    (Ref. Page 24)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    27/74

    Size Change Example

    Fans with Geometric Similarity What is the performance of a 90 inch dia radial

    bladed fan, based on a 40 inch dia geometricallysimilar test fan (at the same speed and density)?

    Given: 40 inch diameter radial bladed fan

    9,000 cfm20 SP @ 70F, 0.075 lb/ft339 BHP

    Solution: for 90 inch diameter geometrically similarfan

    CFM2 = (90/40)3x (9,000) = 102,516 CFMSP2 = (90/40)2x (20) = 101.3 H2OBHP2 = (90/40)5x (39) = 2249 HP

    (Ref. Page 24)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    28/74

    Repairs and tip-outsA worn out wheel can be not only be refurbished, but also tipped-

    out to achieve a slightly higher volume and pressure capability.

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    29/74

    Size Change: Tip-Out or De-Tip

    VolumeCFMMod= (Diamod/ Diaorig)

    2x (CFMorig)

    Static Pressure

    SPMod= (Diamod/ Diaorig)2

    x (SPorig)Horsepower

    BHPMod= (Diamod/ Diaorig)4x (BHPorig)

    Sound PowerLwmod> Lw + 70 log (Diamod/Diaorig)

    (Ref. Page 24 of Robinsons Fan Performance and Design Manual)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    30/74

    Tipped-out RB Wheel

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    31/74

    Tipped-out RT Wheel

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    32/74

    Tip-out and De-Tip Notes

    Only the wheel diameterchanges.

    Normal Tip-Out or De-Tip

    is up to 5%Maximum is around 10%for some fan types

    Increased Noise

    Cannot De-Tip an AirfoilWheel

    (Ref. Page 24)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    33/74

    Tip-Out Example

    Problem: Customer ABC has a 100 diameter wheel and they wouldlike to tip it out by 5%, (new wheel diameter is 105). What would bethe new performance?

    Given: 100 inch diameter wheel

    100,000 CFM

    20 H2O @ 70F393 BHP

    Solution:

    CFMmod= (105/100)2x (100,000) = 110,250 cfm

    SPmod= (105/100)2x (20) = 22.05 in. H2O

    BHPmod= (105/100)4x (393) = 478 bhp

    (Ref. Page 24 of Robinsons Fan Performance and Design Manual)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    34/74

    Fan Laws Summary

    Q2= (Q1)(D2/D1)3(N2/N1)1(1)(Kp2/Kp1)-1

    P2= (P1)(D2/D1)2(N2/N1)2(2/1)1(Kp2/Kp1)-1

    HP2= (HP1)(D2/D1)5(N2/N1)3(2/1)1(Kp2/Kp1)-1

    Lw2= (Lw1)+70log(D2/D1)+50log(N2/N1)+20log(2/1)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    35/74

    Fan Curves

    See reference document titled:

    Modified Fan Performance Curve Calculator

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    36/74

    Fan Control

    Outlet Damper

    Inlet Damper (various types)

    Speed Adjustment

    ConsiderationsInitial Cost

    Energy Cost

    Mechanical & Electrical Maintenance &Reliability

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    37/74

    Outlet Damper Control

    Volume (CFM) x 1000

    30025020015010050

    Pressure(InH20)

    50

    40

    30

    20

    10

    0

    BHP

    2000

    1600

    1200

    800

    400

    42.5 SP

    1000 BHP

    105000 CFM

    ROBINSON INDUSTRIES, INC.

    FAN : 83" x 14.38" FRD

    FOR : Basic Fan Laws I

    FAN SPEED : 1180

    TEMP. : 70

    DENSITY : 0.075

    : .

    : .

    :

    SP

    BHP

    Turndown can

    be achieved bypartially closinga fan outletdamper. In thisexample, thepressure drop

    across the outletdamper is 22.5in-H2O (= 42.5-20). Thesystemperformance is20 in-H2O at105,000 CFM.

    (Ref. page 19)

    Rated at

    150,000 acfm

    and 40 in-H2O

    Pressure loss= 22.5 in-H2O

    Inlet Louvered Damper Control

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    38/74

    Inlet Louvered Damper Control

    The same

    operatingpoint canbeachievedbythrottling

    an inletlouvereddamper to20 degreesopen. TheBHP is

    reduced to880 due topre-spin.(Ref. pages20-21)

    Volume (CFM x 1000)

    3002752502252001751501251007550250

    50

    45

    40

    35

    30

    25

    20

    15

    10

    5

    0

    BHP

    4000

    3600

    3200

    2800

    2400

    2000

    1600

    1200

    800

    400

    0

    Robinson Industries, Inc.Fan : 83" x 14.38" FRD SWSI

    For : Basic Fan Laws I

    Fan Speed : 1180 RPMTemperature : 70F

    Dens ity : 0.075 LB/FT

    Date : 02/02/1999Quote Number : 123456

    RII FO # : 123456

    EF :1SE :1TF :1

    Note: Louvered damperedcurves are approximate

    SP

    20 4060

    BHP20

    4060

    Note: InletP(s) Ratio = 0

    880 BHP

    105000 CFM

    20 in. H20

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    39/74

    Louvered Damper

    15% leakage (typical).

    Parallel blade operation.

    Lower efficiency when dampered.Good for dirty airstream.

    Synchronized operation forDWDI.

    (Ref: Page 68)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    40/74

    Louvered Inlet Damper

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    41/74

    Radial Inlet Damper Control The same

    operating

    point can beachieved bythrottling aradial inletdamper to25 degreesopen. TheBHP isreducedfurther to700 due tothe moreeffectivepre-spinthan thelouveredinlet damper

    (Ref. pages20-21)

    Volume (CFM x 1000)

    3002752502252001751501251007550250

    50

    45

    40

    35

    30

    25

    20

    15

    10

    5

    0

    BHP

    4000

    3600

    3200

    2800

    2400

    2000

    1600

    1200

    800

    400

    0

    Robinson Indus tries, Inc.

    Fan : 83" x 14.38" FRD SWSIFor : Basic Fan Laws I

    Fan Speed : 1180 RPM

    Temperature : 70FDens ity : 0.075 LB/FT

    Date : 02/03/1999

    Quote Number : 123456RII FO # : 123456

    EF :1SE :1TF :1

    Note: Radial damperedcurves are approximate

    SP

    20

    30 45

    BHP

    2030

    45

    Note: InletP(s) Ratio = 0

    700 BHP105000 CFM

    20 in. H20

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    42/74

    Radial Inlet Damper

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    43/74

    Radial Inlet Damper

    10-15% leakage (typical).

    Good dampered efficiency

    Center-support or cantileverdesign.

    Good for open inlet SWSI.

    Operating linkage outsideairstream.

    (Ref: Page 68)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    44/74

    Vortex Damper

    10-15% leakage (typical).

    High efficiency in damperedconditions.

    Mechanism outside airstream.

    Conical inlet pieces preferred.

    Cannot be used without inletbox.

    Split design available No need to extend bearing

    centers for DWDI.

    (Ref: Page 68)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    45/74

    Variable Inlet Vane (VIV)

    10-15% leakage (typical).

    Built as part of the inletpiece.

    Requires cone-shaped inlet

    piece design. High efficiency when

    dampered.

    No need to extend bearingcenters on DWDI.

    Mechanism in airstreamfor clean applications only.

    (Ref: Page 68)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    46/74

    Variable Inlet Vane (VIV) Damper

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    47/74

    Speed Control

    Volume (CFM) x 100025020015010050

    Pressure(InH

    20)

    25

    20

    15

    10

    5

    0

    BHP

    1000

    800

    600

    400

    200

    20 SP

    450 BHP

    ROBINSON INDUSTRIES, INC.

    FAN : 83" x 14.38" FRD

    FOR : Basic Fan Laws I

    FAN SPEED : 840

    TEMP. : 70

    DENSITY : 0.075

    SP

    BHP

    SYSTEM RESISTANCE

    105,000 CFM

    The sameoperating pointcan be achievedby reducing the

    speed from 1180rpm to 840 rpm.The BHP isgreatly reducedto 450 sincepeak efficiency

    is maintained.

    (Ref. page 22)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    48/74

    Annual Operating Cost

    Outlet Damper: 1000 HP = 313,000 $USLouverd Damper: 880 HP = 275,000 $US

    Radial or VIV Damper: 700 HP = 219,000 $US

    Variable Speed Control: 450HP = 141,000 $US

    Example Calculation (for variable speed control):

    (450 HP) x (0.746 kW/HP) x (350 days/yr.) x (24 hrs/day) x (0.05 $/kWh) = $140,994/yr

    Note: 1 HP costs about $313/yr

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    49/74

    System Effects

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    50/74

    System Effects

    Fan Performancecan be affectedby the

    configuration ofductworkupstream and

    downstreamof the fan.

    (Ref. Page 28)

    System Effects Fan Outlet

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    51/74

    System EffectsFan Outlet

    (Ref. Page 28)Reprinted from AMCA Publication 201-90

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    52/74

    Effective Duct Length

    (Ref. Page 29)Reprinted from AMCA Publication 201-90

    S t Eff t F t f

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    53/74

    System Effect Factor forOutlet Elbows

    (Ref. Page 32)Reprinted from AMCA Publication 201-90

    System Effects (Pressure Losses)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    54/74

    System Effects (Pressure Losses)

    (Ref. Page 33)Reprinted from AMCA Publication 201-90

    CFD Analysis of Non Uniform

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    55/74

    CFD Analysis of Non-UniformFlow in Fan Outlet Elbow

    Forced Inlet Vortex

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    56/74

    Forced Inlet Vortex -(Counter Rotating Swirl)

    (Ref. Page 30)Reprinted from AMCA Publication 201-90

    Decreased Fan

    Aerodynamic Performance

    Increased Fan Brake

    Horsepower Requirement

    Fan Aerodynamic Surge

    / Pulsation may Result

    Non Uniform Flow Induced into

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    57/74

    Non-Uniform Flow Induced intoFan Inlet by a Poorly Designed

    Rectangular Inlet Duct

    (Ref. Page 31)Reprinted from AMCA Publication 201-90

    Most Common Cause of

    Deficient Fan Performance

    Fan Aerodynamic Surge

    / Pulsations may Result

    Properly Designed Inlet

    Box Provides a Predictable

    Inlet Condition and

    Maintains Stable Fan

    Performance

    N U if Fl i t F I l t

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    58/74

    Non-Uniform Flow into Fan InletInduced by 90Round Section

    Elbow - No Turning Vanes

    (Ref. Page 31)Reprinted from AMCA Publication 201-90

    System Effects (Pressure Losses)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    59/74

    System Effects (Pressure Losses)

    (Ref. Page 33)Reprinted from AMCA Publication 201-90

    S t Eff t

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    60/74

    System Effects

    (Ref. Page 34)Reprinted from AMCA Publication 201-90

    Non Uniform Flow Induced into Fan

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    61/74

    Non-Uniform Flow Induced into FanInletCFD Analysis of Flow

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    62/74

    Fan Stability

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    63/74

    The Mechanics of Surging

    (Ref. Page 36)

    Th M h i f S i

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    64/74

    The Mechanics of Surging

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    65/74

    The Mechanics of Surging

    (Ref. Page 36)

    B

    Desired Operating Point:

    When operating volume

    is reduced from A to B,

    the fan responds bygenerating more pressure.

    As a result the system

    remains stable with the

    flow proceeding from the

    fan down the duct.

    B

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    66/74

    The Mechanics of Surging

    (Ref. Page 37)

    Undesirable Operating point:

    When flow is reduced from

    B to C, the fan responds by

    generating less pressure. Then

    the pressure in the downstream

    duct is higher than the pressure

    at the fan. The result is reverseFlow commonly called

    surging .

    C

    The Mechanics of Surging

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    67/74

    The Mechanics of Surging

    (Ref. Page 37)

    We normally only thinkAbout fan performance

    in the first quadrant

    i.e. positive flow and

    positive pressure.

    Flow reversal!

    C

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    68/74

    Inlet Damper Control

    (Ref. Page 35)

    Di h D

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    69/74

    Discharge Damper

    (Ref. Page 36)

    Eliminates the Helmholtz

    resonator effect of a largeduct or plenum,

    Blow Off or Recirculation

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    70/74

    Blow-Off or Recirculation

    (Ref. Page 35)

    Blow-off

    RecirculationLoop

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    71/74

    Robinson Surgeless Blower

    (Ref. Page 38)

    Robinson offers a

    blower with special

    surgeless characteristic

    performance curve. The

    peak pressure is at zero

    volumetric flow.

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    72/74

    Temperature Rise thru Fan

    (Ref. Page 38)

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    73/74

    Sound Considerations

    Ref. Page 73

    C it N i C

  • 8/14/2019 B1. Fan Laws and Fan Control - Robinson

    74/74

    Community Noise Concerns