11
Energy Procedia 28 (2012) 37 – 47 1876-6102 © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Grove Steering Committee. doi:10.1016/j.egypro.2012.08.038 Ab Hig app bala stor high the cou Key 1. I in pot com ele (alk val effi C stra gh te proac ance rage h tem soli uplin yword Intr Inc stor tenti mmo ctro kalin lue icien * Co E-ma Th Chai act empe ch f e of effi mpe id o ngs. ds: S rodu creas rage ial o on e olyse ne (LH ncy orresp ail ad F he ir for eratu or e a so icien eratu oxide SOEC uctio sing pow of c entry er c atm HV) cal pond ddres Fue erm r Ene ure effici olid o ncies ure h e ce C, SO on g vol wer chem y st ells mos of cula ding a ss: m el C mal ergy P solid ient oxid s. Fu eat p ll sy OFC, latil r as mica teps and sphe hyd ation autho mariu Cells l m Proc d ox elec de ele urthe pipe ystem High lity i wel al en to d PE eric) drog ns ( or. Te us.dill s 20 ma el ess E xide ctric ectro ermo es int m pr h tem in e ll as nerg this EM and gen reco el: +4 lig@ 012 ana ec Engin cell city olyse ore, tegra rovi mpera lect s in gy st s tec elec d do of onve 49-9 @cbi.u 2 Sc age ctro neeri r ls, o stora er ce the p ated des ature tricit n siz tora chno ctro own 3.0 ersio 11-5 uni-e cien em oly Ma ing, D rther pera age ell/fu pape into num e elec ty p ze, w age olog olyse to 4 00 k on i 302- erlang nce men yse ariu Depa r Stra ated via uel c er pr o the meric ctroly rodu with syst gy p ers r 4.5 k kWh into -9029 gen.d & nt o er us D artme aße 2 alte hyd cell ropo e sol cal r ysis, ucti h tra tems path. reac kWh h/Nm me 9; fax de Tec of ce Dil ent of 244f, ernat droge to en oses lid o resul Heat on f ansie s ba . Lo ch el h/N m³, chan x: +4 chn hi ell/ llig f Che D-9 tely en p nabl a th oxide lts i t pipe from ent ased ow t lectr Nf whi nica 49-91 nolo igh /fu * , J emica 0429 in e produ le hi herm e cel in or es m ren and d on temp ric e for P ich al or 11-53 ogy h t uel Jürg al an 9 r elect uctio ighly mal b ll sta rder new d alt n hyd pera ener PEM has r ele 302-9 y A em ce gen nd Bi rnber troly on/c y tra alan acks to wabl erna drog ature rgy M sy s to ectri 9030 A G mp ell n K ioeng rg, G yser onsu ansie ncing . A q eval e so ating gen, e el con yste be ical . Gro era sy Karl ginee Germa or f ump ent o g, he quas luate ourc g op , wa lectr nsum ms tak ene ve atu yst l ering, any fuel tion opera eat s si-2D e the es r pera ater roly mpti [1]. ken ergy Fue ure tem ,Univ cell . Th ation suppl D the e be requ ation ele sis ons Co into y), c el C e s ms versi mo his p n at h ly an ermo enefi uires n ca ctro syst dow mpa o co onv Cell sol ity Er ode, pape high nd r o-ele its o s larg apab olysi tems wn ared onsi versi l Ev id rlang repr er an h tem remo ectro of su ge s biliti is is s, e to 4 d to ider ion ven ox gen-N resen nalys mper oval oche uch stora ies. s on spec 4.1the ratio effic nt xid Nürn nt an ses t ratur mec emic heat age Tar ne of ciall 4.5 low on f cien de nberg n ap the es a chan al m t pip cap rgeti f th ly a kW wer h or s ncies g, ppeal ther nd h nism mode pe-st acit ing he m alkal Wh/N heat stor s of ling mal high via el of tack ies, the most line Nting age f up Available online at www.sciencedirect.com © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Grove Steering Committee. Open access under CC BY-NC-ND license. Open access under CC BY-NC-ND license.

Available online at  · 2017. 1. 16. · E-ma Th hai ct mpe h f of effi pe d o gs. Pu g C s: S odu ... chan: +4 hn f hi ll/ lig Che D-9 ely n p abl a th xide ts i or p pipe rom nt

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Energy Procedia 28 ( 2012 ) 37 – 47

    1876-6102 © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Grove Steering Committee.

    doi: 10.1016/j.egypro.2012.08.038

    Ab

    Higappbalastorhighthe cou © 2Ste Key

    1. I

    in potcomele(alkvaleffi

    E

    C

    stra

    gh teproacancerage h temsoli

    uplin

    2012eerin

    yword

    Intr

    Incstortentimmoctrokalinlue ficien

    * CoE-ma

    Th

    Chai

    act

    empech fe of

    effimpeid o

    ngs.

    2 Pung C

    ds: S

    rodu

    creasrageial oon e

    olysene –(LHncy

    orrespail ad

    F

    he

    ir for

    eratufor ea soicien

    eratuoxide

    ublisCom

    SOEC

    uctio

    sing powof centryer c– atmHV)

    cal

    pondddres

    Fue

    erm

    r Ene

    ure efficiolid onciesure he ce

    shedmmitt

    C, SO

    on

    g volwer

    chemy stells mos

    of cula

    ding ass: m

    el C

    mal

    ergy P

    solidient oxids. Fueat pll sy

    d bytee

    OFC,

    latilr as micateps and

    sphehyd

    ation

    authomariu

    Cells

    l m

    Proc

    d oxelec

    de eleurthepipeystem

    y Els

    High

    lity iwel

    al en to d PEeric)drogns (

    or. Teus.dill

    s 20

    mael

    ess E

    xide ctricectroermoes intm pr

    sevi

    h tem

    in ell asnergthis

    EM andgen reco

    el: +4lig@

    012

    anaec

    Engin

    cellcity olyseore, tegrarovi

    ier L

    mpera

    lects in

    gy sts tecelec

    d doof

    onve

    [email protected]

    2 Sc

    agectro

    neeriFür

    ls, ostoraer cethe pated des

    Ltd.

    ature

    tricitn siztorachnoctro

    own 3.0

    ersio

    11-5uni-e

    cien

    emoly

    Maing, Drther

    peraage ell/fupapeintonum

    Sele

    e elec

    ty pze, wage olog

    olyseto 4

    00 kon i

    302-erlang

    nce

    menyse

    ariuDepar Stra

    ated via

    fuel cer pro themeric

    ectio

    ctroly

    roduwithsyst

    gy pers r4.5 kkWhinto

    -9029gen.d

    &

    nt oer

    us Dartmeaße 2

    altehyd

    cell ropoe solcal r

    on a

    ysis,

    uctih tratemspath.reackWh

    h/Nmme

    9; faxde

    Tec

    of ce

    Dilent of244f,

    ernatdrogeto en

    oses lid oresul

    and/

    Heat

    on fansies ba. Lo

    ch elh/N

    m³, chan

    x: +4

    chn

    f hiell/

    lligf CheD-9

    tely en pnabla th

    oxidelts i

    /or p

    t pipe

    froment asedow tlectr

    Nm³ fwhinica

    49-91

    nolo

    igh/fu

    *, Jemica0429

    in eprodule hiherme celin or

    peer

    es

    m renand

    d ontempric efor Pich al or

    11-53

    ogy

    h tuel

    Jürgal an

    9 Nür

    electuctioighly

    mal bll starder

    r-rev

    newd altn hydperaenerPEMhas

    r ele

    302-9

    y – A

    emce

    gennd Birnber

    trolyon/cy traalan

    acksto

    view

    wablernadrogaturergy M sys to ectri

    9030

    A G

    mpell

    n Kioengrg, G

    yser onsu

    ansiencing. A qeval

    w un

    e soatinggen,e elcon

    ystebe

    ical

    .

    Gro

    erasy

    Karlginee

    Germa

    or fumpent og, hequasluate

    nder

    ourcg op, walectrnsummstakene

    ve

    atuyst

    l ering,any

    fuel tion

    operaeat ssi-2De the

    resp

    es rperaaterrolympti[1].

    ken ergy

    Fue

    uretem

    g,Univ

    cell . ThationsupplD thee be

    pons

    requation

    elesis ons Cointo

    y), c

    el C

    e sms

    versi

    mohis pn at hly anermo

    enefi

    sibil

    uiresn cactrosystdow

    mpao coonv

    Cell

    sol

    ity Er

    ode, papehighnd ro-eleits o

    lity

    s largapabolysitemswn aredonsi

    versi

    l Ev

    id

    rlang

    reprer anh temremoectro

    of su

    of t

    ge sbilitiis iss, eto 4

    d to iderion

    ven

    ox

    gen-N

    resennalysmperoval ocheuch

    the G

    storaies. s onspec

    4.1–the

    ratioeffic

    nt

    xid

    Nürn

    nt anses traturmec

    emicheat

    Grov

    age Tar

    ne ofciall

    –4.5 low

    on fcien

    de

    nberg

    n apthe

    res achanal mt pip

    ve

    caprgetif thly akW

    wer hfor sncies

    g,

    ppealthernd h

    nism modepe-st

    aciting

    he malkal

    Wh/Nheatstors of

    lingrmal high

    via el of tack

    ies, the

    most line

    Nm³ ting age

    f up

    f

    Available online at www.sciencedirect.com

    © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Grove Steering Committee. Open access under CC BY-NC-ND license.

    Open access under CC BY-NC-ND license.

    http://creativecommons.org/licenses/by-nc-nd/3.0/http://creativecommons.org/licenses/by-nc-nd/3.0/

  • 38 Marius Dillig and Jürgen Karl / Energy Procedia 28 ( 2012 ) 37 – 47

    to 75% can be assumed. Due to more favourable thermodynamic conditions of electrolysis at increased temperature levels ( G = 237 kJ/mol at ambient temperature compared to 183 kJ/mol at 900°C [2]), high temperature solid oxide cells present a possibility to considerably exceed the conversion efficiencies at low temperatures [3]. At high temperature part of the enthalpy of reaction can be supplied as heat either being entirely provided internally by non-reversible cell losses (mainly activation and ohmic losses) resulting in thermally neutral or exothermic operation. Even endothermic operation of the cell becomes possible in the case that an additional external heat source supplies the required heat.

    A coupling of solid oxide electrolyser cells (SOECs) to volatile electricity sources implies strong load

    gradients and thus strong changes in internal heat consumption/production rates, and consequently changing temperature profiles within the stacks. The resulting mechanical stress within the ceramic cell can induce micro-cracking and lead to a significant reduction in cell lifetime. Thus, the theoretically very fast electric load adaptation of SOECs is intensely restricted by inertial thermal adaptation of cell and stack and the need to prevent fracture of cell components [4]. Consequently, advanced temperature control strategies for combination of high temperature solid oxide systems and volatile electric power sources are mandatory. Commonly, the thermal management of solid oxide cells (fuel cells as well as electrolyser cells) is realized via adapting excessive air flow, i.e. air ratios, to cool/heat the cell in order to avoid high temperature differences (some 100K) between gas inlet and outlet. Typical values for air ratio of SOFC systems are 4–10, resulting in parasitic losses for blowers, large heat-exchanger surfaces and thermal energy losses [5]. In the same way, cooling/heating of exothermic/endothermic SOEC cells requires large air ratios to keep T reasonable, resulting in a dilution of the produced oxygen. Changes in load, i.e. current density, in certain operation modes can be followed by adapting air ratios [4], whereas changes in operation modes (exothermic–endothermic) cannot be equilibrated by simply adapting anode flow. Research on modelling thermal behaviour within solid electrolyser cells has been performed by several research groups, e.g. Udagawa et al., Laurencin et al. [6–9], showing a strong dependency of temperature distributions on operation conditions.

    The aim of this study is to present the approach of integrating high temperature heat pipes to a solid

    electrolyser cell stack. Heat pipes are tubes or other cavities filled with small amounts of heat transfer liquids (in this case sodium, Na); they provide very large heat transfer rates due to evaporation-transport-condensation processes of the liquid within the heat pipe. Because of these high heat transfer rates, only small differences between evaporation and condensation zones are formed (some K) [10], and the heat pipe can be assumed as almost isothermal. The concept of combining solid oxide cell systems and heat pipes has already been successfully tested within EU-research project Biocellus [11, 12]. Experimental results showed that internal cooling of stacks could be realized and temperature distributions were equilibrated. In this study a quasi-2D steady-state thermo-electrochemical modelling approach of an SOEC stack will be described, and first calculation results are presented. The potential of thermal management by integrated heat pipes is evaluated, and basic calculation results are shown.

    Nomenclature

    ci concentration of gas species i (mol/m³) Eelectrode activation energy for exchange current density calculation of anode or cathode (J/mol) e width of cell F Faraday’s constant (C/mol)

    RG Gibbs free enthalpy of reaction (J/mol) RH enthalpy of reaction (J/mol)

    enthalpy flow by gas flow (W)

  • Marius Dillig and Jürgen Karl / Energy Procedia 28 ( 2012 ) 37 – 47 39

    hc i i0elektrankelecn ni pO2 R RohmRth,jr qs qtransc T UceUOC

    i ano

    c act

    conano

    2. M

    2.1

    heabasplaunithe

    Fig.

    ectrode

    ns ctrode

    m j

    ns

    ll CV

    ode,

    t nc ode,

    Mat

    . Ge

    Theat pised anar,it ofe bo

    . 1. H

    e

    e

    e, c

    e,

    them

    eom

    e obipe on , catf sucund

    Heat p

    cathod

    catho

    mat

    metry

    bjectfor sevthodch stdary

    pipe

    de

    ode

    ical

    y an

    tivetemeralde-stackcon

    integ

    heigcurexcheafactnumflowoxygastotaheareaheaheathictemcellopestoithictheracticoncon

    l mo

    nd m

    e of mperl exsuppk, a 0nditi

    grate

    ght orrent chanat trator fmberw ofygens conal ceat traction

    at proat trackne

    mperal volen-ciichiocknermalivatincennduc

    odel

    mater

    moraturxampporte0.1 ions

    ed SO

    of gaden

    ge cansfefor er of f amon parnstanell reansfen ratoducansfeess oatureltageircuiometess ol conion otrati

    ctivit

    lling

    rials

    dellre coplesed S× 0.s. H

    OFC

    as flnsity curreer coxchaexchount

    rtial pnt (J esistaer rete (mctioner peof cele (Ke (V)it celtric c

    of annducoverpon oty(el

    g of

    s

    ling ontr in

    SOE.1 m

    Heat

    stack

    ow c(A m

    ent doefficangehangt of spresmol

    ancesista

    mol mn rateerpenll so

    K) ) ll vocoefode,

    ctivitpote

    overplectri

    f the

    an rol athe

    EC sm² so

    los

    k [12

    chanm–²)

    densiciene curged especssurel–1 Ke ( /ance m–2 se windicu

    olid s

    oltagfficie, electy of

    entiapoteic, io

    e sol

    SOEand litestackolid ses

    ].

    nnels) ity ont perrrentelectcies ie at a

    K–1)/m²)of s

    s–1)ithinular struc

    ge (Vent octrolf cel

    al of ntialonic

    lid o

    EC/tem

    eratuk haoxithro

    F

    s (m

    f anorpent dentronsi (moanod

    struc

    n cellto c

    cture

    V) of splyte,ll solanodl of a) of

    oxid

    /SOFmperure as bide cough

    Fig.

    )

    ode ndicunsitys perol/s)

    de or

    cture

    l strucell pe (m)

    pecie, cathlid stde oranodanod

    de ce

    FC ratur[4,

    beencell,h th

    2. Sc

    or caular ty calcr H2) r cath

    e j (m

    ucturplane)

    es i hodetructr catde orde, e

    ell

    cellre g6–9

    n est, asshe e

    chem

    athoto ceculatmol

    hode

    m² K

    re (We (W

    e (mture thodr catelect

    l stagradi9, 1tablisumexter

    matic

    ode (ell ption lecul

    e (Pa

    K W–

    W/mW/m²

    m) (W

    de, rethodtroly

    ack ient 3–1isheing rnal

    view

    (A/mlaneof a

    le

    a)

    1)

    m²) ²)

    m–1

    espece, re

    yte, c

    is tored

    15],ed. Trepewa

    w of h

    m²) e (Wanod

    K–1

    ctiveespeccatho

    o evducti

    a sThe eata

    alls

    heat p

    W m–²de or

    ) ely (ctiveode (

    valuion stead

    moabiliare

    pipe

    ² K–1cath

    (V) ely ((A V

    ate into

    dy-sodel ity thassu

    princ

    1) hode

    V) V–1 m

    the o thestate

    is chrouume

    ciple

    e (A

    m–1)

    infle stae, ficonughoed t

    e.

    V–1

    luenack nitestruout to b

    m–1

    nce stru

    e-vouctedthe e ne

    )

    of iuctulumd fostaceglig

    ntegure.

    me mor thck bgibl

    gratiThe

    modehe smy adle, t

    ing erefoel omalldaptthe c

    the ore, of a lest ting cell

  • 40 Marius Dillig and Jürgen Karl / Energy Procedia 28 ( 2012 ) 37 – 47

    beiwitchaelethrocalflow

    ele(wh(ca(LSaremeheamainte

    Fig.

    2.2

    elespeder

    resthadur

    ing cthin annectroougculaw (s Forctrohich

    athodSM)e useetalliat piateriaerco

    . 3. C

    2. El

    Stectro

    eciesrived Theistan

    at is ring

    consthe

    els folytehouatedsee F

    r theolyteh is de o). Wed inic, sipe al d

    onne

    Co-pa

    lectr

    eam oches cod.

    e cencesalso ope

    sideano

    for He, anut thd aloFig.

    e soe is tthe

    of thWhile

    n thsinceinte

    desigector

    aralle

    roch

    elecemiconce

    ell ps in o caerati

    ered ode H2/Hnd

    he cong 3).

    lid othe ano

    he Se solis ste ceegratgnedrs, w

    el flo

    hemi

    ctrocal mentra

    potethe

    lledion

    in tand

    H2O cath

    cell, the

    oxidstanode SOFlid otudy

    eramted d fowith

    ow pl

    ical

    lysimodation

    entiae eled thesuch

    the d cat

    at thode

    duflow

    de cndar

    for FC roxidy to

    mic istacr SO

    h a v

    lanar

    l

    s is del thn. F

    al Uectroe opeh as

    centhodthe ce. Te tow c

    cell ird ox

    therespde cbe

    intercks. OFCvaria

    SOE

    thehat

    From

    Ucell odesen-c

    s ohm

    ntre ode flcath

    The o thchan

    invexidee revpectiells cathrconInt

    C apable

    EC st

    e revrela

    m th

    is s. Itcircumic

    of thow

    hodephy

    heir nnels

    estige ionversivelycan

    hodennectercopplic num

    tack w

    verseates is, t

    assut canuit vloss

    he schan

    e andysicneg

    s. G

    gaten-cose Sy) i

    n be e (Scts ponnecatiombe

    with

    e prcell

    the

    umen bevoltases,

    stacknned aial pgligi

    Gas

    d, monduOFCis aseithOEC

    provectoons er of

    cath

    rocel voelec

    ed te exageacti

    k. Tls arr at

    propible stre

    mostuctorC opssumher eC) s

    vide or m[12

    f cel

    hode

    ess ooltagctric

    to bxpres

    UOCivat

    The re nthe

    pertiinf

    ams

    t star, ytperamedelecsupponl

    mater]. Tll lay

    and a

    of thge, ccal e

    be cssedCV, ition

    cellnot c

    anoies fluens on

    andattriaationd to ctrolportey lorial

    The hyers

    anod

    he hcurreener

    consd as increand

    is oconsode,of ance

    n the

    ard ma-stan) isbe

    lyte ed. T

    ow hproheats bet

    de gas

    hydroent

    rgy c

    stantthe

    eased con

    opersider andall son

    e ca

    mateabilis a maor eTheheat opertt piptwee

    s flow

    ogendencons

    t the reved bncen

    ratered. d thesolidcal

    athod

    erialsed nick

    ade oelece ma

    contiespes en tw

    ws.

    n oxnsitysum

    rougversy irrntra

    d atThee sod stlculade/a

    l cozirc

    kel-of ltrod

    aterinducwerare wo

    xiday, cemptio

    ghousiblereve

    ation

    t ame moolid trucationanod

    ombiconiYSZlanthde suial octivire ainteheat

    ationell teon a

    ut te, thersibn ove

    mbienodelcell

    cturen rede a

    inatia (YZ cehanuuppoof thity,adapegrat pip

    n in empand

    the hermble lerpo

    nt pl of l strues aesulare a

    ionsYSZermum-orte

    he inand

    pted ated pe la

    fueperat

    hea

    cellmodylossoten

    pressthe uctu

    are alts [assu

    s haZ). Tet. T

    -doped, wntercd thu

    to tinto

    ayer

    el ceture

    at ba

    l, duynames d

    ntials

    surecell

    ure iassu[16]umed

    ave bThe The

    ped we cconnus arthoso thrs.

    ells. , an

    alan

    ue tmic due ts:

    e, anl itseis diume. Gd to

    beencath anostro

    consnectre nse o

    he st

    It ind cance o

    to vpot

    to th

    nd pelf civided to

    Gas po be

    n cohodeode

    ontiusidert is a

    not aof Pltack

    s deathoof th

    verytentihe e

    pressconsed io beprop in

    onside of of

    um r theassu

    apprlans

    k via

    escriode he c

    y loial oelect

    suresistsnto e copertico-c

    deref the the mane ceumeopri

    see Ia he

    ibedand

    cell

    ow eof thtric c

    e loss of anoonsties curr

    ed. TSOSO

    nganells td toiate ITMat p

    d byd ano

    can

    eleche ccurr

    sses gas

    ode, tant are

    rent

    The OEC OEC

    nitethat o be

    for M, a pipe

    y an ode

    n be

    tric cell, rent

  • Marius Dillig and Jürgen Karl / Energy Procedia 28 ( 2012 ) 37 – 47 41

    (1)

    The reversible potential of the cell can be calculated using the Nernst equation. With the use of thermochemical databases, in this case FactSage 6.2 [17], the equilibrium concentrations on each electrode can be calculated. The reversible potential can be converted to:

    (2)

    The total ohmic resistance of the solid structure of the cell is taken as a serial combination of the resistance of electrodes and electrolyte. Interconnects are assumed to be negligible:

    + (3)

    The activation overpotential describes the voltage increase of an SOEC due to kinetic limitations of the electrode reactions. These losses can be described by applying the Butler-Volmer equation, which relates activation overpotentials to current densities with the help of the factors of exchange current density for cathode and anode, respectively. The Butler-Volmer equation can be converted by the use of a widely accepted simplifying approach [18]:

    (4)

    For the anode and cathode electrodes, the exchange current densities depend on temperatures and activation energies according to the Arrhenius law with a pre-exponential factor:

    (5)

    Further potential increases can occur during cell operation due to the restriction of mass transport by diffusion within the electrodes. The actual potentials to be used in the Nernst equation to determine the cell potential are those at the three-phase boundary (TPB) within the electrode. Since the Nernst potential is computed using the gas concentrations within the flow channel c , a correction has to be made by introducing the cathode concentration overpotential:

    (6)

    Concentration levels at the three-phase boundary can be obtained via the effective diffusion coefficients of the electrode [9]. The anode overpotential is neglected assuming the O2 pressure within the TPB is near the free flow concentration [8].

    2.3. Mass transfer

    In SOEC operation, at the anode oxygen ions are converted to molecular oxygen, thus the oxygen mass flow is increasing along the cell. Depending on additional air flow on the anode, oxygen

  • 42 Marius Dillig and Jürgen Karl / Energy Procedia 28 ( 2012 ) 37 – 47

    concentrations change. The gas composition at the cathode, with high H2O and low H2 concentrations at the cell inlet, changes depending on local current densities and thus conversion rates r(x). The finite volume model computes species concentrations for each volume dV:

    (7)

    2.4. Thermal balance

    The steady-state thermal balance of the solid oxide cell considers internal heat sources/sinks due to electrochemical reactions, heat transfer between solid structures and gas streams, and thus gas enthalpy changes and heat conduction.

    The energy balance of one volume dV for steady-state conditions is:

    (8)

    The heat sources are assumed within the solid cell structure, and they depend on local thermodynamic and electrochemical boundary conditions:

    (9)

    Assuming heat conduction in the cell structure in the flow direction is negligible in comparison to heat transport via gas streams, the first term of Eq. (8) can be approximated to 0. Due to small differences between the gas streams and solid structure (hcathode approx. 2000–3000 W/m²K [5]) the temperature of the solid structure and gas stream are assumed to be equal at position x.

    In order to simulate the influence of heat pipe integration into the solid oxide cell stack, a transverse

    heat flow perpendicular to cell planes has to be considered. For reasons of computability, transverse heat transfer depends on local temperatures in the cell structure, an isothermal heat pipe temperature and an equivalent heat transfer coefficient that describes the complex heat transfer regimes through the multi-cell layered stack towards the heat pipe:

    (10)

    The heat transfer coefficient through one cell layer can be obtained by considering parallel and serial heat flux pathways through the stack, represented by the thermal resistance circuit diagram (see Fig. 4):

    (11)

    Finally, the equivalent heat transfer coefficient through n cell layers between the considered cell and the heat pipe interconnect can be determined based on the following relation:

    (12)

  • Marius Dillig and Jürgen Karl / Energy Procedia 28 ( 2012 ) 37 – 47 43

    Thicel

    oxy

    Fig.

    3. S

    simopeequamandcha(seCondevprostea

    a) H

    is rel an

    Theygen

    . 4. S

    Sim

    A somulaeratiuiva

    mound thearace Fnseqviatioducam

    Heat t

    esultnd th

    e airn am

    Schem

    mula

    olidated ion

    alentnt ofermteris

    Fig. quenionsced. utili

    trans

    t is he he

    r ratmoun

    matic

    tion

    d oxiat dmodt hef revallystics5d)

    ntlys, i.e

    Asizati

    sfers

    obtaeat p

    tio nt o

    c rela

    n res

    ide cdiffedes

    eatinversiy neus mo), d

    y, noe. c demion

    with

    ainepipe

    ar, aover

    ations

    sult

    cell erenof t

    ng vibleutraovem

    demoo thecell monof 7

    hin he

    ed bae inc

    as it the

    s use

    ts w

    stacnt opthe

    valuee heal opmenonstermope

    nstra75%

    eat pi

    asedcrea

    is uoxy

    ed for

    itho

    ck operacelle poat inperatnt wtrate

    mal geratiated

    % and

    ipe in

    d onases

    usedygen

    r dete

    out h

    operationl couotennputtion

    with e thgradion d in d an

    ntegr

    n thethe

    d in tn ba

    ermin

    hea

    ratedn vould

    ntial t nec

    n is acon

    hat tdient

    in Fig

    n air

    rated

    e apptota

    this alanc

    natio

    at pi

    d at oltagbe (at

    cessattaincenthis ts wexot

    g. 6,r rat

    d solid

    proaal he

    papce o

    on of

    pe i

    ambges.seleapp

    sary inedntrat

    thewithi

    ther, antio (

    d oxi

    ach eat f

    per, of th

    f the e

    inte

    bienDe

    ectedproxto t

    d. Thtion erman thrmic

    n endar)

    ide c

    shoflow

    is de ce

    equiv

    gra

    nt prpend. Inximathe rheor

    chaally he cc ordothof 2

    ell st

    own w lin

    definell:

    valen

    ation

    ressundingn thatelyreacreticange

    neell a

    r enherm2.9

    tacks

    in Fnearl

    ned

    nt tra

    n

    ure, g on

    he cay 1.ctioncal ce (seeutraare

    ndothmicagen

    s

    Fig.ly by

    foll

    ansve

    witn opase .29 n. Tconsee Fal ointrhermallynerat

    4, ty th

    lowi

    erse h

    th gaperaof eV),here

    siderFig. operarinsimic ope

    tes a

    b

    that he sa

    ing t

    heat t

    as stationelecirre

    eforratio5b)

    ationicall

    moeratean in

    b) Thcirsin

    eacame

    the

    trans

    trean coctroleverre, thons ), asn isly foode,ed sntern

    hermrcuit dngle c

    h cehea

    defi

    fer c

    am inonditysisrsiblhe toanas wes morm

    subsolidnal

    mal rediagrcell l

    ell laat flo

    initi

    oeffi

    nlet tions ople cotallyziell a

    mainted. bstad oxtem

    sistanram fayer

    ayerow q

    ion i

    icient

    temns anperatell l

    l heaing tas mtainIn t

    antiaxide

    mper

    nce for a

    r beq.

    tran

    in S

    t.

    mpernd ction lossat bathe c

    modened the ally eleatur

    twens.

    SOFC

    raturcell

    volses palancellel sithrocasediff

    ectrore di

    c) Sto etran

    2

    3

    4

    en t

    C us

    res ovoltltagprovnce i’s cuimuoughe offfereolysiffer

    Scheequivnsfer

    q_tran

    q_tran

    q_tran

    q_tran

    plan

    the c

    se, a

    of 8tagee eqvideis equrre

    ulatiohoutf celent rer crenc

    emativalenr coe

    R_solid

    R_int_steg

    R_rad_channel

    R_int

    R_int

    R_solid

    R_contact

    R_int_steg

    R_rad_channel

    R_contact

    R_solid

    R_int_steg

    R_rad_channel

    R_int

    R_int

    R_solid

    R_contact

    R_int_steg

    R_rad_channel

    R_contact

    R_solid

    R_int_steg

    R_rad_channel

    R_int

    R_int

    R_solid

    R_contact

    R_int_steg

    R_rad_channel

    R_contact

    R_solid

    R_int_steg

    R_rad_channel

    R_int

    R_int

    R_solid

    R_contact

    R_int_steg

    R_rad_channel

    R_contact

    Ce

    He

    ns

    ns

    ns

    ns

    ne of sy

    cons

    as th

    800°e, diquale thequilent-von ot thll poresucell ce of

    ic appnt heafficie

    ell 4

    eat p

    Cel

    Cel

    Cel

    R

    ymmet

    side

    he in

    (

    °C, wifferl toe exibravoltaoutphe cotenults

    witf 10

    proacat ent

    pipe

    l 3

    l 2

    l 1

    Rth,cell

    try

    ered

    nlet

    13)

    was rent the

    xact ated age

    puts cell. ntial

    are th a 00K

    ch

  • 44 Marius Dillig and Jürgen Karl / Energy Procedia 28 ( 2012 ) 37 – 47

    witincSOdiffada

    Tab

    (a) gpote

    (c) e

    Fig.800

    4. S

    stu

    thin creasOFC ffereapta

    ble 1.

    gas sential

    electr

    . 5. S Nm

    Sim

    In odied

    these oope

    encetion

    Inpu

    speciel

    ric an

    Simull/min

    mula

    orded. A

    e cever

    erati ov

    ns to

    ut pa

    M

    PAOE

    es co

    nd th

    lationn cath

    tion

    r to A ce

    ell. Ithe

    ion, ver to fol

    rame

    Mod

    Pre-eActivOhmiEffec

    oncen

    herma

    n reshode

    n res

    impell in

    In eceleve

    the llow

    eters.

    el in

    exponvationic res

    ctive

    ntrati

    al en

    ults fe inle

    sult

    provn en

    exotl of

    en atcel

    w vol

    .

    put p

    nentin enesistandiffu

    ions,

    nergy

    for aet gas

    ts w

    ve thndot

    thermf 65Kt higl relatil

    para

    al faergy nce (usivit

    curr

    y bala

    a solids stre

    ith

    he lother

    mic K isgh aeachle el

    amete

    ctor (c; a

    (totalty (c)

    rent d

    ances

    d oxieam,

    hea

    oad rmic

    ops obsair rhes lectr

    ers

    k (caa) l cell)

    densi

    s of t

    ide cair ra

    at pi

    chac mo

    eratservratio180ricity

    athod

    )

    ities a

    the ce

    ell opatio

    ipe i

    angeode

    tion,ved, os (0K. y pr

    de; an

    and r

    ell

    peratar =

    inte

    e cap(sa

    , e.gi.e. ar =The

    rodu

    node)

    rever

    ted in2.1.

    egra

    pabiame

    g. aan

    = 7.5ese uctio

    )

    rsible

    n the

    ation

    ilitiebou

    at 1.inve

    5) anresu

    on/d

    e

    ermal

    n

    es ound

    .38 ersend thultin

    dema

    6.51.40.01.0

    (

    (

    lly ne

    f SOary

    V, e temhusng tand

    54 × 4 × 100886 0 × 10

    (b) sc

    (d) ce

    eutra

    OECcon

    steampe

    enhtemppro

    1011;05; 1

    /cm0–5 m

    chem

    ell te

    al ele

    C/SOnditi

    am ratuhancpera

    ofile

    2.35,37 ×m²

    m/s²

    matic

    empe

    ctrol

    OFCions

    use ure pcedaturs.

    5 × 1× 105

    view

    eratur

    lysis

    C stas as

    of profcooe p

    011 15 J/mo

    w of V

    re dis

    mod

    acksabo

    87%file tlingrofi

    1/( ol

    V-i l

    stribu

    de ope

    s, thove)

    %, to eng of les

    m²)

    ine o

    ution

    erate

    e in) w

    ar =ndothe do

    of sol

    n

    ed at

    ntegrith

    = 2thercellnot

    [[[[

    lid ox

    1.29

    ratioisot

    .5, rmicl, tht all

    [8] [8] [8] [8, 9]

    xide

    V ce

    on otherm

    a tec ophe telow

    ]

    cell

    ell vo

    of hemal

    empperatemp

    w fas

    oltag

    eat phea

    erattioneratst lo

    ge,

    pipeat p

    ture . In ture oad

    s is pipe

  • Marius Dillig and Jürgen Karl / Energy Procedia 28 ( 2012 ) 37 – 47 45

    inteparpip15K(90anoobtshrtran

    (a) gpote

    Fig.200

    (a) gpote

    Fig.pipe

    ercorallepe inK is0%) ode tainerink nsie

    gas sential

    . 6. S Nm

    gas sential

    . 7. Ses int

    onneel tentercs foris sanded. Acon

    ent o

    speciel

    Simull/min

    speciel for

    Simultegra

    ectormpeconnrmesuppd catAs nsidoper

    es co

    lationn cath

    es co5th c

    lationated i

    r layeratunectd be

    pliedthodshow

    derabratio

    oncen

    n reshode

    oncencell n

    n resin eve

    yersure tor letwed byde. Awn bly. on of

    ntrati

    ults oe inle

    ntratinext t

    ults oery 1

    s (80graayereen

    y theAppin FCon

    f the

    ions,

    of a set gas

    ions, to he

    of a s10th c

    00°Cdienr, cathe

    e heaplyinFig.8nseqe SO

    curr

    solids stre

    curreat pi

    solidcell l

    C) pnts tan bcel

    at png th8, thquenOEC

    rent d

    d oxideam,

    rent dipe

    d oxidlayer

    per 1to b

    be oblls. Tipe,he she sntly

    C/SO

    densi

    de ceair ra

    densi

    de cer.

    10 sobetwbserThu, whsamstrony, thOFC

    ities a

    ell opatio

    ities a

    ell op

    olidweenrved

    us, thhereae apnglye th

    C sys

    and r

    peratear =

    and r

    perate

    d oxin 13 d. Inhe mas opproy difhermstem

    rever

    ed in2.9.

    rever

    ed in

    ide cand

    n retumajoonly oachfferi

    mallym.

    rsible

    n endo

    rsible

    n endo

    cellsd 28urn,or p

    10%h to ing y in

    e

    other

    e

    other

    s ha8K, , a mart o% oothtem

    nduc

    (b)

    rmic

    (b)

    rmic

    as bedep

    minoof thf ther o

    mperaced s

    ) cell

    elec

    ) cell

    elec

    een pendor inhe he he

    operaturstres

    l tem

    troly

    l tem

    troly

    simdingnterlheateat iatio

    re prss is

    mperat

    ysis m

    mperat

    ysis m

    mulatg onlayet reqis ex

    on mrofils re

    ture

    mode

    ture

    mode

    ted (the

    er tequirextrac

    modeles wduc

    distr

    e oper

    distr

    e oper

    (seee vicempeed fctedes owith

    ced i

    ibuti

    rated

    ibuti

    rated

    e Figciniteratufor td froof thhoutin s

    ion

    d at 1

    ions f

    d at 1

    g. 7)ty oure the eom the cet hetead

    1.06 V

    for al

    1.06 V

    ). A of th

    diffendothe gell, at p

    dy-s

    V cel

    ll cel

    V cel

    redhe ceferenothegas a sim

    pipe state

    ll vol

    lls

    ll vol

    ductiell tnce ermistremilacon

    e as

    ltage

    ltage

    ion ito thof aic re

    eamsar rensidas w

    e,

    e with

    in flhe hat meacts at esul

    deratwell

    h hea

    low heat

    most tion the

    lt is tion l in

    at

  • 46 Marius Dillig and Jürgen Karl / Energy Procedia 28 ( 2012 ) 37 – 47

    Fig.heat

    5. C

    elestushotemsoleffowitsubcelto thea

    loarea

    Re

    [1]

    [2] A[3] W[4] Q

    [5] H[6]

    [7]

    . 8. Ct pipe

    Con

    An ctrodied

    owedmperid o

    forts th flbstanl laythe cat is Res

    ad realiza

    fere

    T. Smrege

    A. BW. DQ. CHigh

    H. AJ. UinterJ. Utemp

    Compe inte

    nclu

    appolysed and thraturoxide for

    fluctntialyerscell othe

    searcegim

    ation

    ence

    molinenerarisse

    DönitCai et

    h TemApfel Udaga

    rmedUdaga

    perat

    parisoegrat

    usion

    proaer cend ahat inre ce cer temtuatilly r

    s betplan

    erma

    ch imes.n of

    es

    nka eativene et altz et t al., mperet al

    awa ediate awa ture s

    on oftion t

    ns

    ch fells

    analyn th

    contrell, smpering redutweene aally

    s co. Enthe

    et aln Enel., Hial., HModraturl., Thet al.tempet alsolid

    f simto the

    for rhas

    yzedhermrol

    stronratuene

    ucesen thare f

    y to/f

    ontinnvispro

    ., NOergieigh te

    Hydrodellinre Eleherma., Hyperatl., Hyd oxid

    mulatee stac

    realis beed w

    mallyis n

    nglyure cergy s thehe twformfrom

    nuinsageopos

    OW-Sen. Frempeogen

    ng theectroal staydrogture sydrogde ele

    ed temck.

    izinen p

    with y nenot ry difcontr

    soue thwo h

    med.m th

    ng toed teed a

    Studiraunheratu

    n prode dynlysis

    art-upgen psolid gen ectro

    mper

    ng thpresthe

    eutrarequfferirol, urceermheat. Th

    he sta

    o fuests appr

    ie: Shofer

    ure wductinamis – Bap behproduoxidprod

    olysis

    ratur

    hermentehel

    al opuireding tand

    es). mal g

    t piphe heack.

    urthewi

    roac

    tand r ISE

    water ion bc resarriehaviouctiode eleductios cell

    e pro

    mal med. Tlp operad. Ittempd leaThe

    gradpe laeat p.

    er deith ech an

    und E, FCelect

    by higsponsrs To

    our anon threctroon thl, J. P

    ofiles

    manThe

    of a ationt resperaads e in

    dientayerpipe

    evelexpend p

    EntwCBATtrolygh temse of owarnd throug

    olysishrougPowe

    s of s

    nage proqua

    n atsulteatureto d

    ntegrts wrs. Oes fu

    lop erimprov

    wickT, 20sis inmper

    f a sords Lhermah ste

    s cellgh ster So

    solid

    emenoposasi-21.2

    ed,e pr

    degrratio

    withiOn thurthe

    the mentvide

    klung11.

    n soliratur

    olid oarge al maeam , J. Pteam ource

    oxid

    nt ased 2D t9 Vhow

    rofilradaton oin thhe oerm

    motal svali

    gspote

    id oxre eleoxide

    Scalanagelect

    Poweelec

    es 200

    de cel

    and intether

    V, nowevees wtionof ihe cotheore

    del shoridat

    enzia

    xide cectrole elecle Deementrolyer Souctroly08; 1

    ll in d

    reduegratrmo-o theer, t

    withn prosoth

    cellsr hapro

    presrt stion

    al de

    cells,lysis ctrolyemonnt of sis: Murcesysis: 180: 3

    diffe

    uctiotion-eleermthat in thobleherms, thand,vide

    senttackdata

    r Wa

    , Int.of w

    yser tnstratf SOFMods 200Con

    354–

    erent

    on on of ectro

    mal gdep

    he cems mal he m

    smae the

    ted hks wa in

    asser

    J. Hywater to tration, FC's, el-ba08; 1ntrol –364.

    oper

    of tehea

    ochegradipendcell ain thea

    magnall te po

    herewill

    ord

    relekt

    Hydrovapo

    ansieLondJ. Po

    ased 80: 4strat

    .

    ration

    empat pipemicientdingare otransat pinitudtempossib

    e to stu

    der to

    troly

    ogen or, Inent indon, owerdyna

    46–5tegies

    n mo

    peratpes

    cal, ts arg onobtasienipesde dperabilit

    enady o im

    yse zu

    Enernt. J. nputs

    2011r Souamic5. s for

    des w

    tureintostea

    re inn theainent ops intdepeatureties

    able the

    mpro

    ur He

    rgy 2Hyd. Rel1. urces beh

    r a c

    with

    grao thady-ntrine opd. T

    perato thendine graof in

    thefea

    ove

    erste

    2008;drogelHy I

    s 200haviou

    catho

    (righ

    adienhe st-statnsicaperaThis ationhe eng oadienjec

    e anaasibithe

    llung

    ; 33: en EnIntern

    6; 15ur of

    de-su

    ht) an

    nts tack te mally ation

    caun (e.elecon tents cting

    alysilitynum

    g von

    5375nergynatio

    54: 3f a c

    uppo

    nd wi

    in sstru

    modepro

    n mouses g. in

    ctrolthe nperp

    g or

    sis oy anmeri

    n Wa

    5–53y 198onal W

    70–3catho

    orted

    ithou

    soliductuel. R

    oducode add

    n colysernumpenext

    of trand dcal

    asser

    82. 80; 5:Work

    378. ode-su

    inter

    ut (le

    d oxure wResuced a

    of ditioouplr st

    mberndicutract

    ansidetaimod

    rstoff

    : 55–kshop

    uppo

    rmed

    ft)

    xide was ults and the

    onal ling ack r of ular ting

    ientiled del.

    f aus

    –63. p on

    orted

    diate

    f

  • Marius Dillig and Jürgen Karl / Energy Procedia 28 ( 2012 ) 37 – 47 47

    [8] J. Udagawa et al., Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell, J. Power Sources 2007; 166: 127–136.

    [9] J. Laurencin et al., Modelling of solid oxide steam electrolyser: Impact of the operating conditions on hydrogen production, J. Power Sources 2011; 196: 2080–2093.

    [10] R. Pruschek et al., Das Wärmerohr (Heat Pipe), Chemie-Ing.-Technik 1967; 39 : 21–26. [11] J. Karl et al., Conversion of syngas from biomass in solid oxide fuel cells, ASME Conference Proceedings 2006; 2006: 565–

    571. [12] C. Hesse et al., Stack design with internal heatpipe cooling, in: Biocellus Technical Report, Institute for Energy systems, TU

    Munich Prototech AS, 2006. [13] Q. Cai et al., The impact of steam utilization on the behaviour of high temperature electrolysers: A model based understanding,

    in: 3rd International Workshop on High Temperature Electrolysis Limiting Factors, Karlsruhe, 2009. [14] S.H. Chan, Z.T. Xia, Polarization effects in electrolyte/electrode-supported solid oxide fuel cells, J. Applied Electrochemistry

    2002; 32: 339–347. [15] W. He et al., Out-of-cell measurements of H2–H2O effective binary diffusivity in the porous anode of solid oxide fuel cells

    (SOFCs), J. Power Sources 2010; 195: 532–535. [16] P. Iora et al., Comparison of two IT DIR-SOFC models: Impact of variable thermodynamic, physical, and flow properties.

    Steady-state and dynamic analysis, Chemical Engineering Science 2005; 60: 2963–2975. [17] C.W. Bale et al., FactSage thermochemical software and databases. 2010. [18] Y. Zhao et al., Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid, J. Power Sources 2011; 196:

    9516–9527.