28
Availability Improvement of RTK GPS with IMU Availability Improvement of RTKGPS with IMU and Vehicle Sensors in Urban Environment ION GPS/GNSS 2012 Tk Ui it fM i Si dT h l T okyo UniversityofMarine Science andT echnology Nobuaki Kubo, Chen Dihan 1

Availability Improvement of RTK‐GPS with IMU

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Availability Improvement of RTK‐GPS with IMU

Availability Improvement of RTK GPS with IMUAvailability Improvement of RTK‐GPS with IMU and Vehicle Sensors in Urban Environment

ION GPS/GNSS 2012

T k U i it f M i S i d T h lTokyo University of Marine Science and Technology

Nobuaki Kubo, Chen Dihan

1

Page 2: Availability Improvement of RTK‐GPS with IMU

ContentsContents

• Background

• Objective and Commercial Product• Objective and Commercial Product

• Loosely coupled Integration of RTK with other sensors

• Proposed Technique

• Test Results

• Summary

2

Page 3: Availability Improvement of RTK‐GPS with IMU

BackgroundBackground

• The number of traffic accident deaths is decreasing i J f t d d

Transition of the number of deaths for 20 yearsin Japan (within 24 hours)

in Japan for two decades.• Future ITS still requires more 

efficient transport system.efficient transport system.‐Safety‐Energy savinggy g‐Standardization

• What is a roll of GNSS ?

3

Page 4: Availability Improvement of RTK‐GPS with IMU

ITS and GNSSITS and GNSS• Automatic collision avoidance system have been installed• Automatic collision avoidance system have been installed 

recently. They are not related to GNSS.

• However most of present and future services for ITS will stillHowever, most of present and future services for ITS will still rely on GNSS to some extent. 

Auto pilot (expressway)

Warning system(tight curve, fallen object)VICS

(FM, Beacon)Prove system

(avoid traffic jam, significant database)

( , )

ETC

Auto pilot (general road)

ITS spot

Where is your position ? (10 1 10 )4

Where is your position ? (10m or 1m or 10cm)

Page 5: Availability Improvement of RTK‐GPS with IMU

Two Commercial ProductsTwo Commercial Products 

#1 Survey‐grade GNSS + DMI + military‐grade IMU‐Expensive but fully‐integrated turnkey position

‐10 cm accuracy even with one minute outage

‐it is often used as a reference system for automobile 

#2 Car‐navigation‐grade GNSS + Speed sensor + IMU#2 Car navigation grade GNSS + Speed sensor + IMU‐A few hundred dollars but several meters accuracy

‐100% coverage, continuous positioningg , p g

5

Page 6: Availability Improvement of RTK‐GPS with IMU

Performance of #2 ProductPerformance of #2 Product• Open‐sky: Horizontal Errors were within 3m• Urban: Horizontal Errors were within 5m• Dense‐urban: following figures• Underground: 10m‐ / minute

West Shinjuku in Tokyo M i d i i b 10

6

West Shinjuku in Tokyo(many skyscrapers)

Maximum deviation: about 10m

Provided by HONDA R&D

Page 7: Availability Improvement of RTK‐GPS with IMU

Our ObjectiveOur Objective

• Survey‐grade GNSS + Speed sensor + IMUReliable RTK still requires dual‐frequency Low cost

• Prospective accuracy in safety use for ITS like lane recognition is said under 1m with continuous positionsrecognition is said under 1m with continuous positions

1cm10cm1m5m10m

AccuracyTarget#1 Product#2 Product

7

1m horizontal error and 100% availability

Page 8: Availability Improvement of RTK‐GPS with IMU

Algorithm of Loosely Coupled IntegrationAlgorithm of Loosely Coupled Integration

A l t

Vehicle Sensor Speed

Accelerometer

Gyroscope Yaw RateHeading

Velocity Filter

Movement Detection

GNSS Raw Data (+SQT) Velocity Heading

Heading Filter

#3

Float Position

RTK W Fi

Position Filter#2

RTK Position

Wrong Fix Detection

Navigation*SQT: Signal Quality Test

#1

f8

NavigationSQ : S g a Qua ty est# : Order of Priority

Page 9: Availability Improvement of RTK‐GPS with IMU

RTKRTK

• Double differenced observations• Double‐differenced observations

• LAMBDA method

• Ratio Test (>3) + ADOP

Good Quality Observation

Bad Quality Observation is includedObservation

LAMBDA + Ratio Test (ADOP)

Observation is included

LAMBDA + Ratio Test(ADOP)(ADOP)

Reliability OK

(ADOP)

Reliability decreases

9

Page 10: Availability Improvement of RTK‐GPS with IMU

Signal Quality TestSignal Quality Test(Detecting dominant multipath signal)

(Kubo et al 2005)

• Detection method is very simple

(Kubo et al, 2005)

(L1+L2, 2011)

C/N0(dB‐Hz)PRN 15 (elevation 60‐70‐60)

Only reflection

50 estimated

7‐10dB

30

40

i i l l

thresholdactual data

Diffraction and reflection

30 minimum level

Diffraction and reflection(dominant multipath)timeTemporal variation of C/N0

10

Page 11: Availability Improvement of RTK‐GPS with IMU

Ambiguity Resolution with Velocity‐Information

• RTK requires initial positions (=float solutions).I d f l fl l i d i i i d

(Kubo et al, 2008)

• Instead of normal float solution, expected position is used.• Search space can be reduced dramatically.

t t‐1t+1 t‐2

Expected Position(t)  = Previous Fix Position(t‐1) + (Velocity(t)+Velocity(t‐1))/2

11

Page 12: Availability Improvement of RTK‐GPS with IMU

Algorithm of Loosely Coupled IntegrationAlgorithm of Loosely Coupled Integration

A l t

Vehicle Sensor Speed

Accelerometer

Gyroscope Yaw RateHeading

Velocity Filter

Movement Detection

GNSS Raw Data (+SQT) Velocity Heading

Heading Filter

#3

Float Position

RTK W Fi

Position Filter#2

RTK Position

Wrong Fix Detection

Navigation*SQT: Signal Quality Test

#1

f12

NavigationSQ : S g a Qua ty est# : Order of Priority

Page 13: Availability Improvement of RTK‐GPS with IMU

Heading from GPS VelocityHeading from GPS Velocity– We can not get the right heading when  ( , )k G gx

the vehicle is stationary or in a low speed

• GPS velocity measurement has a few cm/s noise 1k k k k

k k k

x F x Gwy Hx v

10 1

tF

( , )k kk G g

k k k

| | 1 | 1ˆ ˆ ˆ( )k k k k k k k k kx x K y H x

ˆ ˆF1| |ˆ ˆk k k k kx F x

1| 1 | 1( )T T

k k k k k k k k kK P H H P H R

– The heading error will increase when the vehicle 

is moving in a high yaw rate

GPS li i i l t

| | 1 | 1k k k k k k k kP P K H P

1| |T T

k k k k k k k k kP F P F G Q G

• GPS sampling is in a low rate

Heading from GPSTrue heading

2

2

0

0G

g

R

g

track13

Page 14: Availability Improvement of RTK‐GPS with IMU

A new heading estimation algorithmA new heading estimation algorithm• Moving situations

Low speed (from vehicle speed sensor)– Low speed  (from vehicle speed sensor)

– Normal speed with low yaw rate and HDOP<5

– with low yaw rate and HDOP>5

ith hi h t d HDOP<5– with high yaw rate and HDOP<5

– with high yaw rate and HDOP>5

Speed threshold      : 1 m/s

• The measurement covariance will be updated 

p /Yaw rate threshold : 4 deg/s

in each state. 

No smoothed / std=0.64 Smoothed by IMU / std=0.29

g)g)

Error (deg

Error (deg

14

Not include stop and low speed

Page 15: Availability Improvement of RTK‐GPS with IMU

Algorithm of Loosely Coupled IntegrationAlgorithm of Loosely Coupled Integration

A l t

Vehicle Sensor Speed

Accelerometer

Gyroscope Yaw RateHeading

Velocity Filter

Movement Detection

GNSS Raw Data (+SQT) Velocity Heading

Heading Filter

#3

Float Position

RTK W Fi

Position Filter#2

RTK Position

Wrong Fix Detection

Navigation*SQT: Signal Quality Test

#1

f15

NavigationSQ : S g a Qua ty est# : Order of Priority

Page 16: Availability Improvement of RTK‐GPS with IMU

Wrong fix DetectionWrong fix Detection• Calculate the change of the altitudeCalculate the change of the altitude

2

1sin( )

t

th v dt

• is the pitch angle change deduced from a pitch rate gyro

• Velocity in vertical direction from GPS is also used

h f d d h h l bl

• Epochs of t1 and t2 are used when the RTK‐GPS is available.

• Bad quality carrier‐phase can be often received in t2 (re‐tracking).

Maximum threshold

Mi i th h ld

An example of the threshold of height

Outage of RTK‐GPSMinimum threshold

p g

16

Page 17: Availability Improvement of RTK‐GPS with IMU

Automobile Experimental TestsAutomobile Experimental Tests

• Test1 (only RTK): Tokyo(2011)

• Test2 (RTK+IMU+Speed): Nagoya(2010)

GPS Receiver NovAtel OEM5 or JAVAD Delta (CS=100s)

A N A l GPS702 JAVAD R AAntenna NovAtel GPS702 or JAVAD RegAnt

IMU Crossbow IMU 440 (MEMS)

Speed sensor Standard vehicle loaded wheel speed sensorsSpeed sensor Standard vehicle loaded wheel speed sensors 

True position POS/LV (Applanix) (positional accuracy ‐ within 10cm/1min outage )

Baseline within 10 km

Mask angle 15 degrees

HDOP h h ld 10

17

HDOP threshold 10

Page 18: Availability Improvement of RTK‐GPS with IMU

Tokyo (Test1)(O 10% U b 50% D 40%)(Open 10%   Urban 50%   Dense 40%)

T t l i d 1h• Total period: 1hour

• Data rate: 5Hz

• JAVAD Delta+RegAntJAVAD Delta RegAnt

• Relatively wide road

18Around Tokyo Station

Page 19: Availability Improvement of RTK‐GPS with IMU

RTK Performance (Test1)RTK Performance (Test1)Availability and percentage within 50 cm in horizontal error

GPS GPS+QZS

DGPS 69.6%  84.7% 

Normal RTK 17.6% (99.2%) 31.7% (99.7%)

+signal quality test 15.7% (99.8%) 36.0%  (100%)g q y ( ) ( )

+velocity information 21.2% (99.8%) 43.5% (100%)

Total: 17800 epochs (5Hz)Total: 17800 epochs (5Hz)(): percentage within 50 cm

4.5

QZSGPS

19Satellite Constellation

QZS

Page 20: Availability Improvement of RTK‐GPS with IMU

Temporal Horizontal Errors (Test1)p ( )(GPS+QZS, Best case in RTK)

2(m

)

1

1.5

zontal Error 

0.5

bsolute Horiz

0176500 177000 177500 178000 178500 179000 179500 180000 180500 181000

Ab

GPSTIME (s)GPSTIME (s)

7737 / 17800 epochs

20

Page 21: Availability Improvement of RTK‐GPS with IMU

Nagoya (Test2) g y ( )(Open 0%   Urban 40%   Dense 50%   No‐Sky 10%)

• QZS was not evaluated

T t l i d 27 i• Total period: 27min

• NovAtel OEM5+ GPS702

• Data rate: 10HzData rate: 10Hz

• POS/LV was used to evaluate the precise temporal errors.

• Relatively wide road

• Good GPS Constellation

• Average speed was 3 5m/s• Average speed was 3.5m/s

N Sk

21

Test Route No‐Sky

Page 22: Availability Improvement of RTK‐GPS with IMU

Number of Used Satellites (Test2)Number of Used Satellites (Test2) 

A NUS i f > 7 1• Average NUS in reference ‐> 7.1

• Average NUS in rover ‐> 3.2

L1 + L2 carrier phase are validP t ith 4 t llit 42%

Over 50 are not displayed

22

Percentage with 4 or more satellites: 42%

Page 23: Availability Improvement of RTK‐GPS with IMU

RTK Performance (Test2)RTK Performance (Test2)Availability and percentage within 1 m in horizontal error

GPS

DGPS 51 0% (55 3%)DGPS 51.0%  (55.3%)

Normal RTK 12.4% (88.9%)

+signal quality test 13 0% (98 4%)+signal quality test 13.0% (98.4%)

+velocity information 32.0% (94.8%)

ADOP 0 25 20 0% (99 8%)

for integration

+ADOP < 0.25 20.0% (99.8%)Total: 16270 epochs (10Hz)(): percentage within 1 m() p g

The rest of 68 % positions have to be generated from filtered DGPS or INS using our proposed integration method.

23

Page 24: Availability Improvement of RTK‐GPS with IMU

Wrong Fix Detection Summary (Test2)g y ( )

5

Temporal Horizontal Errors in RTK (32% of all)

3

4

5

tal Errors (m

)

Actual Wrong Fix Detection Example

1

2

3

olute Horizon

t

40

42

44

RTK (m

)

0351000 351500 352000 352500 353000

Abso

GPSTIME (s)32

34

36

38

Altitud

e in R

HorizontalErrors (m)

StatisticsWrong fix Detection

1m-2m 13 9

30

32

351438 351439 351440 351441

A

GPSTIME (s)

2m-3m 3 3>3m 259 259

M t f fi d t t d !24

Most of wrong fixes were detected !

Page 25: Availability Improvement of RTK‐GPS with IMU

Total Performance (Test2)Total Performance (Test2)

Horizontal Errors (m)Statistics

N Percentage

<=1m 13379 82.2

25

< 1m  13379 82.2>1m  2891 17.8

Page 26: Availability Improvement of RTK‐GPS with IMU

Total Horizontal Positions (Test2)( )

RTK-GPS fixed positionsp

32% of all(5219 of 16270epochs)

Positions given by our proposed integration systemp p g y

68% of all(11051 of 16270epochs)=

100 %26

100 %

Page 27: Availability Improvement of RTK‐GPS with IMU

Summaryy• Our proposed signal quality test and velocity use for the reliability 

and availability in RTK were quite effective in urban environment. y qHowever, there are still wrong fixes.

L l l d i i (GPS IMU S d) h d• Loosely coupled integration (GPS+IMU+Speed) method was proposed and availability was improved from 32% to 100%. Accuracy deterioration was small using IMU and Speed.

M lti GNSS d M lti F i l i f t A QZS• Multi‐GNSS and Multi‐Frequency is clear in future. As QZS was effective in RTK, the performance of RTK in urban environment must be improved. 

• What is an appropriate application in the level of 1m accuracy ?

27

Page 28: Availability Improvement of RTK‐GPS with IMU

Thank you for your attention [email protected]

• I would like to thank the Toyota central R&D for their valuable experimental data

Acknowledgements

• I would like to thank the Toyota central R&D for their valuable experimental data. 

• Financial support was partly provided by Space Use Promotion Grant from Ministry of Education, Culture, Sports, Science and Technology.

28