68
www.IV2S.at Focusing on: Transport Fuels VOLUME 2 Austrian Technological Expertise in Transport

Austrian Technological Expertise in Transporta59067af-0a83-4e50-b6d1-64... · 2019-12-06 · Review article on transport fuels ... natural gas (CNG) and liquefied petroleum gas (LPG),

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • www.IV2S.at

    Focusing on:Transport Fuels

    VOLUME 2

    AustrianTechnologicalExpertiseinTransport

  • 2 Austrian Technological Expertise in Transport

    IMPRINT

    Owner, publisher and media proprietor: Austrian Federal Ministry for Transport, Innovation and Technology – BMVIT A-1010 Vienna, Renngasse 5

    Responsible for content: Unit of Mobility and Transport Technologies Head of Department: Evelinde Grassegger Deputy Head of Department: Andreas Dorda

    Editorial: Austrian Agency for Alternative Propulsion Systems (A3PS) Bernhard Egger, Stefan Herndler Tech Gate Vienna, Donau City Strasse 1, A-1220 Vienna

    Production: Projektfabrik Waldhör KEG A-1180 Vienna, Währinger Strasse 121/3

    Photos and illustrations: BMVIT project partners, fotolia, pixelio.de, Projektfabrik Waldhör KEG

    Volumes already published:

    Volume 1 – Austrian Technological Expertise in Transport, Focusing on: Hydrogen and Fuel Cells – Vienna, Dezember 2007

  • 3

    Preface...........................................................................................................................................................................................................5

    Editorial..........................................................................................................................................................................................................6

    Reviewarticleontransportfuels.............................................................................................................................................................8

    A3-Projects..................................................................................................................................................................................................38

    EU-Projects..................................................................................................................................................................................................54

    Austrianinstitutionsinthefieldoftransportfuels.............................................................................................................................66

    Contactsandinformation..........................................................................................................................................................................67

    TABLEOFCONTENTS

  • 4 Austrian Technological Expertise in Transport

  • 5

    Transportfuelsareacrucialfactorinachievingincreasinglyambitiousclimatepolicy

    goalsandasustainablemobilitysystem.Alternativepropulsionsystemsneednewor

    modifiedfuels,tunedtotheirspecificrequirements,andofferopportunitiesfor

    reducingpollutants,greenhousegasesandnoise.

    TheAustrianMinistryforTransport,InnovationandTechnology(BMVIT)hastherefore

    fundedresearchanddevelopmentofalternativefuelsunderitsA3(AustrianAdvanced

    AutomotiveTechnology)Programmesince2002,andnowinthenewA3plus

    Programme.Tosecurethemarketintroductionofalternativepropulsionsystemsand

    fuels,theBMVITissupportingpilotanddemonstrationprojects,includingsupportfor

    theusersofthesenewtechnologies,withthegoalofoptimisingthesesystemsand

    fuelsunderreallifeconditions.

    78R&Dcooperationprojectshavebeenrealised,withanoverallbudgetof40million

    eurosandsponsorshipfundingof20.4millioneuros;andafurther8demonstration

    projects,withanoverallbudgetof7.4millioneurosandfundingof3.4millioneuros,

    havebeenputintoactionbetween2002and2006.In2007another18R&Dprojects

    and3pilotprojectshavebeenselectedforfundingunderthenewA3plusProgramme.

    Austria’sautomotiveindustryincludessomeofthebiggestsupplysidecompanies

    worldwide.With175,000employees,itisstronglyengagedintheengineeringand

    productionofpropulsionsystemsandfuels.TheBMVITstrivesforsynergies,basedon

    itscorecompetencesintheareasoftransportandtechnologypolicy,inorderto

    securethecompetitivenessofthisindustrythroughconstantinnovation.Itis

    furthermoreaimingtosolveurgenttransportandenvironmentalproblemsbyusing

    newtechnologies.

    Internationalcooperationisakeyfactorforsuccessinmeetingglobalchallenges,

    whicharereflectedbyambitiousgoalsandmandatorynationalandEUtargetsfor

    energyefficiency,securityofenergysupplyandreductionofpollutantsand

    greenhousegasemissions.AustriathereforecooperatesstronglywithEUtechnology

    platforms,FP7partnersandtheIEA.TheAustrianAgencyforAlternativePropulsion

    SystemsandFuels(A3PS),withitscurrently27partners,isanimportantinstrumentas

    aplatformforinternationalnetworkingandcooperationbetweenindustry,universities,

    researchinstitutesandtheBMVITinseekingtoachievethesegoals.

    PREFACE

    CHRISTA KRANZL StateSecretaryforInnovationandTechnologyatthe

    AustrianFederalMinistryforTransport,Innovation

    andTechnology

  • EDITORIAL

    Alternativefuelsareahotspotforthetransportandenergyindustryaswellasforthe

    internationalresearchcommunity,hencetheyareofstrategicimportancefor

    technologypolicymakers.Themarketintroductionofthesefuelscouldsolve

    environmentalproblemsandsecuretheenergysupplyforthetransportsector.This

    technologicalprogresswouldensurethecompetitivenessoftheautomotiveindustry

    asakeysectorinAustriaandpreparetheglobaltransportindustryforchallengeslike

    tighteningemissionstandards.ThecleargoaltomeetEuropeanCommission

    obligationstoreducegreenhousegasesbyatleast20%by2020andforcontinued

    reductionofpollutantsisachallengenotonlyforthevehicleindustrybutforthefuel

    industryaswell.

    Againstthebackgroundofsteadilyrisingoilpricesandincreasingdependenceonoil

    importsfrompoliticallyunstableregions,strongpressuretochangetheexistingenergy

    supplyisevident.Thetransportsectorisalreadyresponsibleforalargeshareofoverall

    energyconsumption,likelytorisefurtherinthefuture.Accordingly,concretesteps

    towardsimprovingenergyefficiencyanddevelopingalternativeenergysupplyare

    indispensable.

    TheAustriangovernmenthasthereforedecidedtoimplementanEnergyFundinits

    governmentprogramme,withaninvestmentvolumeof500millioneuros,andhasset

    upthefollowingadditionaltargetstoreachtheambitiousgoalofa20%greenhouse

    gasreduction:

    Increasingtheproportionofalternativefuelsinthetransportsectorto10%by2010,

    andto20%in2020

    5%ofnewregisteredcarsaretobeequippedwithanalternativepropulsionsystem

    (Hybrid,E85,CNG,LNG,etc.)

    Increasingtheproportionofrenewableenergywithintotalenergyconsumptiontoat

    least25%by2010and(inrelationtothepresentproportion)doublingitto45%by

    2020

    NationwideimplementationofE85andmethanefillingstationsinAustria

    Adoublingofbiomassuseby2020

    Establishingamethanebasedfuelwithabiomethanecontentofatleast20%by

    2010

    Improvingtheregulatoryframeworkforbiogasfeedin

    6 Austrian Technological Expertise in Transport

  • TheEuropeanCommissionhassetsimilarlyambitioustargets

    forEuropeanenergypolicy.Basedonthealreadymandatory

    biofuelsdirective,withaproportionof5.75%biofuelsin2010

    (2008inAustria),theEUisaimingto:

    Increasetheproportionofalternativefuelsinthetransport

    sectorto10%by2020

    ReduceCO2 by20%–30%by2020

    Increasetheproportionofrenewableenergywithintotal

    energyconsumptionto20%by2020

    ReduceaverageCO2 fleetconsumptionto120/130gCO2/km

    Researchanddevelopmentareessentialinachievingambitious

    energypolicygoals.ThefundingofR&Dinthefieldof

    alternativefuelsandnewpropulsionsystemshastobe

    increasedsubstantiallyinordertorealiseasustainabletransport

    andenergysysteminthefuture.Onlysimultaneousinnovations

    infuelproduction,storageandvehicletechnologywillleadtoa

    reductioninenergyconsumptionandingreenhousegas

    emissions.

    Respondingtothis,theAustrianMinistryforTransport,

    InnovationandTechnologyhadlaunchedtheR&DProgramme

    “A3–AustrianAdvancedAutomotiveTechnology”alreadyin

    2002,coveringtheentireinnovationcyclefrombasicresearchto

    demonstrationprojects,education,mobilityofresearchersand

    internationalnetworking.A3focusesontechnology

    breakthroughsandnotincrementalimprovements,andstrives

    forsynergiesfrominterdisciplinarycooperationbetween

    industrial,universityandnonuniversityresearchandbetween

    suppliersandusersoftechnologiesinjointR&Dprojects.

    LighthouseprojectsareanotherinstrumentusedbytheBMVIT

    insupportingthemarketintroductionofalternativepropulsion

    systems,throughfundinglargepilotanddemonstrationprojects,

    optimisingtechnologiesunderrealtimeconditions,providing

    proofofsuccessfuloperationandpreparingthepublicfor

    technologicalchange.

    TheEUunderpinsitspolicygoalsinasimilarwaybyfunding

    R&Dinthe7th FrameworkProgramme,andthroughpartnership

    withindustryandresearchinstitutionsinformulatingthe

    StrategicResearchAgenda(SRA)oftheEUTechnology

    PlatformsERTRACandBIOFUELS.TheInternationalEnergy

    Agency(IEA)supportsglobalR&Dcooperationsfora

    sustainableenergyandtransportsysteminitsImplementing

    Agreements“AdvancedMotorFuels”and“Bioenergy”.

    Thisbookletconstitutesthesecondvolumeintheseries

    “AustrianTechnologicalExpertiseinTransport”,providinga

    comprehensiveoverviewofR&Dprojectsandresearch

    institutionsinthefieldoftransportfuelsinAustria,rangingfrom

    A3andlighthouseprojectsfundedbytheBMVITuptoEUand

    internationalprojectswithAustrianparticipants.Sincethefirst

    volumeofthisseriesofbookletshascoveredthetheme

    “HydrogenandFuelCells”(publishedinDecember2007),

    projectsforhydrogenasenergycarrierhavebeenomittedfrom

    thepresentbookletonfuels.Electricityasanotherenergycarrier

    foralternativepropulsioninelectricvehicleswillbecoveredin

    oneofthenextbookletsofthisseriesonhybridvehicles,

    batterytechnologiesandelectronicsteeringcontrol.Thereview

    articlewhichfollowsprovidesacompactandbalancedanalysis

    oftechnologicaltrendsandacomparisonoffueloptions,before

    presentingtheresultsofA3andEUprojects.

    7

  • 8 Austrian Technological Expertise in Transport

    >TRANSPORTFUELS:ACRUCIALFACTORANDDRIVERTOWARDSSUSTAINABLEMOBILITY

    >VEGETABLEOILANDBIODIESEL>BIOETHANOL>SECOND-GENERATIONFUELS–THEWAYAHEAD>BIOGASFROMANAEROBICDIGESTIONASVEHICLE

    FUEL–REQUIREMENTSANDAPPLICATION>COMPRESSEDNATURALGAS–CNG>LIQUEFIEDPETROLEUMGAS–LPG>HYDROGEN–CARBONFREEFUEL>ELECTRICALENERGYASFUTUREVEHICLEFUEL>TRENDSINENGINEDEVELOPMENT>CONCLUSION

    ACKNOWLEDGMENTS

    Thecreationofabrochureofthissizeandcomplexitycouldnothavebeenaccomplishedwithoutthe

    gracioushelp,collegialcooperation,andveryhardworkofmanypeople.Atthispointwewanttothank

    allthosepeoplefortheirworkandcontributionstothebrochure.

    Ahrer,Werner PROFACTORGmbH

    Amon,Thomas UniversityofNaturalResourcesandAppliedLifeSciences,

    Vienna–DivisionofAgriculturalEngineering

    Böhme,Walter OMVAG

    Conte,Valerio arsenalresearch

    Dorda,Andreas BMVIT/A3PS

    Egger,Bernhard A3PS

    Geringer,Bernhard ViennaUniversityofTechnology–InstituteforInternalCombustionEngines

    andAutomotiveEngineering

    Hannesschläger,Michael EnergieparkBrucka.d.Leitha

    Herndler,Stefan A3PS

    Hofbauer,Hermann ViennaUniversityofTechnology–InstituteofChemicalEngineering

    Jogl,Christian HyCentAResearchGmbH

    Klell,Manfred HyCentAResearchGmbH

    Lichtblau,Günther Umweltbundesamt

    Noll,Margit arsenalresearch

    Pirker,Franz arsenalresearch

    Pollak,Kurt OMVAGCorporateStrategy

    Prenninger,Peter AVLListGmbH

    Rathbauer,Josef FJBLTWieselburg

    Rudolf,Markus MagnaSteyrFahrzeugtechnikAG&CoKG

    Seidinger,Peter OMVGasInternationalGmbH

    Spitzer,Josef JOANNEUMRESEARCH

    Urbanek,Michael ViennaUniversityofTechnology–InstituteforInternalCombustionEngines

    andAutomotiveEngineering

    Winter,Ralf Umweltbundesamt

    Wörgetter,Manfred FJBLTWieselburg

  • 9

    REVIEWARTICLEONTRANSPORTFUELS

  • TRANSPORTFUELS:ACRUCIALFACTORANDDRIVERTOWARDSSUSTAINABLEMOBILITY

    Againstthebackgroundofimminentclimatechangeand

    increasingdependenceonenergyresourcesfrompolitically

    unstableregions,policymakersaresettingambitiousgoalsto

    reducegreenhousegasemissions,includingthosefromthe

    transportsector.Toreachtheseambitioustargets,awiderange

    oftechnicaloptionsisavailable.Changesinthepropulsion

    systemrequireclosecooperationbetweenthefuelindustryand

    powertraindevelopers.Apartfromcompressednaturalgas

    (CNG)andliquefiedpetroleumgas(LPG),alternativefuels

    includesustainablefuelssuchasbiodiesel,ethanol,biogasand

    secondgenerationfuels,aswellasadvancedfuelslikedimethyl

    ether(DME).Besidesthefurtherimprovementofexisting

    combustiontechnologies,R&Disfocussingoncombustion

    processesforalternativefuelsandnewpropulsionconcepts

    suchasmonovalentgasengines,hybridandpureelectric

    vehicles,aswellasfuelcellcars.Theobjectiveofallthese

    developmentsistoimprovedrivetrainefficiencyandtoreduce

    emissionsofpollutantsandgreenhousegases.

    Sustainablefuelscanbeproducedusingalargevarietyof

    differentfeedstock.Ingeneral,distinctionscanbemadebetween

    oilcrops(rape,sunflower,etc.),starchorsugarcrops(maize,

    grain,sugarbeet,sugarcan,etc.),lignocelluloses(straw,wood,

    miscanthus,cornstover,etc.)andotherrawmateriallikeorganic

    residuesandwasteproducts(manure,sludge,animalfat,etc.).

    DirectCO2 emissionsfromvehiclesrunonsustainablefuelsare

    generallypresumedtobezero.Theexhaustgascontainsthe

    amountofCO2 thatwaspreviouslycapturedfromthe

    atmospherebyphotosynthesis.Sincefuelproductionisitselfa

    sourceofCO2 emissions,theactualimpactontheclimatemust

    beassessedtotakeaccountofthoseeffects.Contingent

    activities,suchascultivatingtherawmaterial(fertilizer,tractors),

    alltransportationmovementsandprocessingthereforeneedto

    bemonitoredforemissionstogainanobjectivecomparison.To

    takeaccountofthesesocalled‘upstreameffects’,allactivities

    necessarytoprovidethefuelatthefillingstationneedtobe

    included.Calculationsareimplementedusinglifecycle

    assessments.Theamountoftheseemissionsisstrongly

    influencedbythegivencircumstances.Ifcultivationiscarried

    outinanecologicalway,iftransportdistancesareshortandif

    processingusesgreenelectricity,totalemissionstendtobe

    low.Bestresultscanbeobtainedwhenthefeedstockconsists

    ofresidualproductsandwasteproducts,becausemany

    upstreamemissionscanbefactoredout.

    Convertingthequantityofalternativefueltoamileagefigureis

    realisedbylookingattheindividualenergydensitiesofthe

    differentfuels.Thisisessential,especiallywhenaccountingfor

    theactualsubstitutionlevelofsustainablefuels.Theenergy

    densityofbiodieselisabout8%lowerthanthatoffossildiesel;

    theenergydensityofethanolisaboutonethirdbelowthatof

    fossilpetrol.Thereforeinordertosubstitutefossilfuelsandto

    meetconventionalpropulsionefficiency,higherquantitiesof

    sustainablefuelareneeded.

    Purevegetableoilisobtainedbypressingoilseedsoroilfruits

    fromoilcrops;subsequentlyitcaneitherbeuseddirectlyor

    processedtoobtainbiodieselthroughesterification.Wastefat

    (usedcookingoil,animalfat)canalsobeusedasfeedstockfor

    biodieselproduction,afterappropriatetreatment.Toguarantee

    sounduseofpurevegetableoilandbiodiesel,giventhattheir

    fuelparametersdivergefromdieselasusedtoday,enginesand

    vehiclesneedtobeadapted,particularlywhenusingalternative

    fuelsinhighconcentrationsorinpureform.Alternatively,

    vegetableoilcanbetreatedwithhydrogentoobtain

    hydrogenatedvegetableoil,whichcanbeusedindieselengines

    withoutanyspecialrequirements.

    Theethanolcurrentlyavailableisproducedfromstarchand

    sugar,originatingfromstarchandsugarcrops,wherethestarch

    isfirstmetabolisedintosugarbyenzymaticdecompositionand

    thesugarsubsequentlyconvertedtoethanolthroughalcohol

    fermentation.Lignocellulosebiomassrepresentsanother

    potentialfeedstockforfutureethanolproduction.Theabilityto

    uselignocellulosesrequiresspecificenzymes,incombination

    withspecialpretreatmentstofacilitatethebreakdownof

    cellulosematerialintoitssugarcomponents,inordertoferment

    ittoethanol.Useofpureethanolrequiresspecialengineand

    vehicleadaptation.

    Besidesusingbiodieselandethanolinpureform,which

    requirescertainvehicleadaptations,theyareusedasblends

    withconventionalfuels,atupto5%byvolume.Duetothe

    smallproportionofsustainablefuelsintheseblends,thereisno

    needtoadapteitherengineorvehicle.Thisfactmeansthatthe

    majorityofsustainablefuelusedinthetransportsectoris

    distributedasablend,owingtothelackofasuitablevehicle

    infrastructure.E85,anethanolbasedfuelcontaining85%

    ethanol,isofferedasfuelforsocalledflexiblefuelvehicles

    (FFVs),whichcanbeoperatedwithfuelsupto85%ethanol.

    10 Austrian Technological Expertise in Transport

  • Sustainablefuelsareusuallygroupedintofirstandsecondgenerationfuels.Allsustainablefuelsproducedcommercially

    usingconventionaltechniquesandanyfeedstockapartfrom

    lignocellulosesandcellulosesbelongtothefirstgroup;these

    includeforexamplebiodieselfromoilseedsandethanolfrom

    cornorsugarbeet.Besidesbeingdefinedthroughtheir

    feedstockofwoodorstrawbasedrawmaterial,secondgenerationfuelsareoftendefinedbytheirspecialproduction

    conditions,whichofferthefurtherpossibilityofusingtheentire

    plantforfuelproductionandthereforeincreasingthepotential

    amountoffeedstock(acreageperformance).

    Biogasisgeneratedwhenorganicmaterialfermentsunder

    anaerobicconditions(withoutoxygen).Organicresidues,plant

    partswhicharepresentlydiscardedaswaste,aswellasall

    energycropsarepotentialrawmaterial.Thecrudegasproduced

    therebyneedsfurthertreatment,calledupgrading,toimprove

    thequalitybeforeitcanbeusedastransportfuel.Biogasused

    asatransportfuelmainlyconsistsofmethanegaswithalow

    contentofimpuritiessuchassulphurorcarbondioxide,andis

    thereforechemicallysimilartoCNG.

    CNGhasalreadybeeninuseastransportfuelformanyyears.

    Ithasabout25%lowerCO2 emissionsthanpetrol,significant

    loweremissionofpollutantsandnoparticulateemissions.

    InAustria,theconstructionofanationwidegasfuelling

    infrastructureisinprogress.

    BiogasandCNGcanbedistributedthroughtheexistingnatural

    gasgridtoregulargasfillingstations,compressedandsoldonsite.Ifnogasgridisavailable,additionallogisticisneeded.

    LPGisalsoinuseastransportfuel,especiallyinbusfleets(e.g.

    inVienna).ItoffersadvantagessuchaslowerCO2 andpollutants

    emissionsandischeaperthanstandardpetrolordieselfuel.

    Agriculturallandavailableforenergycropproductionbeing

    limited,theyieldofsustainablefuelperacreageisan

    appropriateassessmentparameterforevaluatingsustainable

    fuels.Furthermoreithastobeborneinmindthattheproduction

    ofsustainablefuelscompeteswithsupplyoffoodandfeed,as

    wellasotherinterestslikethoseofthepaperandwood

    industry.Itisevidentthattoday’sfuelconsumptioncannotbe

    coveredentirelywithsustainablefuels.

    GenerallytheyofferadvantagessuchasareductioninCO2

    emissionsandloweremissionsofpollutants,butthelongterm

    goalisanemissionfreetransportsystem.Thesearereasons

    whysustainablefuelsareperceivedtobepartofthesolution,

    i.e.asanintermediatestepinmovingtowardsthelongterm

    introductionofvehiclespoweredbyelectricpowerorhydrogen.

    Atthemoment,gradualelectrificationofmotorvehiclesis

    alreadyunderway.Socalledhybridvehiclesarecombining

    combustionenginesandelectricmotorsinordertoimprove

    vehicleefficiency.Forbothelectricvehiclesandhydrogenpoweredvehicles,furtherimprovementsrelatingtobattery

    technology,hydrogenstorageandfuelcellsstillneedtobe

    realisedinordertoachievemarketmaturity.Whileneither

    technologyitselfcausesdirectemissions,itisnecessaryto

    focusontheenergyproductionsidetoo.Iffuelproductionuses

    electricityoriginatingfromrenewablesources,theoverall

    balanceofemissionsispromising;ifusingelectricityfrom

    conventionalthermalpowercrops,however,electricand

    hydrogenpoweredvehiclesperformsimilarlytoexistinghybrid

    vehiclesintermsofenergyefficiencyandgreenhousegas

    emissions.

    Thefollowingchapters,writtenbyexpertsfromAustrian

    companiesandR&Dinstitutions,willguideyouthroughthe

    topicofexistingandfuturealternativetransportfuels.

    Thechaptersgiveanoverviewofthesocial,technicaland

    economicaspectsofdifferentalternativefuels.Advantages

    anddisadvantagesofvariousoptionsarediscussed,andyou

    willfindinformationoncurrenttrendsinthefuelandautomotive

    industries.Alltogether,thechaptersprovideaninteresting

    insightintotheimportanttopicofalternativefuels–helpingto

    enhancetransportefficiencyandtoreduceemissions.

    11

  • VEGETABLEOILANDBIODIESEL

    VEGETABLE OIL FOR DIESEL ENGINES

    RudolfDieselhimselfwantedtorunhisenginesusingvegetable

    oil.Scientificinvestigationswerecarriedoutintorunning

    enginesonvegetableoilbeforeWorldWarII.Theoilcrisisin

    1973revivedinterest,andresearchwasconductedaroundthe

    worldintotheuseofvegetableoilinconventionaldiesel

    engines.However,thetendencyofvegetableoiltocoking

    significantlylimitedrunningenginesusingpurevegetableoil.

    StartingfromCanada,thewidespreadplantingofrapehasbeen

    asuccessfuldevelopment.Rapeisaplantsuitedtoregions

    withatemperateclimate,andinNorthernGermanytheyieldis

    3to4t/haofseed.Theseedcanbeprocessedusingproven

    technologyinindustrialplantsandinsmallscaleunitsat

    relativelylowcost.Asinglehectareissufficienttoproduce

    2tonnesofproteinfeedforanimalnutritionand1.3tonnesof

    rapeseedoil.Throughgoodfarmingpractice,breedingmeasures

    andreducedexpenditureonmanureandpesticides,alongside

    advancesinfarmingengineering,ithasprovedpossibleto

    reducethecostsofrapeproductionby70%in35years.

    However,globallyarangeoffurtheroilsandfatsarealsobeing

    consideredasrawmaterials.Forinstance,palmoiliseconomically

    attractiveowingtoitshighyields(upto7t/ha),butiscalledinto

    questiononecologicalandsocialgrounds.TheJatrophaplant

    promisessustainableproduction,particularlyinaridregions,buta

    wholeagriculturalproductionsystemmustbedeveloped.

    Tousevegetableoilasafuel,twostrategiescanbeenvisaged.

    Enginessuitableforrunningonvegetableoilcanserveniche

    markets,orifthepropertiesofoilareadaptedtothe

    requirementsofexistingenginesthewholedieselfuelmarket

    canbeopenedup.

    BIODIESEL

    isproducedthroughalcoholysisofvegetableoiloranimalfats.

    Atriglyceridemoleculeisusedwiththreemoleculesofmethanol

    toproducethreemoleculesofmethylesterandoneglycerine

    molecule.Overthepastdecade,simpleprocesseswithlow

    energydemand,hightransformationratesandgoodproduct

    qualityweredevelopedtoproducemethylesters(“FAME“=

    “fattyacidmethylester”;“RME”=rapeoilmethylester).

    Transesterificationimprovesthedieselenginecharacteristics.

    Viscosityisreduced,thetendencytocokingiscompatiblewith

    therangefoundindieselfuels,andthecetanenumberand

    lubricityarebetterthanthatoffossildiesel.Extensive

    investigationsduringthe1990sdemonstratedthatbiodieselis

    suitableformarketviable,seriesmanufacturedvehicles.Groups

    ofresearchersinAustria(inGraz,WieselburgandVienna)were

    worldleadinginthisfield.Withnationalstandardisationin

    Austria,forthefirsttimeanywhereintheworldthe

    preconditionswereestablishedforregulatedtradingof

    biodiesel.

    Since2004,EN14214hasspecifiedtherequirementsfor

    biodieselasapurefuelandasamixcomponentaddedtofossil

    dieselfuel.Since2006,4.4%biodieselhasbeenadmixedto

    fillingstationfuelinAustria.Theuseofpurebiodieselrequires

    carmanufacturerapproval.Althoughafter1990therewas

    successinsecuringapprovalforrunningonpurebiodiesel,the

    automotiveindustryremainshesitant.Indevelopingexhaustgas

    filtertechnology,noaccountwastakenofthespecific

    characteristicsofbiodiesel.Carmanufacturersareaccordingly

    limitingtheadmixturetoa5%level,anda7to10%limitis

    underdiscussion.Approvalsforrunningonpurebiodieselare

    onlytobebroughtinforheavyutilityvehicles.

    12 Austrian Technological Expertise in Transport

  • RUNNING ON VEGETABLE OIL

    requiresmodificationstothevehicleandtoengines.Onthe

    developmentside,designmeasuresneedtobetakeninrespect

    oftheinjectionengineering,thecombustionchamberandinthe

    designofpistons,pistonringsandvalves.Toaccelerate

    developmenttheGermanStandardisationOrganisationhas

    drawnupatentativeDINstandardforvegetableoil.Thecostsof

    developmentandthesmallmarkethaveprovedobstaclestothe

    introductionofVegetableOilTechnology.Toovercomethis

    hurdle,theGermanMinistryforAgriculturehasfinanceda

    demonstrationproject.Over100reequippedtractorshavebeen

    operatedforseveralyearsusingvegetableoil,withmonitoring

    byscientists.

    OverseenbyscientistsatFJBLT,aprojectsupportedbyAgrar

    PlusisunderwayinAustria.WithassistancefromtheMinistry

    ofAgriculture,Forestry,theEnvironmentandWater

    ManagementandfromtheRegionalGovernmentsofLower

    Austria,UpperAustriaandBurgenland,andunderthe

    Kommunalkreditlocalauthorityloanscheme,acomprehensive

    monitoringprojectisbeingcarriedoutintothepracticaluseof

    35reequippedtractorsandtheproductionofvegetableoilin

    smallproductionunitsovertheperiodend2003–mid2008.

    Theaimistoshowunderwhichconditionstheuseofvegetable

    oilasatractorfuelonreequippedseriesmanufacturedtractors

    ispossible,andwhatrisksarisefromthis.

    Toassesstheoilquality,samplesaretakenandanalysed

    periodicallyfromtheoilmills,storagetanksandvehiclefuel

    tanks.Inthefirstyear,theintroductionofqualityassurance

    measureshasseensuccessincomplyingwiththerequirements

    oftheDINtentativestandard.

    BuildingontheexperiencesinGermany,“twotanksystems”

    arealsobeingused.Thesetractorsarerunusingfossildieselat

    lowloadandwhenincoldcondition,andathighloadusingpreheatedvegetableoil,therebyreducingengineoildilutionand

    carbonbuiltuponengineparts.Poweroutputwhenrunningon

    dieselandrapeseedoilisroughlythesame.Thefuel

    consumptionissomewhathigherwhenrunningonrapeseedoil

    thanondiesel.Intermsofemissions,rapeseedoiloffers

    improvementsinCOandhydrocarbonemissions,withworse

    performanceintermsofNOX emissions.

    Fortheengineoil,alltractorsusedproductsfromaGerman

    manufacturerwithrelevantexperience.Thecustomaryoil

    changeperiodsweremaintained.Theaveragerapeseedoil

    contentofthesamplesfromtheengineoilchangesonatwotanksystemwas4.6%,whichwaswellbelowthe

    correspondinglevelof12.5%ononetanksystems.Thefinal

    investigationshavebeenunderwaysinceautumn2007.For

    these,powerbehaviourandemissionsarebeingassessedon

    thetestbenchandthedegreeofwearinvestigatedby

    dismantlingtheengines.Theprogrammewillberoundedoffin

    mid2008withacomprehensivereport.

    13

  • BIOETHANOL

    Toconserveresourcesoffossilmineraloilrawmaterials,andto

    improvetheCO2 balancesheet,increasinguseneedstobe

    madeofsustainablefuels.Theuseofbiodieselisalready

    familiartousandisstateoftheart,whereassubstitute

    biogenousfuelfortheOttoengineisonlynowbeginningtobe

    usedinEurope,intheformofethanol.Currentlythesharefor

    sustainablefuelinAustriaisaround5%,althoughthislevelis

    settobeincreasedprogressivelytoatleast10%.

    ETHANOL FOR OTTO ENGINES

    Ethanolassourceofenergywasalreadyconsideredasa

    possiblefuelatthetimethecarwasinvented.Thestarting

    productforfermentationisrawmaterialcontainingsugarsand

    starches.Whereasplantscontainingsugar(sugarbeet,

    sugarcane)canbefermenteddirectly,ingrainthestarchisfirst

    convertedtosugarthroughenzymeaction.Thefermentation

    producesaproductwithanalcoholcontentof18%,andusing

    distillationthisdegreeofconcentrationisincreasedto90%.For

    admixingwithpetrol,inafurtherstepthealcoholcontentis

    increasedtocloseon100%.

    EthanolhasexcellentcharacteristicsfortheOttoengine,asa

    purefuelandwhenmixedwithconventionalpetrol.Currently,

    5%ethanolisadmixedwithpetrolinAustria.Sincetheenergy

    densityofpureethanolislow,enginesneedtobeadaptedto

    usepureethanol.

    ResearchworkatViennaUniversityofTechnologyhasshown

    thathigherlevelsofefficiencywithhigherperformanceand

    loweremissionscanbeachievedusingethanol.Vehicleswhich

    canbedrivenonpetrolethanolmixesofupto85%(flexiblefuel

    vehiclesFFV)areonthemarketinSweden,BrazilandtheUS,

    strongeffortstoimplementsuchtechnologiesaremadeinan

    E85programbysomecompaniesinAustriatoo.

    TheBrazilian“ProalcoolProgramme”wasthebiggestmarket

    launchprogrammeintheworld.Asearlyas1997,273million

    tonnesofsugarbeetwereharvestedoutofwhich13.7million

    m3offuelwereproduced.Ethanolisprimarilyusedinmixtures,

    andsince1999a26%admixturehasbeenused.Inrecent

    years,automobilecompanieshavelaunchedFFVsonthe

    Brazilianmarket,togreatsuccess.Now,however,theUSAhas

    overtakenBrazil.In2007,tosafeguardfuelsupply,atotalof7

    billiongallonsofethanolwasproducedin115plantsfrommaize

    andgrain,andtheannualincreasefrom2007to2008was38%.

    FUTURE POTENTIAL FOR ACQUISITION OF FUEL

    Theincreasinguseofethanolasasupplementtoorsubstitute

    forfossilfuelsis,however,becomingincreasinglycontroversial

    today.Forinstance,triggeredbytheextensivecultivationof

    suitableplants,therearefearsofdisruptiontotheecosystem

    andethicalreservationsagainstusingplantssuchasgrain,

    maizeorsunflowersforenergy,giventhatthesecropsare

    simultaneouslythebasisforfoodproducts.Nevertheless,the

    socalledfirstgenerationfuelshavealreadyachievedglobal

    importancetoday.TheUSAandBrazilproducewellover30

    milliontonnesofethanolannually.

    Bycontrast,inthesecondgenerationfuels(thedevelopmentof

    whichisbeingworkedonbyresearchersatpresent)thefruitis

    tobeusedforfoodproductionandonlytheresidual

    componentsor“waste”fromthecommerciallygrownplantis

    tobeusedtoproduceenergy.Thiswouldopenupthewaytoa

    sustainablefurtherincreaseintheshareofbiogenousproducts

    infuel.

    ADAPTING ENGINES TO RUN ON ETHANOL

    Ifethanolistobeadmixedinhigherproportions,thenthe

    engineneedstobeadaptedaccordingly.Dependingonthemix

    ratio,ahigheroctanerating,alowerthermalvalueandincreased

    vaporisationheatcanbeobtained.Giventheclimaticconditions

    inEurope,admixingupto85%ethanolissensible.Thisrequires

    adaptedenginemanagementparameterssuchasinjection

    volume,ignitiontimingetc.VehiclesknownasFFVsareadapted

    torunonanypreferredmixratio,upto85%ethanolinthe

    petrol.Forenginesworkingwithahighethanolcontentinthe

    fuel,oneoftherequirementsisthatthevalveseatsneedtobe

    manufacturedintoughermaterial,sincethestressissomewhat

    increasedandthelubricatingpropertiesarelower.Alcoholresistantmaterialsmustbeusedforfuellinesandseals.

    14 Austrian Technological Expertise in Transport

  • OPPORTUNITIES AND CHALLENGES FOR USE IN ENGINES

    Thefutureincreaseduseofalternativefuelsistherefore

    predicatedonthedevelopmentofadaptedengines.Thefull

    potentialofethanoltoincreaseefficiencylevelscanonlybefully

    exploitedbyoptimisingtheenginetothespecialcharacteristics

    ofthefuel.Asanexample,mentionshouldbemadehereofthe

    higherknockrating,whichallowsthecompressionratiotobe

    increased.Thisresultsinanincreaseinthermalefficiency.This

    isnotpossibleusingconventionalOttoenginefuel,dueto

    knocking.Knockingcomesaboutif,atfullload,pocketsofthe

    fuelairmixtureignitespontaneouslysubsequenttothespark

    plugignition,duetothehighpressureandthetemperature.This

    isassociatedwithextremelyhighstressesontheenginewhich,

    iftheypersistfortoolong,canresultindestruction.

    Movingtheignitionpointlaterguardsagainstthisstress,butit

    worsensthelevelofefficiency.Thisisnotnecessaryatallwith

    ethanol,oronlytoasignificantlylowerextent.Thismeansthat

    usingethanolnotonlybringsbenefitsintermsofefficient

    conversionofenergy,buttheearlycombustionalsomeansthat

    theexhaustgastemperatureissignificantlylowerthanwhen

    runningonpetrol.Theoutcomeofthisprocessissignificantly

    lowerneedforenrichmenttocoolthecatalystathighloads,

    meaningthatadditionalfuelissaved.Futureethanolengineswill

    comeclosetomoderndieselenginesintermsoftheirlevelof

    efficiencyatfullload.

    Iftheoptionistakenforflexibleoperationusinganypreferred

    mixturesofethanolupto85%andpetrol,asforexamplein

    FFVs,compromisesmustnecessarilybemade,sincetheengine

    mustalsoworkwiththelowerknockratingofconventionalOtto

    enginefuel.Inallcases,developmentsintermsofengine

    adjustmentsarecertainlyrequired,butnofundamentalnew

    designs.

    However,usingethanolalsobringsaboutdisadvantages.The

    highvaporisationheatandthehighboilingpointofethanolcan

    leadtodifficultieswithcoldstarting,particularlyatverylow

    ambienttemperatures.Thisgeneratesmajorchallenges,in

    termsofinjectionstrategyandtheengineapplication,inorderto

    vaporisesufficientfuelwhenstarting.Onepossiblesolutionis

    multipleinjectionpercycleondirectinjectionengines.Thiscan

    improvethevaporisationpatternandlowertheminimumcold

    starttemperature.Inaddition,thelowercalorificvalueofethanol

    comparedwithpetrol(aroundathirdlower)meansthatthereis

    agreatervolumetricfuelrequirement.Whilstthismeansshorter

    periodsbetweenfuellingstops,thelowerpricemeansthat

    therearenoadditionalcostsfortheconsumer.Inadditiontothe

    advantagesinfuelmanufacturing,therearealsolowerCO2

    emissionsfromrunningtheengine,duetotheincreasedlevelof

    efficiencywhenrunningonethanol.

    15

  • SECOND-GENERATIONFUELS–THEWAYAHEAD

    Currentlyarangeofliquidandgassustainablefuelsarebeing

    producedandresearched;theyaremanufacturedusingvarious

    rawmaterialsandvariousprocesses.Vegetableoil,biodiesel

    andethanolareavailableonthemarket,anindustrialplanthas

    beenconstructedtoproducehydrogenatedfuelsfromplantoils,

    theuseofbiogasandvegetableoilinvehiclesisbeing

    demonstrated,ademonstrationplanttoproduceFischerTropsch

    (FT)dieselfrombiosynthesisgasisgoingintooperation,

    seriousconsiderationisbeinggiventobutanolandDME

    (dimethylether),processesfordirectliquefactionarebeing

    announced,andstudiesareaddressingtheissueofhydrogen.

    Therawmaterialscanbesourcedasprincipalproductsand

    byproductsofagricultureandforestry,butalsoascoupled

    productsfromindustryorasresidualmaterialsfromwaste

    management.Inparticular,thelattercoveroilsandfatsof

    vegetableandanimalorigin,traditionalplantscontainingstarchor

    sugar,lignocelluloserawmaterialssuchaswood,strawand

    miscanthus,andalsoorganicresidualmaterialssuchasmanure

    andorganicwaste.

    Thepotentialfromsustainablefuelsfromdomesticraw

    materialsislimitedbythecompetitionforlandareawithfood

    andrawmaterials.Inasustainablefuelorientedscenario,where

    keysocietaldemandsaresecuresupplyofhighqualityfoodand

    maintaininganenvironmentfittolivein,by2020itwouldbe

    possibletogenerateupto1.4milliontoeofalternativefuels

    fromdomesticrawmaterials(e.g.160,000toebiodiesel,

    120,000toeethanolfromplantscontainingsugarorstarch,

    700,000toeFTfuelfromgasificationofwood,woodwasteand

    plantsfarmedasanenergycrop,and400,000to500,000toe

    biogasfromwasteandplantsgrownasenergysources).The

    fueldemandin2020isestimatedat0.7milliontoepetroland

    7.4milliontoedieselfuel,witharound80%ofthisbeing

    consumeddomesticallywithinAustria.Thismeansthat,using

    theuppermostassumptions,22%ofowndemandcanbemet

    fromprimarydomesticproduction.

    Manufacturecaninvolvemechanical,chemical,biochemical,

    thermochemicalorpetrochemicalprocesses.Examplesare

    pressing,esterification,fermentation,gasification,gassynthesis

    andhydrogenation.Thecombinationofprocessesandraw

    materialsproducesarangeofpossibleoptions.Below,the

    probableoptionsasconsideredtodayaredescribedinfuller

    detail.

    ETHANOL FROM LIGNOCELLULOSE

    Toextendthebasisofrawmaterials,forsomeconsiderable

    timeinvestigationshavebeenpursuedintothepulpingand

    saccharificationoflignocelluloserawmaterials.Theraw

    materialsbeingexaminedarewood,bark,straw,highyield

    energyplantingsuchasmiscanthus,andalsolignocellulose

    wastematerialssuchasusedpaper.Theareasoffocusin

    researcharemechanicalpulping,hydrolysis,theproductionof

    enzymesandthegeneticmodificationofmicroorganisms,and

    theoverallprocessitself.Highconversionratesforcelluloseand

    hemicellulosearesought,asisthecomprehensiveuseofallbyproducts.

    The“RoadmapforCellulosicEthanol”fromtheUSDepartment

    ofEnergyisshowingthewayinwhichby203030%offuel

    demandintheUSAcanbemetfromlignocellulose.The

    strategyisreliantonwholecropmaize,butgrassesgrownover

    severalyearssuchasswitchgrassarebeinginvestigated.The

    researchisbeingconductedin10nationallaboratoriesandat

    200universities.Aseriesofcompaniesaresettingup

    demonstrationplants,withpublicassistance.InCanada,the

    companyIOGENisproducingethanolfromstrawina

    demonstrationplant.Handinhandwiththemarketlaunchof

    ethanol,flexfuelvehiclesarecomingontothemarket.

    Europe,too,isengagedinresearch:foranumberofyears,

    Swedenhasbeenoperatingapilotplantusingsoftwood;

    Denmarkisbuildingademonstrationplantforstraw;andthe

    EuropeanCommissionissupportingbasicresearchviatheNILE

    Project.Austrianresearchersareusingsimilarapproachesin

    seekingdifferentobjectives:withfundingfromAustria’s

    “FactoryofTomorrow”[“FabrikderZukunft”]Federalresearch

    programmeandfundsfromtheUpperAustriaLandgovernment,

    the“GreenRefinery”isresearchingthelinkedproductionof

    lacticacidasanindustrialrawmaterialandbiogasasanenergy

    carrier,onapilotscale.

    16 Austrian Technological Expertise in Transport

  • HYDROGENATED VEGETABLE OIL AND “INNOVATIVE BIODIESEL”

    UnderthenameNextBtL,VTTinFinlandhascollaboratedwitha

    Finnishmineraloilcompanytodevelopahydrogenatingprocess

    toproducehydrocarbonsfromfatsandoilsoriginatingfrom

    plantsandanimals.Forthis,therawmaterialistreatedwith

    hydrogen,undertheinfluenceofametalliccatalyst,atbetween

    250and350°Candatambientpressure.Theprocessproduces

    mainlystraightchainhydrocarbonsintheboilingpointrangeof

    180to350°C,andasabyproductCO2 andwater.Theproduct

    exhibitsfavourabledieselenginecharacteristicsandcanbe

    mixedinanyconcentrationsdesiredwithfossildiesel.Aninitial

    industrialplantwentintooperationattheendof2007inFinland,

    withfurtherplantsplannedinEuropeandtheFarEast.

    Asimilarprocesscanbeappliedinmineraloilrefineries.For

    this,oilsandfatssourcedfromplantsandanimalsare

    processedtogetherwithmineraloilbasedintermediatesand

    hydrogeninexistingpetrochemicalplants.

    TheR&Dworkonbiodieselisconcentratingonoptimising

    processes,e.g.byincreasingtheyieldandtheuseofbyproducts,withparticularimportancebeingattachedtothehighvalueuseofglycerine.Intermsofitsapplication,themainfocus

    isontheselectionoffattyacidspectrawithfavourabledieselenginecharacteristics.

    Thereisacommoninterestinthesearchfornewfuelsandin

    optimisingrawmaterialschains.Thisrequiressocietal,

    ecologicalandeconomicrequirementstobebroughtinto

    harmony.Onehighlypromisingapproachappearstobethe

    cultivationoftheJatrophaplantinariddevelopingcountries.

    FUELS FROM SYNTHESIS GAS

    Lowmoleculargasesaresuitableforsynthesesofalltypes.

    Givenafreechoiceofsynthesisgases,itispossibletoproduce

    awiderangeofproducts,andespeciallyfuelswithaspecificallysoughtcomposition.Synthesisgascanbeobtainedthrough

    thermalgasificationofbiomass.

    Austrianresearchersholdaleadingpositionworldwideinterms

    ofgasificationofbiomass.Inthedemonstrationplantin

    Güssing,researchershavesucceeded–throughresearch

    programmesrangingovermanyyearsandestablishedona

    broadfooting–indevelopingamarketmaturetechnologywhich

    istheenvyofinternationalexpertstheworldover.

    BioSNG,syntheticnaturalgasfrombiomass,canbeproduced

    usingarelativelysimpleprocess.AspartoftheEUProject

    “BioSNG”,ademonstrationplantfortheproductionofsynthetic

    methaneiscurrentlyunderconstructioninGüssing,andsetto

    gointooperationinsummer2008.Theplantcomprisesagas

    purificationsystem,amethanationunittoconvertH2 andCOto

    CH4andH2O,andthegastreatmentplanttobringitupto

    naturalgasquality.Theplantobtainstheproductgasfromthe

    existingbiomasspowerstationandwillproduce100m3/hof

    methaneinnaturalgasquality.Thisistheequivalentofapower

    of1MW.Thegasproducedisusedinanaturalgasfilling

    stationandisbeingtestedinpracticaluse.Duringthepilotscale

    study,a65%levelofefficiencyingasproductionwasachieved.

    Astheresidualheatisusedintheplant,anoverallefficiency

    levelof85%isanticipated.

    Concreteplansforplantsofthistypearealreadyunderwayin

    SwitzerlandandSweden,andinterestisalsocomingfrom

    France,GermanyandAustria.

    Methanolsynthesishasbeencarriedoutonamajorengineering

    scalesince1928.Usingcarbonmonoxide,carbondioxideand

    hydrogenandwiththeaidofcatalystsatrelativelylow

    temperatures,methanolandwaterareformedinanexothermic

    reaction.Methaneandhigherhydrocarbonsareformedin

    secondaryreactions.Todate,methanolfrombiomasshasonly

    beeninvestigatedforreactionkineticsandinthelaboratory,and

    pilotordemonstrationplantshavenotbeenconstructed.>>

    17

  • FischerTropschfuelsynthesiswasdevelopedinGermany

    shortlyaftertheFirstWorldWar.Carbonmonoxideand

    hydrogenareusedassynthesisgas.Thegascanbeproduced

    fromcoal,naturalgasorbiomass.DuringWorldWarII,

    significantquantitiesofFTfuelwereproducedinGermany.Due

    tothefuelembargo,thecompanySASOLinSouthAfricabuilta

    coaloperatedindustrialplantwhichhasbeenrunning

    successfullyfordecades.Itproducesliquidpetroleumgas,

    petrolandheavyfractionswhichareonwardprocessedusing

    petrochemicalprocesses(CtL=coaltoliquid).

    Germanindustryisputtingitsfaithinthe“FromSynfuelto

    Sunfuel”strategy(“VonSynfuelzuSunfuel"),withsynfuel

    referringtofuelsfromfossilsynthesisgases,andsunfuelthose

    producedfromgasificationofbiomass(BtL=biomasstoliquid).

    Thedieselfractionoftheintermediateproducthasoutstanding

    dieselenginecharacteristics.BtLallowsforareductionin

    emissionsofparticles,hydrocarbons,carbonmonoxideand

    nitrogenoxides.TheCHORENIndustriesGmbHisworking

    intensivelyonaBtLprocess.Pilotscaletestinghasbeen

    conductedsuccessfully,andademonstrationplantinFreiberg

    (Germany)isshortlytogointooperation.

    BIO-CNG: NATURAL GAS AND BIOGAS

    Naturalgasiscomposedalmostentirelyofmethane,whichis

    alreadybeingusedinpressurisedcontainersinconsiderable

    quantitiesinnaturalgasvehicles.Infrastructuresforsupplying

    vehiclesarebeingintroduced.Vehiclemanufacturershave

    developednaturalgasvehicles,andfurthermodelswillcome

    ontothemarket.

    Biogascomprisesaround60%methaneand40%carbon

    dioxide,andisproducedfromorganicwasteandagricultural

    biomass(suchasmaizesilage,grassetc.)usinganaerobic

    fermentationinawateryenvironment.Purifiedbiogascanbe

    fedintothenaturalgasgrid,andinfrastructuresfornaturalgas

    vehiclescouldbeused.Austriaissupportingtheintroductionof

    amethanegassystemfortransportusethroughBioCNG

    projects.

    LIQUEFACTION OF SOLID BIOMASSES

    Thehydrothermalupgradingprocess(HTU)developedbyShell

    aimstoreducetheoxygeninbiomassbyreleasingCO2.

    Woodchipsareusedastherawmaterial,anddryingisnot

    necessary.Theprocessoperatesat200bar,andforgood

    reactionsprocessoptimisationsarenecessary.Theproductis

    solidorliquidandsuitableasarawmaterialforfuelproduction

    usingpetrochemicalprocesses.Theworkstodatehavenotled

    toanymorefarreachingimplementation.

    Incatalyticlowpressuredepolymerisation,thesolidbiomassis

    heatedtogetherwithacatalystinaliquidheatingmedium.By

    selectingsuitableprocessconditions(temperature,pressure,

    catalyst),liquidsareproducedwithsimilarcharacteristicsto

    fossilfuels.

    Pyrolysisisthetermusedtodescribetheanaerobic

    carbonisationofbiomass,duringwhichsolid,liquidandgas

    componentsareformed.Pyrolysisproducesaheavy,tarryand

    acidicliquidwithahighwatercontent,ahighcontentofsolids

    (coke,ash)andacalorificvaluesimilartothatofwood.Flash

    pyrolysis,attemperaturesbetween500and800°C,suppliesa

    goodyieldofliquidcomponents.Pyrolysisproductswithahigh

    proportionofcokearetermed“slurry”.Bothproductsarewellsuitedtothermalgasificationtogeneratesynthesisgas.

    18 Austrian Technological Expertise in Transport

  • BIO-HYDROGEN

    Hydrogenasanenergysourceforfuelcelldrivesisbeing

    researchedintensivelyworldwideduetothepossibilityof

    emissionsfreevehicles.Hydrogencanbeproducedinasimilar

    mannertobiogas,usingabioengineeringrouteorthrough

    thermalgasification.Hydrogenbasedtransportsystemsarenot

    expectedearlierthan2030,duetothehighcostofR&Dand

    duetotheneedforentirelynewvehicleandlogisticssystems.

    “WHICH IS THE BEST?”

    Theanswerdependsontheobjectives,theframework

    conditionsandthedecisionsalreadytaken.Asseentoday,the

    followingdevelopmentappearssensible:

    By2020,marketviablesustainablefuelsaresettodominatethe

    scene.Europehascommitteditselftobiodieselfromrapeand

    ethanolfromgrainandsugarbeet.Theargumentsinfavourof

    ethanolarethehigheryieldsperhectare,andforbiodieselthe

    morefavourableenergybalancesheet.TheaimsoftheBiofuel

    Directivecanbeachievedthroughthis,withthelimitingfactors

    beingtheavailablelandareaandthemarketforproteinfeeds.

    NorthAmericaiscommittingtoethanolfrommaize,Brazilto

    ethanolfromsugarcane.

    Theargumentsforbiogasarethehighestyieldsperareaandthe

    simpleprocess,whichisalsosuitableforsmallerplants.Using

    biogasintransportrequiresinvestmentstoexpandthegasgrid,

    topurifythegasandfeeditintothenetwork,andthe

    constructionoffillingstations.Austriaissupportingthe

    expansionofinfrastructureandofmethanegasvehiclefleets

    throughBioCNGprojects.

    After2010,investmentsinnewsustainablefuelsarelikelyto

    showdividends.EuropeistrustingtosyntheticfuelsandNorth

    Americatoethanolfromlignocelluloserawmaterials.Both

    processesbuildoncheapwoodandstrawlikerawmaterials.

    Sincewholeplantsandresidualmaterialssuchasstraware

    used,theavailablelandareascansupplygreatervolumes.

    Successdependsondevelopment,accesstocostfavourable

    rawmaterialsandonthepolicyframework.

    ForEurope,itseemsrealistictoaimforavolumeof10to15%

    oftoday’sfueldemandby2020.Iftheexpectationsinresearch

    anddevelopmentoftransportsystemsaremet,intheperiod

    around2030thechangeoverwillbegintoothertransport

    systems,wheretherequirementwillsimilarlybefor

    sustainability.

    19

  • BIOGASFROMANAEROBICDIGESTIONASVEHICLEFUEL–REQUIREMENTSANDAPPLICATION

    Anaerobicdigestionofagriculturalwasteaswellasother

    organicwastesisawidespreadtechnologyinAustriaand

    Germanyforproducingbiogas.Besidestheusualconversionto

    heatandpower(CHP),upgradingtonaturalgasqualityand

    feedingintothegasgridopensupnewpromisingareasof

    biogasusageasavehiclefuel.Itcombinestheadvantagesof

    decentralizedfuelproductionwiththewellestablished

    infrastructureofthenaturalgasgrid.

    POTENTIAL OF BIOGAS PRODUCTION IN SUSTAINABLE FUEL-BASED BIOREFINERY CONCEPTS

    Todaythechallengeistoincreasethesustainabilityoffeedstock

    productionforfuelsbyusinginnovativesystems,processesand

    technologies.Sustainablelandusestrategiesmustbe

    developedforsupplyofthebiomassfeedstockthatare

    compatiblewiththeclimatic,environmentalandsocioeconomic

    conditionsprevailingineachregion.

    Itisnecessarytopromotethetransitiontowards“second

    generationbiofuels”whilesupportingtheimplementationof

    currentlyavailablesustainablefuels,andfurthertowards

    “biorefinerysystems”whichwillbeproducingfromawider

    rangeoffeedstocks,includingwasteandlignocellulosebiomass

    (LAEUBiofuelsResearchWorkshop,FinalReport,SaoPaulo

    2327.April2007).

    Sustainablefuelbasedbiorefineryconceptsaresystemsin

    whichfood,rawmaterialsforindustry,andenergycanbe

    produced.Theaimofsustainablebiorefineryconceptsisthe

    developmentofintegratedcroprotationsthatsatisfythe

    demandforfoodandfeedstuffs,aswellasproducingraw

    materials(e.g.oil,fat,organicacids)andenergy(e.g.biogasand

    ethanol).

    Combiningavarietyoftechnologiesachievesareductionin

    productioncostsandminimisesuseoffossilenergysources,

    whilstreusingexcessmaterialsandbyproducts.Thusthe

    ecologicalfootprintisminimised.

    Figure1showsthediagramofasustainablefueloriented

    biorefinerysystem.Biogasproductionisakeytechnologyfor

    thesustainableuseofagrarianbiomassasarenewableenergy

    sourcewithinfuelorientedbiorefinerysystems.Biogascanbe

    producedfromawiderangeofenergycrops,animalmanures

    andorganicwastes.Thusitoffersgreatflexibilityandcanbe

    adaptedtothespecificneedsofcontrastinglocationsandfarm

    managements.

    Currently,maize,sunflower,grassandsudangrassarethemost

    commonlyusedenergycrops.Inthenearfuture,biogas

    productionfromenergycropswillincreaseandconsideration

    needstobegiventogrowingenergycropsinversatile,

    sustainablecroprotations.Allactivitiesmustaimatsustainable

    useofthemultifacetedcultivatedlandscape.Inaddition,more

    byproductsfromtheagricultural,foodandenergyindustries

    needtobeintegratedintoaversatilebiogasproduction.

    Onehigherlevelaimintheresearchonbiogasproductionisthe

    developmentofintegratedcroprotationsthatsupplyfoodand

    feed,producerawmaterials(e.g.oil,fat,organicacids)and

    energy(e.g.biogas,RME)andmaintainandfurtherpromotea

    multifacetedcultivatedlandscape.Thisaimcanbeachievedvia

    thefollowingstrategies:

    Foodnonfoodswitch:alternationofcropsfortheproduction

    offood,feed,rawmaterialandenergy

    Cascadeutilisation:differentpartsofthesamecropareused

    fordifferentoptions,e.g.starchfrommaizecornsandbiogas

    fromtheremainingmaizeplant

    Choiceoftheoptimumgenotypeandharvestingtime:e.g.

    energycropsmustproducehighbiomassyieldsandcontain

    optimumnutrientpatterns

    Figure1:Diagramofafuelorientedbiorefinerysystem

    20 Austrian Technological Expertise in Transport

  • Thepotentialofbiogasproductionwillbegreaterthanassumed

    sofarwhencalculationsarebasedonsustainablesystems

    ratherthanonsinglecropdigestion.

    Thepossibilitytoproducebiogasfrombiogenouslocalbyproducts/residualproductsinAustria,attheleveloffivetoten

    percentoftotalvolumesofnaturalgas,andtomakeuseofit

    viatheexistinggasgrid,isalreadyinplace.Itfollowsthat

    furtherplantssuchasthoseinBrucka.d.LeithaandPucking

    willrapidlybeputinplace(notleastduetotheirhighenergy

    efficiency).BioCNG(withatleasta20%shareofbiogas)can

    thenbeexploitedtofurtherenhancethepositivecharacteristics

    ofCNG(20%reductioninCO2,noenginerelatedparticulates,

    noNOx,etc.)toachievegreaterCO2 reductions.

    Particularlyintheareaoftransport,whereCO2 emissionsin

    Austriahaveincreasedby86%since1990,theexistingpotential

    toachievereductionsneedstobeusedurgently.Biogasisthe

    onlysecondgenerationfuelavailabletoday.AchievingtheEU

    targets(20%CO2 by2020)requiresCNGandbioCNGnow.

    firingdata limits unitheatingvalue 10,7bis12,8 kWh/m3

    Wobbe–Index 13,3bis15,7 kWh/m3

    relativedensity 0,55–0,65

    componentshydrocarbons:pointofcondensation Max.0°atoperatingpressure [°C]

    water:pointofcondensation Max.8°Cat40bar [°C]

    Table1:qualityrequirementsofnaturalgasinAustria(ÖVGWG31)

    Figure2:Productioncosts(ct/kWh)ofinjectedbiogas

    QUALITY REQUIREMENTS FOR BIOGAS AS A VEHICLE FUEL BY DISTRIBUTION OVER THE GAS GRID

    Therequirementsofbiogasforgasgridinjectionaregivenin

    Table1,whichisthegeneralgasqualityregulationfollowingthe

    ÖVGWruleG31(ÖVGW–Richtlinie„ErdgasinÖsterreich.

    RichtlinieG31(Gasbeschaffenheit)“,ÖsterreichischerVerein

    fürdasGasundWasserfach,2001).Forthespecialpurposeof

    biogasinjectiontheÖVGWruleG33hasbeenpublishedwhich

    definestheadditionalrequirementsforbiogas(ÖVGW–

    Richtlinie„RegenerativeGase–Biogas.RichtlinieG33“,

    ÖsterreichischerVereinfürdasGasundWasserfach,2006).

    FollowingtheÖVGWruleG33biogashastoconsistofmore

    than96mol%methane.

    Theremovalofcarbondioxideandsulphuriccompoundsareof

    majorinterestinbiogasupgradingconnectedtospecial

    technologies.Thetotalcostsforthesupplyofupgradedbiogas

    intothenaturalgasgridconsistofbiogasproduction,biogas

    conditioning,compressionandinjection.Figure2

    showstheupgradingofbiogasisamajorcostitem

    ofabout1–5ct/kWhdependingonthesizeofthe

    plantandthetechnologyselected.Dependingonthe

    substrateandscaleoftheplant,overallcostsforthe

    injectionofbiogaspresentlyarebetween5and16

    ct/kWh,withthelowestvaluesbeingcalculatedfor

    biogasfromwasteproductsandplantcapacitiesof

    500Nm3/hinthisstudy.Currentprojectstargeta

    costof4ct/kWhforupgradedbiogasfrom

    agriculturalbyproducts.

    Legend:

    PSA Pressureswingadsorption

    DWW Waterscrubber

    BG Biogasplant

    50500 Nm/hrawbiogasproduction

    G Substrate:Manure+10%energyplants

    N Substrate:Energyplants+10%manure

    B Substrate:Separatecollectedorganicwaste

    Colorsofspecificcosts:

    Lightblue Substrates

    Red Biogasconversion

    Green Upgradingcosts(waterscrubber)

    Grey Upgradingcosts(PSA)

    Darkblue Injectionandnetworkaccessfee

    Orange Totalcosts(caseorganicwaste)

    21

  • BIOGAS UPGRADING

    Basedontherequirementsoftheguidelinesandthenaturalgas

    operators,thecorrespondingpurificationtechnologyhastobe

    chosen.Followingcomponentshavetobepurifiedtoreachthe

    claimedlimitvalues:hydrogensulphide(H2S),ammonia(NH3),

    water(H2O),siloxanes,carbondioxide(CO2).

    ThecommoncommercialH2Spurifyingmethodsare

    Biotricklingfilterorbioscrubber(biologicaloxidation)

    Additionofferricchloridetothefermentationsubstrate

    (sulphideprecipitation)

    Impregnatedactivatedcarbon(catalyticoxidation)

    Ironoxideonsteelwool(chemicalsorption)

    Ironoxidepellets(chemicalsorption)

    Scrubberwithwater,organicsolventorcausticsoda

    (absorption)

    ThemostcommonmethodsfortheremovalofH2Oare

    Cooling(condensation)

    Molecularsieve(adsorption)

    Polarsolvent–glycol(absorption)

    Themostcommonmethodsfortheremovalofsiloxanesare

    Gasdryingsystemsandadsorptiononactivatedcarbon

    Adsorptiononpolymorphicporousgraphite

    AbsorptioninSelexol®

    • CO2 scrubber

    ThemostcommonmethodsfortheremovalofCO2 are

    Scrubber(absorption)

    Pressureswingadsorption(adsorption)

    Membraneprocess(permeation)

    UTILISATION OF BIOGAS AS A VEHICLE FUEL

    Recentdevelopmentsweredirectedtowardstheutilizationof

    mixturesofnaturalgasandbiogenousmethaneasavehicle

    fuel.Forthispurposetheestablishmentoffillingstationsis

    directlyconnectedtothefieldapplicationofsuchafuel.

    Currentlyabout100publicnaturalgasfillingstationsarein

    operationinAustria,withthegoaltoincreasethenumber

    to200until2010.

    22 Austrian Technological Expertise in Transport

  • EMISSIONS FROM VEHICLES RUNNING ON (BIO-)METHANE COMPARED TO PETROL AND DIESEL

    Comparingtheutilizationofnaturalgasasavehiclefuelagainst

    petrolanddiesel,someadvantagecanbeshownovertheliquid

    hydrocarbonsintermsofemissionreduction.Comparedtoa

    petroldrivenpassengercarfollowingtheEURO4standardupto

    80%lesscarbonmonoxide(CO)

    20%lesscarbondioxide(CO2)

    80%lessnonmethanehydrocarbons(NMHC)

    20%lowerglobalwarmingpotentialand40%lowerozone

    generationpotential

    ComparedtoadieseldrivenpassengercarfollowingtheEURO

    4standardequippedwithaparticlefilterupto

    10%lesscarbondioxide(CO2)

    90%lessnitricoxide(NOx)

    60%lessnonmethanehydrocarbons(NMHC)

    practicallynoparticleemissions

    10%lowerglobalwarmingpotentialand80%lowerozone

    generationpotential

    Employingbiogenousmethaneasanaturalgassubstitute,the

    emissionsofcarbondioxidecanberegardedaslowerbecause

    ofthebiogenicoriginofthesubstratesforbiogasproduction.

    FollowingtheGEMIS–modelforCO2 calculationforthewhole

    biogasproductionandutilizationchain,aCO2 emission

    equivalentof30g/pkm(grammesperpassengerkilometre)has

    beencalculatedforamodelscenario,i.e.decentralizedbiogas

    productionfrommanureandinjectionintothepipeline.In

    comparisonthedieselpassengercarshowsemissionsof

    approximately120g/pkm.Otheremissionsaresignificantly

    loweraswell:SO2:0.03–0.05g/pkm(diesel:0.07g/pkm),NOx:

    0.09–0.24(diesel:0.43),particles:0.010.03(diesel:0.04).

    However,usingothersubstrateforbiogasproduction(energy

    crops)andassuminganonoptimallocationofthebiogasplant

    intermsoflongtransportationdistances(50km),thescenarios

    showthatthebenefitofbiogasisstronglydecreased.Inthese

    casesCO2 equivalentsbetweenca.60and100g/pkmhaveto

    betakenintoconsideration.

    23

    http:0.01-0.03

  • COMPRESSEDNATURALGAS–CNG

    TheEuropeanCommunityaimsatreducingCO2 emissionsand

    dependencyonoilbyspecifyingthatalternativefuelsmust

    powermorethan20%oftrafficby2020.Sustainablefuels,such

    asbiodiesel,ethanolorbiomassbasedsyntheticfuelsrepresent

    onepartofthesolution,butthereisalsothefossilfuels

    segment,wherenaturalgas(CH4;methane)issettocontribute

    atotalof10%.

    Naturalgasconsistsof98%methaneandisdeliveredasafossil

    resourceviapipeline(gaseous)orship(liquid).Methaneisahighqualityfuel,duetothesecondbestH:Cratioofallalternative

    fuels,andisthusaforerunnerofapossiblehydrogentechnology

    ofthefuture.Likehydrogen,itcannotbeliquefiedatambient

    temperaturesandmustthereforebestoredunderhighpressure

    above200bars.Thiscompressionisdoneatthefuellingstation

    andtheproductisafterwardsreferredtoasCNG(compressed

    naturalgas).Althoughnorefiningorothertreatmentsare

    needed,theenergyoutputofCNGisabout90%oftheprimary

    energyofnaturalgas;10–13%ofitsenergyisusedasinputfor

    compression.HandlingofCNGisnoncritical,duetomethane’s

    nontoxicity,itshighignitiontemperatureof600°C(diesel230°C;

    petrol260°C)andaddedodoursubstanceswhichmakeit

    possibletodetectsmallconcentrationsbelowthevolumetric

    ignitionlimit(below0.01%).

    Methane’shighpercentageofmolecularhydrogenresultsina

    reductionofCO2 emissionsof20%comparedwithpetrol,and

    10%comparedwithdieselfuel.Enginedevelopmentsexploiting

    thehighOctaneNumberofmethaneallowafurtherreductionof

    CO2 emissions.Furthermorelocalemissionofpollutantsisupto

    90%lowercomparedtodieselengines.Ifblendingofnatural

    gaswithbiogasistakenintoaccount,onepartofthefossilfuel

    canbesubstitutedandtheCO2 emissionscomingfromnonsustainablemethanecantherebybefurtherreduced.

    Supplyingtheexistingnaturalgasgridwithbiogas,straightfrom

    thepurgationandqualityassuranceprocesses,isstateoftheart.InAustriatherearetwoplantsforbiogasproductionand

    feedinintothenaturalgasgrid,fundedbytheFederalMinistry

    forTransport,InnovationandTechnology(BMVIT)asLighthouse

    projects.Theymakeabout900,000m3(Brucka.d.Leitha)and

    40,000m3(Pucking)ofbiogasavailableeveryyear,inaquality

    matchingthatofnaturalgas.

    However,evenaftercompressionto200bar,thelowvolumetric

    andgravimetricstoragedensityisamajordisadvantageofCNG.

    Duetoitslowvolumetricenergydensity(6MJ/l),CNGrequires

    roughlyfourtimesthestoragespaceofpetrol(26MJ/l)forthe

    sameamountofenergy.Thisimpactsonthecostsofthe

    storagematerials.Furthermore,standardtechnologyforhigh

    pressurestorage(steel)isheavyandrestrictedtosimpleshapes

    (cylindrical),whichresultinanonefficientpackageintermsof

    today’svehicleplatformconcepts.Modernlightweightvessels

    (carboncomposite)wouldbemuchlighterandofferthe

    possibilityoffreeshaping,butareexpensive.Duetothelow

    gravimetricenergydensityofCNG(11MJ/kg)comparedtothat

    ofpetrol(31MJ/kg),theweightofstoredCNGisaboutthree

    timestheweightofpetrolforthesameamountofenergy.

    ThesedisadvantagesarenotuniquetoCNGtechnology;

    hydrogentechnologyandbatterysystemssufferfromthesame

    problems.

    TodayCNGhasalowerpricethandieselonanequalenergy

    basis.InthelasttwoyearsthenumberofCNGfuellingstations

    inAustriahasbeentripledto100,andissettodoubleagainby

    2010.Todate,therearemorethan1000CNGvehiclesonthe

    road,consumingabout2millionm3CNGperyear.Asthemarket

    maturityofCNGtechnologyisalreadyreached,thenumbersof

    CNGvehiclesisexpectedtorise.Therearealsonewvehicle

    conceptsliketheMILA (figure1)andtheMILAalpin(figure2)

    beingpresentedtothepublic.ThenextstepforCNGvehicles

    willbeaswitchfrombivalenttomonovalentoperation.Thiswill

    happeninacoordinatedmoveasthenumberoffuellingstations

    andvehiclerangeincreases.

    Toensurepropermarketpenetration,furthermilestones(like

    creatingaconsistenttaxregime,raisingthenumberoffuel

    stationsabove200andincreasingthedrivingrangebeyond600

    km)needtobereached.Animportantstepinthisjourneyhas

    alreadybeenaccomplishedbythe'CNG600’project,fundedby

    theBMVIT,whichhasdemonstratedtheconceptofa

    monovalentCNGvehiclewithadrivingrangeof600kmby

    manufacturingaprototype.

    24 Austrian Technological Expertise in Transport

  • Themonovalentuseofmethanemeansthattheenginecanbe

    optimallyadaptedtothegivenframeworkconditions,whichis

    notthecaseinbivalentuse.Itmakesitpossibletodevelopa

    combustionprocessfordirectgasinjection,underwhichthe

    efficiencyofagasOttoenginecanbeimprovedbyafurther1015%,throughacombinationofstochiometricandleanrunning

    inthecharacteristicareasrelevanttothedrivingcycle,asis

    beingimplementedbyAVL.ThismeansthatspecificCO2

    emissionsvaluescanbeachievedwhicharebelowthosefor

    dieselengines.

    Inaddition,itisprovingpossibletoexploitthehighknockrating

    ofthegasincombinationwiththelatestcombustionchamber

    shapestoincreasethepowerdensity,withtheresultthat

    averageenginepressuresingasoperationof>25barare

    possiblewithturbocharging.Inturn,thispermitsusing

    directioninjectiongasenginesofthiskindinhybriddrives,

    resultinginafurtherreductioninconsumptionthroughan

    adjustment(reduction)inenginepistoncapacity(“downsizing”)

    combinedwithpartialelectrificationofthedrive.Ithasbeen

    possibletodemonstrate,throughappropriatedrivingcycle

    simulations,thatusingdrivesystemsofthistypetheCO2 output

    perkmcanbesqueezed,evenonvehiclesinthePassatclass

    (15001600kg)tovalues<80g.

    Finally,ifbiogasadmixesaretakenintoaccount(e.g.1015%

    “virtualbiogas”fromsustainableproduction,withoutcompeting

    withthefoodandfeedindustrywithintheEU),itappearsthat

    netCO2 emissionsfrommidclassvehicles(15001600kg

    unladenweight)oftheorderof70g/kmarefeasible.

    Figure1–MILA

    Figure2–MILAalpin

    Methanetechnologywillfocusonthefollowingitemswhich

    maycomeintoserialproductioninthenearfuture:

    Costandweightefficientpressurevesselsincomposite

    technology,featuringhighsynergieswithhighpressure

    hydrogenstorage

    Innovativemethanefuelmanagementsystemstoassure

    powertrainperformanceandtointegrateinactualvehicles

    architectureanddiagnosis

    Integrated,assembledandtestedmethanefuelmodules

    includingemergencypetroltank(figure3)andaccuratefuel

    gaugerelatingtostoredenergy

    Newplatformconceptsconsideringthespecificgeometric

    andinterfacerequirementsformethane,aswellforother

    alternativestoragesystemssuchashydrogenandbattery

    OPPORTUNITIES AND CHALLENGES:

    Pros:

    Technologyavailablenow

    Lowcostpathtosimultaneousreductionofgreenhousegas

    andconventionalemissions

    Goodeconomyfortheenduser

    Cons:

    Lownumberoffuellingstations,althoughgrowingfast

    Fuelstorage

    Figure3–

    Methanefuelmodulesincludingemergencypetroltank

    25

  • LIQUEFIEDPETROLEUMGAS–LPG

    Thecommonlyusednameforautomotiveliquefiedpetroleum

    gas(LPG)isautogas.LPGisamixtureofhydrocarbongases

    usedasatransportfuel.Itiscomposedmainlyofpropaneand

    butane,withminoramountsofpropyleneandbutylene.The

    exactcompositiondependsonclimateconditionsaswellas

    enginemodifications.Generallymorebutaneisusedinsummer,

    andinwintermorepropane.Themostcommonblendis60%

    propaneand40%butanegas.AsLPGisacolourlessand

    nonodorousgas,anodorantsuchasethanethiolisaddedin

    ordertodetectleakseasily.TheinternationalstandardforLPG

    fuelisEN589.

    LPGisformedontheonehandduringrefiningofcrudeoil,and

    ontheotherhandoccursnaturallyingasandoilfields.

    AtambienttemperatureandpressureLPGisingaseousstate.

    LPGissuppliedinpressurisedsteelbottles.LPGchangesfrom

    thegaseousphasetoliquidphaseatamoderatepressureof

    about8bar,dependingonthegascompositionand

    temperature;e.g.approximately2.2barforpurebutaneat20°C,

    andapproximately22barforpurepropaneat55°C.The

    followingtableliststhemostimportantpropertiesofLPG.

    ThedensityofLPGishigherthanair,andthegastherefore

    tendstosettleinlowspots,suchasbasements.This

    circumstancehastobetakenintoaccountwhenplanningfilling

    stationsandparkinggarages.

    Thesamefuelisalsousedinstationaryapplicationsinsimilar

    gasenginesforpowergeneration.Lowerexhaustemissionsis

    oneofthereasonswhyLPGisusedasatransportfuel.In

    particular,itreducesCO2 emissionsbyaround10%(measured

    inrealbusfleetoperationonLPGcitybusesinViennarunby

    “WienerLinien”)comparedtodieselbuses,becauseofthe

    betterH:Cratio.ThereductioninNOx emissionsby30%,with

    almostnoparticulateemissionsaswellasnounburned

    hydrocarbonemissions,makeLPGattractiveasafuelindensely

    populatedareaswithbadairquality.

    Properties Propane ButaneMolecularWeight 44.09 58.12

    IgnitionPoint 460°C–580°C 410°C–550°C

    BoilingPoint 42.1°C 0.5°C

    FreezingPoint 187.7°C 138.3°C

    GrossEnergyMJ/L(MJ/kg)

    perunitvolume 25.5(50.39) 28.7(49.57)

    Density@15°Ckg/L 0.510 0.580

    Litrespertonne 1960 1720

    Motoroctanenumber

    (MON)–EN589 95.4 89

    Researchoctanenumber

    (RON)–ASTM 111 94.2

    Table1Propertiesofpropaneandbutane(source:www.lpgaustralia.com)

    26 Austrian Technological Expertise in Transport

  • LPGisthemostwidelyusedalternativetransportfuel,powering

    morethan9millionvehiclesworldwideinover38countries.Its

    environmentalbenefits,practicaladvantagesandoverall

    effectivenesshavealreadybeenwidelydemonstrated.InAustria

    thesituationisslightlydifferent.ThelargestAustriancitybus

    fleetinViennaisrunningover500LPGbuses.LPGasa

    transportfueloffersbenefitsintermsofcostsandemissionsfor

    thefleetoperator,andoffersenvironmentalbenefitsfor

    residents.Incontrasttothat,onlyafurther165busesanda

    singleselfpropelledunitusingLPGastransportfuelare

    licensedintherestofAustria,accordingtofiguresproducedby

    StatisticsAustria(2006).Instrongcontrasttoothercountries

    suchasItalyorAustralia,therearenoLPGpassengercars

    licensedinAustria.

    ThisexplainsthesmallnumberofLPGfillingstationsinAustria

    andclosetotheAustrianborder(12in2007).

    Thefollowinglistgivesagoodoverviewoftheadvantagesand

    disadvantagesofLPG,asseenfromtheviewpointofAustria’s

    largestLPGfleetoperator(source:“DerBetriebmitFlüssiggas

    alsAlternativezumDieselantrieb–©WienerLinien”)

    OPPORTUNITIES AND CHALLENGES:

    Pros:

    Lowoperatingcostsduetolowpurchasecostandexemption

    frompetroleumtax

    Loweremissionsthandieselbuses

    Noneedforadditives,duetothehighoctanenumber,awell

    definedmixturepreparation,andacombustionprocesswith

    almostnoresidues

    Lowernoiseemissionsduetoasmoothcombustionprocess,

    andthereforelongerenginelifetimes

    Lowerstressonthemotoroil,giventheabsenceof

    particulateemissionsandlackofdilutionwiththefuelthat

    wouldresultinlowerviscosity

    Cons:

    Highercostforthegasengineincomparisonwithadiesel

    engine,andhighermaintenancecosts

    Increasedweightofthevehicle,andhigherspacedemandfor

    thestoragetanks

    Additionalinspectionsofpressurisedstoragetanksonthe

    vehicleandinthefuellingstations

    Costsforadaptingthegarages

    Takingeverythingintoaccount,onecansaythatthelowfuel

    costsandsignificantloweremissionsarethemainadvantages

    ofLPGfuel.ThelimitednumberoffuellingstationsinAustriais

    ahurdletobeovercomeforsuccessfulmarketintroductionof

    LPGpassengercars.LPGisthereforefacinga“chickenandegg

    problem”similartoCNGandhydrogenfuel,wherethefuel

    industryiswaitingforalargernumberofvehiclesonthemarket

    andOEMsarewaitingforthefuellinginfrastructure.

    Vehiclesconsumemorethan16milliontonnesofLPG

    worldwideperyear,theequivalentofaround8%ofglobalLPG

    consumption.LPGisnotanewalternativefuelbutoffers

    advantagesintermsofsignificantlyloweremissionsandan

    attractivecoststructure,especiallyforuseinfleetoperations.

    27

  • HYDROGEN–CARBONFREEFUEL

    Asacarbonfreeenergycarrier,hydrogenhasgainedattentionin

    researchactivitiesworldwide.Inprinciple,hydrogencanbe

    producedfromrenewableenergysources.Combustionin

    enginesresultsinverylowemissionsandtheconversioninfuel

    cellstakesplacewithoutanyemissions.Thefirstresearch

    centreforhydrogeninAustriahasbeeninoperationonthe

    premisesofGrazUniversityofTechnologysince2005(Figure1)

    Figure1:HyCentAfacility(HydrogenCenterAustria)

    PRODUCTION

    Theamountofhydrogenproducedgloballyis600billionNm3 per

    year.40%ofproductioncomesfromindustrialprocesses

    wherehydrogenisabyproduct.Reformationoffossil

    hydrocarbonsiswidelyusedforthelargescaleproductionofthe

    remaining60%.Themostcosteffectiveprocessissteamreformingofshortchainhydrocarbonssuchasmethane.

    Efficiencyofupto80%canbeachieved.Naturalgas,water,

    andenergyareused,theenergycomingfromthenaturalgas.

    However,asthesteamreformingprocessisbasedonfossil

    hydrocarbons,itproducesCO2.

    Theproductionofhydrogenfromwaterusingelectrolysisis

    emissionfreeiftheelectricityrequiredisproducedfrom

    renewableenergysourcessuchaswind,waterorsolarenergy.

    Inelectrolysis,efficienciesofupto75%canbeachieved.

    Furthermorethebyproductsoxygenandheatcanbeused.

    PHYSICAL AND CHEMICAL PROPERTIES

    Hydrogenisanodourlessandcolourlessgaswithadensity

    approx.14timeslowerthanair.Thefollowingtablelistssome

    propertiesofhydrogen.

    Property Liquidphase: Gasphase: Compressedgas:(1bar,250°C) (1bar,0°C) (350bar,0°C)

    Density 70.8kg/m3 0.09kg/m3 23.5kg/m3

    Gravimetriccalorificvalue 120MJ/kg,33.33kWh/kg

    Volumetriccalorificvalue 8.5MJ/dm3 0.01MJ/dm3 2.82MJ/dm3

    2.36kWh/dm3 0.003kWh/dm3 0.78kWh/dm3

    Mixtureswithair:Lowerexplosionlimit 4Vol%H2 (λ =10.1)

    Upperexplosionlimit 75.6Vol%H2 (λ =0.13)

    Ignitiontemperature 585°C

    Min.ignitionenergy 0.017mJ(λ =1)

    Max.laminarflamevelocity upto3m/s

    Adiabatecombustiontemperature ca.2100°C

    WobbeIndex 48.7MJ/Nm3

    28 Austrian Technological Expertise in Transport

  • MARKET PENETRATION AND MARKET POTENTIAL

    Forecologicalreasonsandforreasonsofsecurityofenergy

    supply,midtermtolongtermhydrogenhasahighmarket

    potentialinthefieldsofenergyandvehicleengineering.For

    commercialreasons,however,highmarketpenetrationcannot

    beexpectedinthenearfuture.

    Giventhelackoflocalemissions,aprimarytargetforthe

    introductionofhydrogentechnologiesisthepublictransport

    companies.Vehicleandfillingstationinfrastructuresare

    currentlybecomingestablishedacrossEurope,andare

    supportedbyavarietyofEUprojects(e.g.HyWays,

    HyFLEET:CUTE,Roads2Hy,etc.).

    Inenergyengineeringtoo,hydrogenapplicationscanbefound

    innicheareasatthemoment.Toguaranteefuturesupplyof

    energy,itisnecessarytopromotealternativeenergysources

    worldwide.Inthiscontext,hydrogencanbeusedasenergy

    storagefortheexcessenergyproducedbyrenewableenergy

    sourcesduringpeakproduction.Thestoredhydrogencanbe

    convertedbackintoelectricityorcombustedininternal

    combustionenginesorfuelcells.

    Besidesusinghydrogeninfuelcellsandinternalcombustion

    engines,itscombustioninturbinesisofinterest.

    STORAGE

    Hydrogenisstoredascompressedgas,asliquidatverylow

    temperaturesorinphysicalorchemicalcompounds.Forstorage

    anddistributionoflargequantities,theliquidformisfavoured

    becauseofthehigherenergydensity.Forautomotive

    applications,storageascompressedgaswithpressures

    between350barand750barisalsowidelyused.Formobile

    applications,storageincompoundssuchasmethaneisafurther

    possibility.

    OPPORTUNITIES AND CHALLENGES:

    Pros:

    Carbonfreeenergycarrierwhichcanbeproducedfroma

    varietyofenergysources

    Renewableenergycycleandenvironmentallyfriendlyif

    electrolysisandgreenenergyisused(e.g.wind,wateror

    solarenergy)

    Verylowemissionsincombustionenginesandnoemissions

    infuelcells

    Cons:

    Currentlyeconomicallynotcompetitivewithfossilfuels

    Hightechnicalstandardsforinfrastructureandapplications

    Lowacceptanceofgaseousenergycarriers

    Atpresentanumberoftechnicalandeconomicalchallengesstill

    havetobemetconcerningproduction,distributionand

    applicationofhydrogen.Neverthelessitisexpectedthatmidtermtolongtermhydrogenwillplayanimportantroleasenergy

    carrier.

    Anuptodatesurveycoveringallaspectsofhydrogencanbe

    foundinthereferencebook“Wasserstoffinder

    Fahrzeugtechnik”byH.EichlsederandM.Klellpublished2008

    byVieweg+Teubner.

    29

  • ELECTRICALENERGYASFUTUREVEHICLEFUEL

    Duetotheconstantlyincreasingmarketofhybridvehicles

    electricalenergygainsanewsignificanceasafuel,especially

    withregardtoitspotentialforrealisingenergyefficientvehicles

    withreducedCO2 emissions.Thekeytosustainableelectric

    mobilityareappropriateenergystorages,includinga

    correspondingcharginginfrastructureandtheprovisionof

    electricalenergyfromrenewablesources.

    VEHICLE CONCEPTS (EV, HEV, PLUG-IN)

    Giventhediverselegal,social,ecologicalandeconomic

    requirementsplacedonthevehiclesoftomorrow,hybridelectric

    vehicles(HEV)arewidelyseenasapromisingvehicleconcept

    andbythatinvestigatedintensively.Thecombinationofa

    traditionalinternalcombustionenginewithanelectricaldrive

    opensupabroadrangeofvehicleconcepts,whichvaryinterms

    ofthedegreeofhybridisationorelectrification(Figure1).The

    degreeofelectrificationcanbasicallybedefinedbythesizeof

    theenergystorage,whichthereforeconstitutesakey

    componentofthevehicle.

    ENERGY STORAGE SYSTEMS AS THE MOST IMPORTANT COMPONENT

    Increasingelectrificationisonlypossibleduetoimprovedenergy

    storages.Inthelastyears,nickelmetalhydrideandespecially

    newlithiumioncellshaveenabledthedevelopmentofnew

    batterieswiththenecessaryenergydensityforHEVandEV

    applications(Figure2).

    Whilstfromtheengineeringpointofviewthecellsarealready

    largelysuitableforseriesapplications,thereisstillimprovement

    potentialonthesystemlevelespeciallyintermsofcost

    reductionsandimprovedimplementationsofsafetyconcepts

    (e.g.relays,fuses,etc.).Forrealizationofefficientandwellperformingvehiclesapplicationspecificselectionoftheenergy

    storageisessential.Comprehensivesimulationsarerequiredto

    selecttheoptimalbatterytechnologyanddesignefficient

    energystoragesystems(energyandpowerdensity,energy

    management,thermalmanagement,etc.).

    Figure2:

    Estimatedperformanceincreasefordifferentbatterytechnologies(energydensity)

    MildHEV

    Startstop

    Noelectricdrive

    FullHEV

    Lowelectric

    range

    (fewkm)

    Plug-inHEV

    Increasederange

    duetoexternal

    batterycharging

    EV

    Pure

    electricdrive

    EVwithRangeExtender

    Edrivedueto

    internalbattery

    ChargingbasedonICE,

    fuelcell,etc.

    Figure1:DevelopmentpathHybridvehicle(HEV)–Electricvehicle(EV)

    30 Austrian Technological Expertise in Transport

  • ADVANTAGES AND DISADVANTAGES OF ELECTRICAL ENERGY AS A FUEL

    Inthepublicmind,usingelectricalenergyforfuelisalways

    associatedwiththedisadvantageoflimitedrange,which

    howeverisaninherentsystemcharacteristicofanyvehicle.

    Bycontrast,therealdisadvantagescurrentlyarestillrelatedto

    thecosts.Therapidadvancesinbatteries,bothintermsofthe

    specificenergycontentandcosts,showthatelectricalenergy

    isbecomingincreasinglymorecompetitiveasanalternativefuel.

    Thisisalsoreinforcedbythefactthattheenergyforthese

    vehiclescanbesuppliedCO2 freeorCO2 neutrally(usingPV,

    hydroelectric,orwindpower).

    (CHARGING) INFRASTRUCTURE

    Thepossibilityofprovidingasuitableinfrastructurefor

    alternativevehiclesconstitutesakeypreconditionforbroad

    marketintroductionofthesetechnologies.Thecostsof

    developingaviableinfrastructure,andifrequiredthesupply

    logistics,arecriticalastowhetheranewtechnologycanbe

    established.Akeyadvantageforthedevelopmentofanelectric

    charginginfrastructureisthefactthatinAustriapracticallyevery

    homehasanelectricitysupply.Butindevelopingan

    infrastructureofthiskind,certainframeworkconditionsneedto

    beconsidered,suchastheconnectedpowerrequiredtocharge

    anelectricvehicleinanacceptabletime.Electricvehicleswith

    anenergystorageof2030kWhrequireaconnectedpowerof

    2030kWtochargethevehicleinonehour.Connectedpowerat

    thislevelisnotavailableeverywhere.Inadditiontheloadonthe

    electricitynetworkshastobetakenintoaccount.Thisindicates

    thatdifferentconceptsneedtobepursuedindevelopinga

    suitablecharginginfrastructure.Atthesametime,giventhe

    easeoftechnicalimplementation,adensenetworkcanbe

    establishedrelativelycostefficiently.

    PROVIDING THE ELECTRICAL ENERGY

    Animportantfactorintheintroductionofanynewfuel,

    alongsidetherequisiteinfrastructure,isits“production“or

    supply.PostulatingaCO2freeelectricalenergysupplyrequires

    theusageofrenewable,likephotovoltaic(PV),hydroelectric

    andwindpower.TheenergydemandforaSMARTclasselectric

    vehiclecanbeprovidedbyaPVunitwithabout14m2(basis

    forthecalculation:approx.10kWh/100kmandabout15,000

    km/year).FortheentireAustrianvehiclefleet(excludingtrucks),

    currentlytotallingaround4millionvehicles,thiswould

    correspondtoarequiredareaofabout5.6km2.

    Atthesametime,theinstalledpowerofPVplantsisrising

    continuously.InGermany,thetotalenergyproducedusing

    photovoltaicisalreadyaround3000GWh(=energyequivalent

    ofabout2millionvehicles).In2007,anadditional1100

    MWPEAKofPVunitswasinstalledinGermany(=600,000

    vehicles).Thisshowsthatthepotentialtopowerelectric

    vehiclesusingPVisrelativelyhigh.Atthesametime,however,

    thegridcapacityandmanagementhastobetakenintoaccount

    tocopewiththeloadsfromrenewableenergysourcessuchas

    PVorwindenergy.Asystemicanalysis,fromtheenergysupply

    tothevehicle,isrequiredinordertoevaluatevariousscenarios.

    MARKET PENETRATION AND MARKET POTENTIAL

    Theassertivenessofnewtechnologiesisdeterminedbyawide

    rangeofinfluencingfactors.Theseincludelegalframework

    conditions(CO2 emissionslimitsetc.),alongsidefactorssuchas

    operatingcostsorprocurementcosts.Particularlyintermsof

    operatingcosts,electricvehiclesofferamajorcostadvantage.

    Acomparisonshowsthatwithoperatingcostsofabout€ 225

    peryearforanelectricvehicle,aconventionalvehiclewould

    needtoachieveafuelconsumptionofaround1.25litresper

    100kmtomatchthis.

    Nevertheless,customeracceptanceplaysthemostimportant

    partinassessinganyvehicle.Thisissignificantlyinfluencedby

    factorssuchasdesign,safetyandperformance.Newconcepts,

    suchastheTeslaRoadster,haveimportantimpactinthis

    contextandarecontributingsignificantlytostrengtheningthe

    marketpositioningofelectricvehicles.

    31

  • TRENDSINENGINEDEVELOPMENT

    OTTO ENGINE

    TheOttoenginehasthelowestemissionstoday.The

    disadvantageisitsunfavourablepartloadefficiencyleveland

    thustheassociatedhighconsumption.Approachestooptimise

    theenginearewideranging:downsizingwithsupercharging,

    tieredengineoperationunderpartload,loaddilution,variable

    valvecontrolandcylindercontrol.

    Developmenteffortsareprimarilybeingdirectedtowardsthe

    followingefficientsolutions:

    Directinjectionwithhomogeneousoperationand

    supercharging

    Directinjectionwithvariablemixandthuspossiblelean

    operation:theadvantageofappealingreductionsinfuel

    consumptionandCO2 ofaround20%iscounterbalancedby

    theelaborateNOx exhaustgasaftertreatment.

    Newignitionsystemsarealsoindevelopment:

    Laserignition:thisallowsforreliableignitionwithafree

    choiceofignitionpoint–appliedonhighleanconceptsor

    highEGRrateconcepts

    Homogeneouscombustionprocesses(knownasHCCIorCAI)

    pointstillfurtherintothefuture:Theymakeeffective

    reductionsinconsumptionandNOx achievablethroughultraleanrunning.However,useisonlysuitableforlowload

    conditions;andafurtheraspectisanincreaseinhydrocarbons

    andCOemissionsandthecomplexityinvolvedinapplications

    withnonstationaryoperation.

    GAS-OTTO ENGINE

    Fundamentally,thegasOttoengineisverysimilartothe

    conventionalpetrolengine.However,thehighknockrating

    exhibitedbythegasallowsforhighercompressionratiosand

    thusimprovedthermodynamicefficiencylevels.The

    disadvantageisthegreaterdifficultyinconvertingthenoncombustedmethane,duetoitshighchemicalstability.Witha

    viewtoCO2 reduction,thisenginetypeisofparticularinterest,

    sincethehighproportionofhydrogeninthefuelmeansthat

    around25%lessCO2/kmisemittedthanwithpetrol

    combustion.

    Aparticularadvantageisthattheseenginescansimilarlybe

    realisedas:

    Directinjectionwithhomogeneousoperationand

    supercharging

    Directinjectionwithvariablemixandthuspossiblelean

    operation.Tobeabletoutilisetheadvantagesofhighknock

    ratinginachievingsuperchargingandhighcompression

    ratios,however,itwillbenecessarytoequipthiskindof

    petrolenginetocopewithpeakpressuresofupto150bar.

    32 Austrian Technological Expertise in Transport

  • DIESEL ENGINE

    Highefficiencyandthusthelowestconsumptionathightorque

    (usingsupercharging)justifythecurrenttriumphantmarchand

    increasingmarketshareforthedieselengine.Addressingits

    disadvantages,suchasthelackofNOx aftertreatmentandhigh

    costs,areprimarydevelopmentgoalsforthefuture.Themain

    areasoffocusbreakdownasfollows,andallarelikelyto

    increaseacceptancelevelsforthemoderndieselengine:

    Optimisingthecombustionprocesswithintheengine

    (variableswirletc.),

    Injection:greater,andmoreprecise,injectionusing

    piezotechnology,higherpressuresetc.

    Extendingexhaustgasaftertreatment:comprehensiveuseof

    particulatefiltersanduseofefficientDeNOx systems,such

    astheSCRprocess,

    Homogeneouschargecompressionignition(HCCI),asalready

    beenmentionedfortheOttoengine,isofparticularinterest

    inthedieselengineintermsofNOx reductionandpreventing

    particulatedischarge.

    However,thethreathangingoverthisistheassociatedrisein

    costs,whichcouldrestricttheuseofdieselengineswith

    efficientexhaustgaspurificationtothetopendpricesegment.

    33

  • ENGINEREQUIREMENTSIMPOSEDBYALTERNATIVEFUELS

    Substitutefuelswiththebiggestmarketpossibilitiesare

    currentlyasfollows:

    Petrol:ethanol,biogasandnaturalgas

    Diesel:vegetableoil,biodiesel,BtL(syntheticbiodiesel)and

    GtL(syntheticdiesel)

    ETHANOL

    Ifethanolistobeadmixedathigherpercentageratios,thenthe

    correspondingengineadaptationwhichisneededisdependent

    onthemixingratio,conditionalonthehighoctanerating,

    calorificvalueandhighevaporationheat.

    Uptoaround20%runningonethanol,adaptedpipesand

    materialsaresufficient

    Uptoaround85%runningonethanol,adaptedengine

    controlsareneeded(injectionvolume,ignitiontimingetc.)or

    theflexfuelvehicle(FFV)conceptneedstobeimplemented.

    Purerunningonethanoloffersthebiggestpotentialfor

    optimisedengineeringfor:

    Newlydevelopeddirectinjectioncombustionprocesses

    • Supercharging/Downsizing

    Thechemicalcompositionofethanoloffersthefundamental

    potentialforareductioninemissionsofpollutants–an

    argumentbackednotjustbytheratioofcarbonatomsto

    hydrogenatoms,butalsotheoxygenbindingwhichisbeneficial

    forcombustion.

    Theparticularlybeneficialcombustionpatternachievesan

    extremelygoodlevelofefficiency,capableofreachingthelevel

    formoderndieselenginesatfullload.

    BIOGAS AND CNG

    Givenasufficientlywidespreadnetworkoffillingstations,

    monovalentversionsofthecombustionenginemakesensein

    ordertofullyexploittheadvantagesofthisfuel.Biogasand

    CNGhavetheadvantageofahighknockratingandignition

    temperature,meaningthattheenginecompressionratiocanbe

    significantlyincreased,withpositiveeffectsonconsumptionand

    inreducingCO2.

    Akeyareaoffocusforfutureresearchprojectswillbe

    estimatingpotentialintermsofbiogasqualityandmonovalent

    engineoutfitting,lookingatthecompressionratioand

    parametersettingsonadaptedgasengines.Asthecombustion

    ofbiogas–similarlytonaturalgas–requiressignificant

    changes,particularlywithregardtoexhaustgastemperaturebut

    alsointhecompositionoftheexhaustgas,speciallyadapted

    exhaustgasaftertreatmentdesignsneedtobedevelopedto

    realiseextremelylowexhaustgasemissions,inordertocome

    veryclosetothepollutionfreeengine.

    34 Austrian Technological Expertise in Transport

  • VEGETABLE OIL

    Natural,nonesterifiedvegetableoilswereoriginallyenvisaged

    onlyforlargedieselenginesusingawhirlchambercombustion

    process,particularlyinagriculture.

    Morerecently,carsarealsobeingrunonthisfuel,something

    whichhasonlybeenmadepossiblethroughk