22
www.phi.com Auger Electron Spectroscopy Auger Electron Spectroscopy is an analytical technique that provides compositional information on the top few monolayers of material. Detect all elements above He Detection limits:~1 - 0.1 atomic % Surface sensitive: top 4-50 Å Spatial resolution: < 80 Å Auger spatial resolution with Field Emission electron gun

Auger Electron Spectroscopy Electron Spectroscopy 2p 1s 2s 1/2 3/2 Ef K LI LII LIII Incident Beam EKLL = EK - EL - EL’ Auger Electron EKLL 0 500 1000 1500 2000 2500 3000 Kinetic

  • Upload
    vanbao

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

www.phi.com

Auger Electron Spectroscopy� Auger Electron Spectroscopy is an analytical technique that provides compositional

information on the top few monolayers of material.

� Detect all elements above He

� Detection limits:~1 - 0.1 atomic %

� Surface sensitive: top 4-50 Å

� Spatial resolution: < 80 Å Auger spatial resolution with Field Emission electron gun

www.phi.com

Common Auger Applications� Problem solving & failure analysis of nanostructures

� Advanced metallurgy impurity segregation and facture analysis

� Corrosion

� Thin film analysis

� Semiconductor and electrical components defect analysis

www.phi.com

What Information does Auger provide ?� Surface composition at high spatial resolution

» SEM imaging

• Provides high magnification visualization of the sample

» Elemental analysis

• Determines what elements are present & how much

» Elemental imaging

• Illustrates two-dimensional elemental distribution

� Sputter depth profiling

» Reveals thin film and interfacial composition

www.phi.com

ELECTRON BEAM - SAMPLE INTERACTIONPrimary Electron Beam

Auger Electrons4-50 Å Analysis Depth> Element No. 3

Characteristic X-rays> Element No. 4

Volume of Primary Excitation

<1 - 3 mm

Sample Surface

Backscattered Electrons

Secondary Electrons

Φ

www.phi.com

IncidentBeam

Auger Electron

X-rayPhoton

X-ray Fluorescence Auger Electron Emission

Auger & X-ray Emission

IncidentBeam

www.phi.com

Auger and Fluorescence Yields

ρA + ρX = 1

www.phi.com

Auger Electron Spectroscopy

2p

1s

2s1/2

3/2

Ef

K

LI

LII

LIIIIncident Beam

EKLL = EK - EL - EL’

AugerElectron

EKLL

0 500 1000 1500 2000 2500 3000Kinetic Energy (eV)

E N(E)

E N(E) x 5

EdN(E)/dE

Cu LMMCu MNN

www.phi.com

AES Surface Sensitivity

8

Incident electron beam

Escaping Auger Electrons

Mean Free Path: Mean distance traveled before undergoing inelastic scattering.

www.phi.com

Auger Electron Analysis Depth

Various thicknesses of Au on Si. The high energy Si KLL peak has a greater analysis depth than the low energy Si LMM peak.

Thickest Au

Thinner Au

Clean Si

Si KLLSi LMM

Si LMM

Au AuAu

Si KLL

Au

AuAu

Au

Si KLLAu

O

O

www.phi.com

Schottky Field Emission Optics

Beam Current (nA)

100

1000

10000

1 10 50

20 kV

10 kV

5 kV

3 kV

Bea

m D

iam

eter

)Typical Beam Size - PHI 680

(20% - 80%)

www.phi.com

Auger Line Scan across Abrupt Interface

Primary beam20 keV

Ag MVV@ 355 eV

www.phi.com

Analysis Area - Defects on Al MetallizationSample Description

� Metallization in semiconductor device manufacturing

» TiN / Al(Cu) on SiO2

� Defects are found along edge of metal lines after a plasma etch processing step

� Auger analysis is required to determine the defect composition

www.phi.com

Aluminum lines at 20,000X, showing nodules

Analysis Area - Defects on Al Metallization

www.phi.com

SEM image Cu Auger map

Auger maps resolve 1000 Å Cu particles

Pseudocolor Auger Map of Cu, showing the concentration of Cu in the nodules

Analysis Area - Defects on Al Metallization

www.phi.com

Analysis Area - Defects on Al Metallization

Spectra on the particle includes Auger signal from the surrounding material due to backscatter electrons.

500 1000 1500 2000Kinetic Energy (eV)

Peak to Peak Height

Point 1 - On the Particle

Point 2 - Line Top Surface

Point 3 - Line Sidewall

Ti(N)Ti O Cu Al Si

Ti(N)Ti

O Al Si

Ti O Al Si

dEN

(E)/

dE

www.phi.com

Backscatter Effects~1.3µm Si Particle on SiO2

SEM of ~1.3µm Particle on SiO2 SEM of Particle in f.e. AES

Primary electron scattering results in a minimum feature size from which all of the Auger signal originates

This minimum feature size depends on sample geometry, feature composition, and primary beam energy

www.phi.com

Backscatter Effects vs. Beam Voltage ~1.3µm Si Particle on SiO2

O, C and Ti are from the substrateLow voltage minimizes backscatter signal

SiSi

O

5 kV Si

Si

SiSi

O

7 kV

Si

Si

OC

10 kV SiSi O

C Ti

20 kV

www.phi.com

QuantificationSensitivity Factors

� Assuming Auger yield varies linearly with concentration

� Assuming homogeneous distribution

� CX = (IX / SX) / (Σi (Ii / Si)

� SX may depend on sample matrix & chemistry, as well as specific analytical instrument

www.phi.com

Sensitivity Factors: Si and SiO2

Si

O

Si

Using sensitivity factors for elemental SiSi:O => 74:26Using sensitivity factors for Si OxideSi:O => 33:67

-30

-20

-10

0

10

20

500 1000 1500 2000Kinetic Energy (eV)

www.phi.com

Compucentric Zalar Rotation Depth Profiling

20

0 50 100 150 200 250 3000

20

40

60

80

100

Sputter Time (min)

Ato

mic

Conce

ntr

atio

n (

%)

O

Al (oxide)

Al (metal) Si

Compucentric Zalar Depth Profile of 10 µm Via Contact

Secondary Electron Image

(Before Sputtering)

www.phi.com

Compucentric Zalar Rotation Depth Profiling

21

0 50 100 150 200 250 3000

20

40

60

80

100

Sputter Time (min)

Ato

mic

Conce

ntr

atio

n (

%)

O

Al (oxide)

Al (metal) Si

Depth Profile Comparison With and Without Zalar Rotation

0 50 100 150 200 250 3000

20

40

60

80

100

Sputter Time (min)

Ato

mic

Conce

ntr

atio

n (

%)

Al (metal)

O

Al (oxide)

Si

Without RotationWith Rotation

www.phi.com

Compucentric Zalar Rotation Depth Profiling

22

Without RotationWith Rotation

2500X2500X

SE Images of 10 µm Via Contactsafter Depth Profiling