63
Pro Active Roadway Safety and the Future of Research and Practice Dr. Mohamed Abdel Aty, PE Professor Department of Civil, Env. & Construction Engineering Deputy Director Center for Advanced Transportation Systems Simulation University of Central Florida, USA Associate Editor, Accident Analysis & Prevention

Aty Hasselt 2012 02 - Home | ICTCT · Fundamentals – Part B: Roadway Safety ... DS3 Scheme of LDs stations Crash Location Direction of Travel Crash Location Scheme of AVI stations

  • Upload
    lytruc

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

Pro

ActiveRoadwaySafety

and

theFuture

ofResearchandPractice

Dr.MohamedAbdelAty,PE

Professor

DepartmentofCivil,Env.&ConstructionEngineering

Deputy

Director

CenterforAdvancedTransportationSystemsSimulation

UniversityofCentralFlorida,U

SA

Associate

Editor,AccidentAnalysis&Prevention

TrafficSafety:AGrowingConcern

The

concern

about

traffic

safety

has

been

growing

over

the

years

indeveloped

and

developingcountriesalike

In2010;33,883

people

were

killed

intraffic

crashesin

theUS.About2.24millionpeople

were

injured

(total5.5

million

crashes

cost

exceeds$230Billion)

Fatality

rate

vs.Motorization

(Evans,

2004)

DevelopedInfrastructure

•In

theUSin2008,Trafficfatalities,0.78per100Million

VehicleKm

Traveled,12.3Fatalitiesper100,000Population,

14.5Fatalitiesper100,000RegisteredVehicles,and17.9

Fatalitiesper100,000LicensedDrivers.

•In

Belgium

in2007,10.2fatalitiesper100,000ofthe

population(adjusted),

21.8%changefrom

1997.Frontseat

beltwearingrate

79%

•In

Greece

in2007,14.1fatalitiesper100,000ofthe

population(adjusted),

24.9%changefrom

1997.Frontseat

beltwearingrate

75%

•In

Chinain2005,thefatalityrate

wasabout7.6per100,000

people

•In

Egyptin2006,TrafficFatalitieswere

8.6per100,000of

thepopulation,156.3Fatalitiesper100,000Registered

Vehicles

TheAmericanExperience

Recentlythere

isanotableim

provement

Thenumberoftrafficfatalitiesin2010reachedits

lowestlevelsince

1961.

There

wasa9.7%declineinthenumberofpeoplekilled

inmotorvehiclecrashesintheUnitedStates,from

41,259in2007to

37,261in2008.Thisdeclineof3,998

fatalitiesisthelargestannualreductioninterm

sofboth

numberandpercentagesince

1982.

Althoughpeoplemayhavetraveledless

in2008dueto

thehigherprice

ofgas,theoverallinjury

rate

per100

millionVMTdeclinedby2.4percent,andthefatality

rate

alsofellto

ahistoriclowof1.27per100Million

VMTin2008.

FatalitiesandFatality

Ratesper100

millionVMTfrom

1949

2010

AdaptedfromFARS,U

SDOT

In2011about1.05,FL

1.25Fatalityper100milVMT

2010

1.10

StrategicHighwaySafety

Plan

NATIONALGOAL:AASHTOin1998,atotal

reductionofannualhighwayfatalitiesby5,000to

7,000.

In2003,AASHTO,theGovernorsHighwaySafety

Association,TheAmericanAssociationofMotor

VehicleAdministrators,andtheU.S.Department

ofTransportationsetasagoalthereductionofthe

nation’shighwayfatalityrate

by2008to

notmore

thanonefatalityper100millionvehiclemiles

traveled(VMT).

Toachieve

these

goals,theupdatedAASHTOSHSPin2005proposed

anintegratedapproach

andaseriesoftoolsto

facilitate

forstate

andlocaltransportationandsafetyagenciesto

develop

comprehensivehighwaysafety

plans.Theplanalsoincludes

strategiesin22keyemphasisareasthataffecthighwaysafety.

MostlyalsoreflectedinStates’SHSP

42,000peoplewere

killed

inhighwaycrashes

in2003.Thefollowingchartshows

thenumberofdeathsassociatedwithspecificemphasisareasidentified

inthe

SHSP.

StrategicHighwaySafety

Plan(cont.)

CurrentlyAASHTOisdeveloping“Toward

Zero

Deaths:aNationalStrategyonHighway

Safety”.

Thenationalstrategywillhave

twotiers:

CulturalChangeandBuildingtheFoundation

ofSafety.

HighwaySafety

Manual,Providefactualinform

ationand

toolsto

facilitate

roadwaydesignandoperationaldecisions

basedonexplicitconsiderationonsafety

consequences.

SHRP2:StrategicHighwayResearchProgram

2,Safety,

Preventorreduce

theseverityofhighwaycrashesby

understandingdriverbehavior(naturalisticdriving).

SafetyAnalyst:Asetofsoftware

toolsusedbyhighway

agenciesto

improve

theirprogrammingofsite

specific

highwaysafety

improvements.

IHSDM:InteractiveHighwaySafety

DesignModel,Asuite

ofsoftware

analysistoolsforevaluatingsafety

and

operationaleffectsofgeometricdesigndecisionson

highways.

Exam

ple

s o

f Im

ple

men

tati

on

gu

ides

an

d t

oo

ls

HighwaySafety

Manual

•TheTransportationResearchBoard

hasrecently

(2010)publishedtheHighwaySafetyManualto

fill

thegapbetw

eenstate

oftheartandstate

of

practice.

–PartA:Introduction,Human

FactorsandFundamentals

–PartB:RoadwaySafetyManagementProcess

–PartC:Predictive

Method

–PartD:Crash

ModificationFactors

HighwaySafety

Manual

HighwaySafetyManual(HSM)Im

plementationGoals

•IntegrationofSafetyindayto

dayactivities

•HSM

becomesatoolroutinelyusedbytransportation

professionals

•Safetyisalwaysanotherquantifiedparameter

–SafetyPerform

ance

Measurement

•SafetyPerform

ance

Functions(SPF)

•Crash

ModificationFactors(CMF)

FHWA:HighwaySafetyIm

provementProgram

FHWA:IntersectionSafetyProgram

FHWA:LocalandRuralRoadSafetyProgram

FHWA:Pedestrian&BicycleSafetyProgram

FHWA:RoadwayDeparture

SafetyProgram

FHWA:SpeedManagementSafetyProgram

FHWA:Guidance

Memorandum

on

ConsiderationandIm

plementationofProven

SafetyCounterm

easures

Recen

t Safe

ty I

mp

rovem

ent

Pro

gra

ms

ConsiderationandIm

plementationof

ProvenSafety

Counterm

easures

•RoadSafetyAudits(crash

reductionupto

60%)

•RumbleStripsandRumbleStripes(15%ofinjury

crash

reductiononruraltwolaneroads).

•MedianBarriers(Cablesystems)

•Roundabouts

•LeftandRightturn

lanesatstopcontrolled

Intersections

•Yellowchangeintervals

•MediansandPedestrianrefugeareasatUrban

andSuburbanAreas

•Safety

Edge(3035o)

Safety

Edge

NHTSA

:Counterm

easuresthatWork:HighwaySafety

Counterm

easure

Guide(4

thEd.2009).

CMFClearinghouse

NHTSA

:AggressiveDrivingEnforcement:Strategiesfor

ImplementingBestPractices

NHTSA

:IdentifyingStrategiesto

Reduce

thePercentageof

UnrestrainedYoungChildren

NHTSA

:IncreasingSeatBeltUse

ThroughState

Level

DemonstrationProjects

NHTSA

:DevelopmentandTestingofCounterm

easuresfor

FatigueRelatedHighwayCrashes

NHTSA

:DriverStrategiesforEngaginginDistractingTasks

UsingIn

vehicleTechnology

Recen

t Safe

ty I

mp

rovem

ent

Pro

gra

ms

CurrentSafety

Approach

•MostlyReactive

•Dependonblack

“hot”spotidentificationand

identifyingthefactorsthatcontribute

tocrash

occurrence

andseverity

•Problemsalreadyoccurringanddamage

alreadydone

•Im

portantbutnotenough

•Challengesare

increasingandresourcesare

limited

Macro/M

icro

Level

GISAnalysis

Fog/SmokeAreas

GISClusteranalysis

SchoolZonesSafety

Analysis

Greencirclesrepresentthezoneswithinahalfmileoftheschools(bufferzones)anddarkercolorincircles

representshighernumberofcrashesperschoolwithinthebufferzones.Redtriangles

denotethecrash

locations

andbluelinesdenotemajorstreets.

AWEBBASEDApplicationforProvidingCrash

ProfilesatIntersections

A

Man

ual fo

r

Inte

rsection

Sa

fety

150

0 s

ign

aliz

ed

inte

rsection

s d

ivid

ed

in

to

45 s

ign

aliz

ed

cate

gories.

250

0 n

on

sig

naliz

ed

inte

rsection

s d

ivid

ed

in

to

60 c

ate

gories

CrashesDueto

DrivingUndertheInfluence

ZIPareasthatwere

identified

tohave

highnumberofcrashesdueto

driving

undertheinfluence

permileof

roadwayare

CenterHill(33514),Geneva

(32732),MelbourneBeach

(32951),

Orlando(32832),Seville(32190),

Winderm

ere

(34786),andZellwood

(32798).

TargetedEducation&Awareness

Advancesin

TrafficSafety

Pro

ActiveApproaches

•TransportationSafetyPlanning(TSP)

•RealTim

eCrash

Prediction

•MicroscopicTrafficSim

ulationinSafety

Research

•IntelligentTransportationSystems’

Applications

Advancesin

TrafficSafety

Pro

ActiveApproaches(cont.)

•UsingDrivingSim

ulatorsto

Evaluate

Safety

•StrategicNationalH

ighwaySafetyPlan

•“Forgiving”RoadwayDesign

•RoadSafetyAudits

•IncorporatingSafetyinDesign

TransportationSafety

Planning

•TSPisaproactiveapproach

forthepreventionof

accidentsandunsafe

transportationconditionsby

establishinginherentlysafe

transportation

netw

orks.

•Integrate

safety

considerationsinto

the

transportationplanningprocessatalllevels.This

stepshouldbefollowedbyconsiderationofsafety

objectivesinthelongerrangetransportationplan

(i.e.,20yearplan).

•Leadto

furthercollaborationamongtransportation

planners,trafficengineers,safety

stakeholders,

andothers.

Severe

(Fataland

Severe

Injury)Crashes

perTAZin2005and

2006

29

InvestigatingCrashesatZoneBoundary

LetanyTAZishares

itsboundarywith1,2,

...,kdifferent

neighboringzones.

Anyvariablexwill

thenbetransform

edto

xBsuch

that,

Schematicmodeloftheproposedmethodology

RealTim

eCrash

Prediction

Objectiveoffreewaytrafficmanagementisto

monitor

andmitigate

recurring(duringpeakhours)andnon

recurringcongestion(fromincidents,weatheretc.)

Traffic

management

authorities

rely

on

traffic

surveillance

apparatus

(e.g.,

loop

detectors,radar

detectors,videocameras)

tomonitorfreewaytraffic

conditions

Loop

detectors

provide

speed,volume,and

lane

occupancy

forveryshortdurations

Howare

TrafficFlowParameters

Collected?

TollTagReader

(Speed/1min.)

LoopDetectors

AutomatedTrafficRampController's

(Speed,Volume&Occupancy)/(30sec.to1min.)

SideFire

Radar

(Speed,Volume&Occupancy)/20Sec.

33

Whichpatternsare

welookingfor?

TrafficParameter

(e.g.,Speed)

Tim

e

Trafficflowparameterspriorto

thetimeofcrash

ObservationTimeSliceTim

eofCrash

AfterCrash

Before

Crash

Crash

Precursor

Approach

toProactiveFreeway

Management

Analyze

historicalcrashesandtrafficsurveillance

data

correspondingto

each

crash

and

detect

patternsthatare

often

repeated

before

the

crash

occurrence

Ifthese

patternsare

repeatedin

thefuture

ona

freewaysectionthatsectionmaybeidentified

asarealtime“black

spot”

Realtime

proactive

measures

should

be

developedto

avoidcrashes

RealTim

eCrash

Risk

Hazard

Ratio:Contourplotsofhazard

ratioscorrespondingto

coefficientof

variationinspeed(42modeloutputs)

Tim

e of

the

cras

h=0

-25

min

.-2

0 m

in.

-15

min

.-1

0 m

in.

-5 m

in.

-30

min

.

Sta

tion

B

Sta

tion

H

Sta

tion

G

Sta

tion

F

Sta

tion

E

Sta

tion

D

Sta

tion

C

Tim

e o

f th

e

cra

sh

=0

-25

min

.-2

0 m

in.

-15

min

.-1

0 m

in.

-5 m

in.

-30

min

.

Sta

tion

B

Sta

tion

H

Sta

tion

G

Sta

tion

F

Sta

tion

E

Sta

tion

D

Sta

tion

C

Crash

PredictionModel

Examplesofcrash

Precursors

Cra

sh P

recu

rsor

#1:

Cra

sh P

recu

rsor

#1:

Variation in s

peed u

pst

ream

of cr

ash

loca

tion

Variation in s

peed u

pst

ream

of cr

ash

loca

tion

Upst

ream

of cr

ash

U

pst

ream

of cr

ash

loca

tion

loca

tion

Crash

PredictionModel

Crash

Precursors

Cra

sh P

recu

rsor

#2:

Cra

sh P

recu

rsor

#2:

Speed d

iffe

rential betw

een u

pSpeed d

iffe

rential betw

een u

p--

and d

ow

nand d

ow

n-- s

tream

st

ream

of

crash

loca

tion

of

crash

loca

tion

Upst

ream

of

Upst

ream

of

crash

loca

tion

crash

loca

tion

Dow

nst

ream

of

Dow

nst

ream

of

crash

loca

tion

crash

loca

tion

Crash

PredictionModel

Crash

Precursors

Cra

sh P

recu

rsor

#3:

Cra

sh P

recu

rsor

#3:

Covariance

of

volu

me a

cross

adja

cent

lanes

Covariance

of

volu

me a

cross

adja

cent

lanes

upst

ream

of

crash

loca

tion

upst

ream

of

crash

loca

tion

Upst

ream

of cr

ash

U

pst

ream

of cr

ash

loca

tion

loca

tion

Interstate

4Freeway,Orlando,FL

Stabilizationin30secondspeed

profilesfollowingITSstrategiesim

plementation

Micro

Sim

ulation:VariableSpeedLimits

VSL&VMSinDrivingSim

ulator

•VariableSpeed

Limit

•WarningMessage

43

ProactiveTrafficManagement

InGround[Intrusive]

Above

Ground[NonIntrusive]

Betw

een20052010wewere

pioneersin

analyzingrealtimedata

collectedfrom

inductiveloopdetectors

andradars

ina

safety

framework,but

there

are

no

safety

studiesthatattemptedtheuse

of

traffic

data

from

one

of

the

most

growing

surveillance

system;the

tag

readersontollroads(AVI).

AUTOMATICVEHICLE

IDENTIFICATION(AVI)SYSTEM

•Thissystem

estim

atesthesegmenttraveltimeby

monitoringthesuccessivepassagetimesofvehicles

equippedwithelectronictags.

•Data

are

gatheredusingAVItagreaders

thatare

installedsolelyforthepurpose

ofestimatingtravel

timesandsomefortollcollection.

ILDsSpeedvs.AVIsSpeed

•Commonlydeployedinductiveloopdetectors

(ILD

s)measure

timemeanspeed

(TMS),

whereas

AVIs

measure

spacemeanspeed

(SMS).

US

3

Seg

men

t

US

2

Segm

ent

DS

3

Segm

ent

DS

2

Segm

ent

DS

1

Seg

ment

US1

S

egm

ent

Cra

sh

Segm

ent

~ 0

.5-0

.8 m

ile

US

3

US

2

US

1

DS

1

DS

2

DS

3

Crash

Lo

catio

n

Sch

em

e o

f L

Ds

sta

tion

s

Dir

ecti

on

of

Tra

vel

Sch

em

e o

f A

VI s

tati

on

s

Crash

Locati

on

~ 1

.0-1

.5 m

ile

ILDvs.AVI

•Ourrecentresearch

implemented

forthefirst

timedata

collectedfrom

theAVIin

arealtime

trafficsafety

analysis.

•AVIdata

were

foundto

bepromisinginproviding

ameasure

of

crash

risk

inrealtime.

The

managementofexpresswayscan

benefitfrom

thecollectedAVItrafficdata

notonlyto

ease

the

congestionandenhance

theoperationbutalso

byevaluatingtheincreasedrisk.

REALTIM

ERISKASSESSMENTONFREEWAYS

ArrangementofRTMSandAVISegments

The15mileonI70inColoradoisequippedwithAVI,RTMS,andWeatherStations.

There

were

fivesets

ofdata

usedin

this

study;roadwaygeometrydata,crash

data,andthe

correspondingAVI,RTMSandweatherdata.

Trafficdata

consistsofspace

meanspeedcapturedby12and15AVIdetectorslocatedoneach

east

andwest

bounds,respectively

alongI70.Volume,occupancy

andtimemeanspeedare

collected

by15RTMSsoneach

direction.

AVIestim

atesSM

Severy

2minute

whileRTMSprovidestrafficflow

parameters

every

30second.

Weatherdata

were

recordedbythreeautomatedweatherstationsalongtheroadwaysectionfor

thesametimeperiod.

Exploratory

Comparisonbetw

eenAVIand

RTMSData

Speed (mph)

0102030405060708090

100

Tim

e (

min

)

13:

00:0

013

:15:

001

3:30

:00

13:4

5:0

01

4:00

:00

14:1

5:0

014

:30:

0014

:45

:00

15:0

0:00

AV

I: 2

18.1

-217

.4R

TM

S:

217

.4 L

ane

1R

TM

S:

217

.4 L

ane

2R

TMS

: 21

7.85

La

ne1

RTM

S: 2

17.8

5 La

ne2

RT

MS

: 2

18.1

La

ne1

RT

MS

: 2

18.1

La

ne2

Speed (mph)

0

10

20

30

40

50

60

70

80

90

Tim

e (m

in)

14

:40

:00

14:5

5:0

01

5:1

0:0

01

5:2

5:0

015

:40

:00

15

:55

:00

16

:10

:00

16

:25

:00

16

:40

:00

Cra

sh L

ocation:

Mile

post 217.7

AV

I: 2

16.7

-21

7.8

5R

TM

S: 2

16

.7 L

an

e1R

TMS

: 21

6.7

La

ne

2

RT

MS

: 21

7.4

La

ne

1R

TM

S: 2

17

.4 L

an

e2R

TMS

: 21

7.8

5 L

an

e2

Speed (mph)

0

10

20

30

40

50

60

70

80

90

Tim

e (m

in)

11:3

0:0

01

1:4

0:00

11

:50

:00

12

:00:

001

2:1

0:0

01

2:2

0:0

012

:30

:00

12

:40

:00

12:

50:0

013

:00

:00

13:

10:0

01

3:20

:00

13

:30:

00

Cra

sh

Lo

cati

on

: M

ilep

os

t 2

17.

5

AV

I:21

6.7-

21

7.85

RT

MS

: 21

7.4

Lan

e1

RT

MS

: 21

7.4

Lan

e2

RTM

S:

217

.85

La

ne2

Speed Standard Deviation (mph)

02468

101214161820

Tim

e (

min

)

14:4

0:0

014

:50

:00

15:

00:

00

15:

10:

00

15

:20

:00

15:3

0:0

015

:40

:00

Cra

sh

Lo

cat

ion

: M

ilepo

st

21

7.7

AVI

: 21

6.7

-21

7.8

5R

TM

S: 2

16.

7 L

ane

1R

TMS

: 21

7.4

La

ne

1

Norm

alTrafficCondition(NoCrash)

PDOCrash

FatalCrash

SpeedVariance

(PDO)

VariableIm

portance

EnsembleData

MiningApproach

Model1(AllData)

Model2(RTMS)

Model3(AVI)

Model4

(Weather)

Vari

ab

les

Var.

Im

port

.V

ari

ab

les

Var.

Im

port

.V

ari

ab

les

Var.

Im

port

.V

ari

ab

les

Var.

Im

port

.

Avg.

Occ

. U

pst

ream

1_T

ime

Sli

ce _

21.0

00

Avg.

Occ

. U

pst

ream

2_T

ime

slic

e_3

1.0

00

Log.

Coef

. of V

ar.

of

Spee

d C

rash

Seg

men

t

Tim

e S

lice

_2

1.0

00

1-H

our

Vis

ibil

ity

1.0

00

Avg.

Occ

. U

pst

ream

2_T

ime

slic

e_3

0.8

87

Log.

Coef

. of V

ar.

of S

pee

d

Upst

ream

1_T

ime

Sli

ce_2

0.9

97

Avg.

Spee

d

Dow

nst

ream

Seg

men

t

Tim

e S

lice

_2

0.8

99

10-M

inute

Pre

cipit

atio

n

0.4

59

Log.

Coef

. of V

ar.

of S

pee

d C

rash

Seg

men

t T

ime

Sli

ce_2

0.7

98

Avg.

Spee

d U

pst

ream

2_T

ime

Sli

ce_2

0.8

04

Avg.

Spee

d

Dow

nst

ream

Seg

men

t

Tim

e S

lice

_3

0.7

41

1-H

our

Pre

cipit

atio

n

0.3

24

Avg.

Spee

d D

ow

nst

ream

Seg

men

t T

ime

Sli

ce_2

0.7

42

S.D

. O

cc.

Upst

ream

2_T

ime

Sli

ce 2

0.5

41

Avg.

Spee

d u

pst

ream

Seg

men

t T

ime

Sli

ce_2

0.5

37

1-H

our

Vis

ibil

ity

0.6

84

Avg.

Spee

d D

ow

nst

ream

1_T

ime

Sli

ce_2

0.4

57

Gra

de

0.6

61

Avg.

Spee

d D

ow

nst

ream

2_T

ime

Sli

ce_2

0.3

91

S.D

. O

cc.

Upst

ream

3_T

ime

Sli

ce 2

0.6

42

Avg.

Occ

. U

pst

ream

1_T

ime

Sli

ce _

20.3

74

No.

of L

anes

0.5

21

Avg.

Occ

. U

pst

ream

2_T

ime

Sli

ce _

20.3

48

Avg.

Sp

eed U

pst

ream

1_T

ime

Sli

ce_2

0.5

19

Log.

Coef

. of V

ar.

of V

olu

me

Dow

nst

ream

2_T

ime

Sli

ce_2

0.2

49

ModelsComparison

Mo

del

Mo

del

Descri

pti

on

Ove

rall

Cla

ssif

ica

t

ion

Ra

te

Tru

e

Po

siti

ve

Ra

te

Fa

lse

Po

siti

ve

Ra

te

Tru

e

Neg

ati

ve

Ra

te

RO

C I

ndex

Model

-1A

ll D

ata

92.1

57%

88.8

89%

6.4

81%

93.5

19%

0.9

46

Model

-2R

TM

S87.8

79%

73.3

33%

7.1

54%

92.8

45%

0.7

62

Model

-3A

VI

87.6

53%

70.1

92%

6.3

93%

93.6

07%

0.7

21

Model

-4W

eath

er84.3

64%

55.7

14%

5.8

54%

94.1

46%

0.6

75

AdvancedSafety

Perform

ance

Functions(SPF)

AdvancedStatisticalTechniques

––Hierarchical

HierarchicalBayesianModels

BayesianModels

–Methodsto

accountforSpatialEffects

–TimeSeries

–GeneralizedEstimationEquations(GEE)

NonConventionalA

nalyticalM

ethods

–Data

MiningTechniques

–NeuralN

etw

orks

–GeneticProgramming

–GeneticAlgorithms

SPFsforLongitudinalCrash

Frequencies

•GeneralizedEstimationEquations(GEE)

–GEEcomefromspecifyingaknownfunctionofthemarginal

expectationofthedependentvariableasalinearfunctionof

covariates;assumingthatthevariance

isaknownfunctionofthe

mean;inaddition,specifyinga“w

orking”

correlationmatrixfor

theobservationsforeach

location.

•GEEswithNegativeBinomiallinkfunctionwere

usedto

modelspatialandtemporalcorrelation

for3yearlongitudinalcrash

data.

Sp

ati

al

Sa

fety

An

aly

sis:

Co

rri

do

r Id

en

tifi

ca

tio

n &

Clu

ster

An

aly

sis

••Atotalnumber

of

Atotalnumber

of

476signalized

476signalized

intersectionsalong

intersectionsalong

41arterialsare

41arterialsare

selectedfrom

3selectedfrom

3countiesinFl.

countiesinFl.

Bre

vard

County

Ora

nge C

ounty

Mia

mi-D

ade

Inte

rsection C

luste

r A

naly

sis,

US

1, M

iam

i-D

ad

e

Safety

Analysisby

ConflictingPatterns

MajorConflictingPatterns

e.g.,forLeftturn

crashes

ModelingCrash

Frequency

Atthe

Approach

Level:GEE

with

Negative

Binomialto

accountfor

“sitecorrelation”.

12

3

45

6

78

9

A c

on

ce

ptu

al

mo

de

l M

ult

i-le

ve

l a

nd

Sp

ati

oT

em

po

ral

da

ta s

tru

ctu

re

Level1:Geographicregion

Level2:Trafficsite

Level3:Trafficcrash

Level4:DriverVehicleUnit

Level5:Occupant

Spatiallevel:Geographicregion

&Trafficsite

Tim

elevel:forPaneldata

5×SThierarchy

HuangHandAbdelAty

M.(2010)MultilevelData

inTrafficSafety:a

Five

level

HierarchicalSpatiotemporalM

odel,AccidentAnalysis&Prevention,Elsevier,

Volume42,Issue6,pp.15561565.

Tra

dit

ion

al

Ap

pro

ac

h

GeneralizedLinearModel

•GLM

slimitation:each

observationintheestim

ationprocedure

correspondsto

anindividualsituation.Hence,theresidualsfromthe

modelexhibitindependence.

•However,the“independence”assumptionmayoften

notholdtrue

since

multileveldata

structuresexistextensivelybecause

ofthetraffic

data

collectionandclusteringprocess.

So

luti

on

: B

aye

sia

n H

iera

rch

ical

Mo

de

lin

g

•Toexaminetheeffectsofvariousrisk

factorsatdifferentlevels

•Cross

groupheterogeneity

•Spatialautocorrelation,Tim

eseriescorrelation

11

1Level

Level

Level

X1

Level

Y

22

2Level

Level

Level

X2

Level

Y

33

3Level

Level

Level

X3

Level

Y

44

4Level

Level

Level

X4

Level

Y

55

5Level

Level

Level

X5

Level

Y

Crash

frequency

~[County

level–Corridorlevel–

Intersectionlevel]

×Spatialeffect

Data:170intersectionsalong25

arterialsatCentralFlorida

Model:HierarchicalPoisson

CAR

model

Results:HPCARmodel

outperform

edPoissonmodel,NB

model,NBmixedeffectmodeland

NBCARmodel.Thestudyim

plied

thatthehierarchicalspatialmodels

provideabetterrepresentationof

thestochasticprocesses

underneath

theobservedsafety

data

withmultilevelstructures.

GR

-lev

el:

Co

un

ty

Tra

ffic

sit

e l

ev

el:

Corr

idor,

inte

rsec

tion

Tra

ffic

cra

sh

lev

el:

Cra

sh s

ever

ity, ty

pe,

cau

sati

on

Dri

ver-

veh

icle

un

it le

vel:

Body i

nju

ry, veh

icle

da

mag

e

Occ

up

an

t:B

ody i

nju

ry:

AIS

, IS

S

Wh

at

is t

he

me

rit

?

Recommendations

•More

Proactiveapproachesare

needed

intrafficsafety

•Im

prove

Accidentandrelevant

Databases.

•IncorporatingSafetyatthePlanning

Level

•Integrated5Eapproach

OverallSafety

Strategy

TrafficSafety

Enforcement

Evaluation

Emergency

Response

Education

Engineering

5E’s

Recommendations(cont.)

•ClearNationalG

oalandastrategicSafetyPlan

•BenefitfromthewealthofSafety

Researchfrom

aroundtheworldwhiletailoringitto

thespecific

country

•Anumberofrecentstudies,includingthose

bythe

presenter,have

showntheusefulness

of

accountingforspecificsafety

data

structure

by

usingBayesianhierarchicalm

odels.

•Theproposed5×ST

levelhierarchyrepresentsa

conceptualframework

withallupto

date

understandingsofsafety

data

structure.

Dr.MohamedAbdelAty,P.E.

Professor

DepartmentofCivil,Environmental&Construction

Engineering

UniversityofCentralFlorida

Ph.+14078235657

Email:[email protected]

Associate

Editor

AccidentAnalysis&Prevention