39
Attitude Determination - Using GPS

Attitude Determination - Using GPS. 20/12-2000 (MJ)Danish GPS Center2 Table of Contents Definition of Attitude Attitude and GPS Attitude Representations

Embed Size (px)

Citation preview

Attitude Determination

- Using GPS

20/12-2000 (MJ) Danish GPS Center 2

Table of ContentsTable of Contents

• Definition of Attitude• Attitude and GPS• Attitude Representations• Least Squares Filter• Kalman Filter• Other Filters• The AAU Testbed• Results• Conclusion

20/12-2000 (MJ) Danish GPS Center 3

What is Attitude?What is Attitude?

Orientation of a coordinate system (u,v,w) with respect to some reference system (x,y,z)

V

U

W

Z

Y

X

20/12-2000 (MJ) Danish GPS Center 4

When is Attitude information needed?When is Attitude information needed?

• Controlling an Aircraft, Boat or Automobile• Onboard Satellites• Pointing of Instruments• Pointing of Weapons• Entertainment industri (VR)• Etc...

20/12-2000 (MJ) Danish GPS Center 5

Attitude sensorsAttitude sensors

Currently used sensors include:

• Gyroscopes• Rate gyros (+integration)• Star trackers• Sun sensors• Magnetometers• GPS

20/12-2000 (MJ) Danish GPS Center 6

Advantages of GPSAdvantages of GPS

• Adding new functionality to existing equipment• No cost increase• No weight increase• No moving parts (solid-state)• Measures the absolute attitude

DisadvantagesDisadvantages• Mediocre accuracy (0.1 - 1º RMS error)• Low bandwidth (5-10 Hz maximum)• Requires direct view of satellites

20/12-2000 (MJ) Danish GPS Center 7

Interferometric PrincipleInterferometric Principle

MasterAntenna

IntegerComponent

k

SlaveAntenna

Carrier Wave (from GPS satellite)

e(3x1)

FractionalComponent,

Baseline, b(3x1)

Unit Vector to GPS Satellite

20/12-2000 (MJ) Danish GPS Center 8

Interferometric PrincipleInterferometric Principle

Measurement equation:

The full phase difference is the projection of thebaseline vector onto the LOS vector:

20/12-2000 (MJ) Danish GPS Center 9

Attitude MatrixAttitude Matrix

V

U

W

Z

Y

X

9 parameters needed:

When (x,y,z) is a referencesystem:

20/12-2000 (MJ) Danish GPS Center 10

Properties of “A”Properties of “A”

“A” rotates a vector from the reference systemto the body system

The transpose of “A” rotates in the oppositedirection (back again)

20/12-2000 (MJ) Danish GPS Center 11

Properties of “A”Properties of “A”

Rotation does not change the size of the vectors:

Every rotation has a rotation-axis (and a rotation-angle)

The rotation-angle is the eigenvalue of “A”

20/12-2000 (MJ) Danish GPS Center 12

Euler sequencesEuler sequences

A sequence of rotations by the angles (,,) aboutthe coordinate axes of the reference system

Single axis:

Multiple axes:

20/12-2000 (MJ) Danish GPS Center 13

QuaternionsQuaternions

A quaternion consists of four composants

Where i,j and k are hyperimaginary numbers

20/12-2000 (MJ) Danish GPS Center 14

QuaternionsQuaternions

A quaternion can be thought of as a 4 dimensionalvector with unit length:

20/12-2000 (MJ) Danish GPS Center 15

QuaternionsQuaternions

Quaternions represent attitude as a rotation-axisand a rotation-angle

20/12-2000 (MJ) Danish GPS Center 16

QuaternionsQuaternions

Quaternions can be multiplied using the specialoperator defined as:

20/12-2000 (MJ) Danish GPS Center 17

QuaternionsQuaternions

The attitude matrix can be formed from thequaternion as:

Where

20/12-2000 (MJ) Danish GPS Center 18

Least Squares SolutionLeast Squares Solution

Including attitude information into themeasurement equation

Linearization of the attitude matrix

20/12-2000 (MJ) Danish GPS Center 19

Least Squares SolutionLeast Squares Solution

Forming the phase residual

20/12-2000 (MJ) Danish GPS Center 20

Least Squares SolutionLeast Squares Solution

20/12-2000 (MJ) Danish GPS Center 21

Least Squares SolutionLeast Squares Solution

Estimate update

20/12-2000 (MJ) Danish GPS Center 22

Extended Kalman FilterExtended Kalman Filter

A Kalman filter consists of a model equation

and a measurent equation

20/12-2000 (MJ) Danish GPS Center 23

Extended Kalman FilterExtended Kalman Filter

And their linearized counterparts….

And

20/12-2000 (MJ) Danish GPS Center 24

Extended Kalman FilterExtended Kalman Filter

EstimateUpdate

TimePropagation

z(t k) x(t k-), P (t k

-)

x(t k+), P (t k

+)

x(t k+1-), P (t k+1

-)

x(t k), P (t k)k = k + 1

Estimate of

Algorithm

20/12-2000 (MJ) Danish GPS Center 25

Extended Kalman FilterExtended Kalman Filter

Tuning of the filter

Noise variance determined experimentally

20/12-2000 (MJ) Danish GPS Center 26

Extended Kalman FilterExtended Kalman Filter

Tuning of the filter

Noise variance determined by ‘trial-and-error’

20/12-2000 (MJ) Danish GPS Center 27

Extended Kalman FilterExtended Kalman Filter

Determining the system model

Dynamicmodel

Kinematicmodel

N q

20/12-2000 (MJ) Danish GPS Center 28

Other FiltersOther Filters

Line bias calibration

Vector Determination

Attitude Determination

Integer resolution

Raw phase measurements

Extended phase measurements

Corrected phase measurements

Vector estimate

Attitude estimate

Ka

lma

n f

ilte

r

AL

LE

GR

O

Co

he

n

Le

ast

Sq

ua

res

Ba

r-It

zha

ck

Ne

w A

lgo

rith

m

Eu

ler-

q

Ge

om

etr

ic D

esc

en

t

Ba

r-It

zha

ck 2

Non-iterative Iterative

20/12-2000 (MJ) Danish GPS Center 29

TestbedTestbed

Labtop PC

GPS receiver

Controller box

Surveyor platform

Antenna array

LON network

RS232

Motorcommands

Encoderreadings

20/12-2000 (MJ) Danish GPS Center 30

SoftwareSoftware

Start

Load simulatedattitude

Start User Interface+ Initialize Testbed

angles.txt

phase.outlos.out

GPSreceiver

angles.out LON nodes

Store angle-valuesfrom encoders in file

Proces 2

Store phases andLOS vectors from

receiver in file

Proces 1

Send anglecommands to LON

nodes

Proces 3

Stop

20/12-2000 (MJ) Danish GPS Center 31

Motor ControlMotor Control

20/12-2000 (MJ) Danish GPS Center 32

Motor AnglesMotor Angles

0 50 100 150 200 250 300 350 400 450 500-200

-150

-100

-50

0

50

100

150

200

Time [seconds]

An

gle

[d

eg

ree

s]Angle of Antenna Array

20/12-2000 (MJ) Danish GPS Center 33

Local Horizontal SystemLocal Horizontal System

20/12-2000 (MJ) Danish GPS Center 34

ResultsResults

Based on actual and simulated data, the followingperformance parameters were evaluated

• Accuracy• Computational efficiency• Ability to converge

20/12-2000 (MJ) Danish GPS Center 35

AccuracyAccuracy

20/12-2000 (MJ) Danish GPS Center 36

SpeedSpeed

2 3 4 5 60

1

2

3

4

5x 10

3

Number of satellites

ALLEGRO New Algorithm + Euler-qNew Algorithm + SVD Single-point Cohen Bar Itzhack + SVD

2 3 4 5 60

1

2

3

4

5

6x 10

4 Speed Analysis with three baselinesN

um

be

r o

f F

loa

ting

Po

int

Op

era

tion

sKalman filter w. bias est.Kalman filter Geometric Descent Bar Itzhack 2

20/12-2000 (MJ) Danish GPS Center 37

ConvergenceConvergence

1 2 3 4 5 6 7 8 9 1011 1213 14150

1000

2000

3000

4000

5000

6000Kalman Filter

Convergence Time (Samples)

Nu

mb

er

of

Sa

mp

les

Number of baselines = 3

Convergence = 100%

Average = 5.75

1 2 3 4 5 6 7 8 9 1011 1213 14150

1000

2000

3000

4000

5000

6000Single-point Algorithm

Convergence Time (Samples)

Nu

mb

er

of

Sa

mp

les

Number of baselines = 3

Convergence = 100%

Average = 4.25

1 2 3 4 5 6 7 8 9 1011 1213 14150

1000

2000

3000

4000

5000

6000ALLEGRO Algorithm

Convergence Time (Samples)

Nu

mb

er

of

Sa

mp

les

Number of baselines = 3

Convergence = 100%

Average = 4.56

1 2 3 4 5 6 7 8 9 1011 1213 14150

1000

2000

3000

4000

5000

6000Geometric Descent Algorithm

Convergence Time (Samples)

Nu

mb

er

of

Sa

mp

les

Number of baselines = 3

Convergence = 100%

Average = 5.33

20/12-2000 (MJ) Danish GPS Center 38

ConvergenceConvergence

1 2 3 4 5 6 7 8 9 1011 1213 14150

1000

2000

3000

4000

5000

6000Kalman Filter

Convergence Time (Samples)

Nu

mb

er

of

Sa

mp

les

Number of baselines = 2

Convergence = 96.61%

Average = 7.87

1 2 3 4 5 6 7 8 9 1011 1213 14150

1000

2000

3000

4000

5000

6000Single-point Algorithm

Convergence Time (Samples)

Nu

mb

er

of

Sa

mp

les

Number of baselines = 2

Convergence = 69.34%

Average = 4.64

1 2 3 4 5 6 7 8 9 1011 1213 14150

1000

2000

3000

4000

5000

6000ALLEGRO Algorithm

Convergence Time (Samples)

Nu

mb

er

of

Sa

mp

les

Number of baselines = 2

Convergence = 69.75%

Average = 4.76

20/12-2000 (MJ) Danish GPS Center 39

ConclusionConclusion

• Kalman filter is by far most accurate, but also computationally very heavy

• Single-point (LSQ) offers good accuracy + high speed

• Vector matching algorithms has the lowest accuracy but does not suffer from convergence problems

• Performance depend on satellite constellation

• Results were affected by mechanical problems with levelling of the testbed