34
Appendix A – ATtiny4/5/9/10 Specification at 125°C This document contains information specific to devices operating at temperatures up to 125°C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com. 8-bit Microcontroller with 512/1024 Bytes In-System Programmable Flash ATtiny4/5/9/10 Appendix A Rev. 8127D–Appendix A–AVR–08/11

ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

Appendix A – ATtiny4/5/9/10 Specification at 125°CThis document contains information specific to devices operating at temperatures upto 125°C. Only deviations are covered in this appendix, all other information can befound in the complete datasheet. The complete datasheet can be found atwww.atmel.com.

8-bit Microcontroller with 512/1024 Bytes In-SystemProgrammable Flash

ATtiny4/5/9/10

Appendix A

Rev. 8127D–Appendix A–AVR–08/11

Page 2: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

28127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

1. Electrical Characteristics

1.1 Absolute Maximum Ratings*

1.2 DC Characteristics

Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent dam-age to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Storage Temperature ..................................... -65°C to +150°C

Voltage on any Pin except RESETwith respect to Ground ................................-0.5V to VCC+0.5V

Voltage on RESET with respect to Ground......-0.5V to +13.0V

Maximum Operating Voltage ............................................ 6.0V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current VCC and GND Pins................................ 200.0 mA

Table 1-1. DC Characteristics. TA = -40°C to +125°C

Symbol Parameter Condition Min. Typ. Max. Units

VIL Input Low VoltageVCC = 1.8V - 2.4VVCC = 2.4V - 5.5V

-0.50.2VCC0.3VCC

V

VIH

Input High-voltageExcept RESET pin

VCC = 1.8V - 2.4VVCC = 2.4V - 5.5V

0.7VCC(1)

0.6VCC(1) VCC +0.5(2) V

Input High-voltageRESET pin

VCC = 1.8V to 5.5V 0.9VCC(1) VCC +0.5(2) V

VOLOutput Low Voltage(3)

Except RESET pin(5)IOL = 10 mA, VCC = 5VIOL = 5 mA, VCC = 3V

0.70.6

V

VOHOutput High-voltage(4)

Except RESET pin(5)IOH = -10 mA, VCC = 5VIOH = -5 mA, VCC = 3V

4.22.4

V

ILILInput LeakageCurrent I/O Pin

Vcc = 5.5V, pin low(absolute value)

<0.05 2 µA

ILIHInput LeakageCurrent I/O Pin

Vcc = 5.5V, pin high(absolute value)

<0.05 2 µA

RRST Reset Pull-up Resistor Vcc = 5.5V, input low 30 60 kΩ

RPU I/O Pin Pull-up Resistor Vcc = 5.5V, input low 20 50 kΩ

Page 3: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

38127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Notes: 1. “Min” means the lowest value where the pin is guaranteed to be read as high.

2. “Max” means the highest value where the pin is guaranteed to be read as low.

3. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOL (for all ports) should not exceed 60 mA. If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

4. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOH (for all ports) should not exceed 60 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

5. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins.

6. Values are with external clock. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive.

7. BOD Disabled.

1.3 SpeedThe maximum operating frequency of the device depends on VCC . As shown in Figure 1-1, therelationship between maximum frequency vs. VCC is linear between 1.8V < VCC < 4.5V.

Figure 1-1. Maximum Frequency vs. VCC

ICC

Power Supply Current(6)

Active 1MHz, VCC = 2V 0.2 0.5 mA

Active 4MHz, VCC = 3V 0.8 1.5 mA

Active 8MHz, VCC = 5V 2.7 5 mA

Idle 1MHz, VCC = 2V 0.02 0.2 mA

Idle 4MHz, VCC = 3V 0.13 0.5 mA

Idle 8MHz, VCC = 5V 0.6 1.5 mA

Power-down mode(7)WDT enabled, VCC = 3V 4.5 20 µA

WDT disabled, VCC = 3V 0.15 10 µA

Table 1-1. DC Characteristics. TA = -40°C to +125°C (Continued)

Symbol Parameter Condition Min. Typ. Max. Units

4 MHz

6 MHz

1.8V 5.5V4.5V2.7V

10 MHz

Page 4: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

48127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

1.4 Clock Characteristics

1.4.1 Accuracy of Calibrated Internal OscillatorIt is possible to manually calibrate the internal oscillator to be more accurate than default factorycalibration. Note that the oscillator frequency depends on temperature and voltage. Voltage andtemperature characteristics can be found in Figure 2-32 on page 24 and Figure 2-33 on page 24.

Note: 1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).

1.4.2 External Clock Drive

Figure 1-2. External Clock Drive Waveform

Table 1-2. Calibration Accuracy of Internal RC Oscillator

CalibrationMethod Target Frequency VCC Temperature

Accuracy at given Voltage & Temperature(1)

FactoryCalibration

8.0 MHz 3V 25°C ±10%

UserCalibration

Fixed frequency within:7.3 – 8.1 MHz

Fixed voltage within:1.8V – 5.5V

Fixed temp. within:-40°C – 125°C ±1%

VIL1

VIH1

Table 1-3. External Clock Drive Characteristics

Symbol Parameter

VCC = 1.8 - 5.5V VCC = 2.7 - 5.5V VCC = 4.5 - 5.5V

UnitsMin. Max. Min. Max. Min. Max.

1/tCLCL Clock Frequency 0 4 0 8 0 10 MHz

tCLCL Clock Period 250 125 100 ns

tCHCX High Time 100 50 33 ns

tCLCX Low Time 100 50 33 ns

tCLCH Rise Time 2.0 1 0.6 μs

tCHCL Fall Time 2.0 1 0.6 μs

ΔtCLCL Change in period from one clock cycle to the next 2 2 2 %

Page 5: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

58127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

1.5 System and Reset Characteristics

Note: 1. Values are guidelines, only

1.5.1 Power-On Reset

Notes: 1. Values are guidelines, only

2. Threshold where device is released from reset when voltage is rising

3. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling)

1.5.2 VCC Level Monitor

Note: 1. Typical values at room temperature

Table 1-4. Reset and Internal Voltage Characteristics

Symbol Parameter Condition Min(1) Typ(1) Max(1) Units

VRSTRESET Pin Threshold Voltage

0.2 VCC 0.9VCC V

tRSTMinimum pulse width on RESET Pin

VCC = 1.8VVCC = 3VVCC = 5V

2000700400

ns

tTOUT Time-out after reset 64 128 ms

Table 1-5. Characteristics of Enhanced Power-On Reset. TA = -40 - 125°C

Symbol Parameter Min(1) Typ(1) Max(1) Units

VPOR Release threshold of power-on reset (2) 1.1 1.4 1.7 V

VPOA Activation threshold of power-on reset (3) 0.6 1.3 1.7 V

SRON Power-On Slope Rate 0.01 V/ms

Table 1-6. Voltage Level Monitor Thresholds

Parameter Min Typ(1) Max Units

Trigger level VLM1L 1.1 1.4 1.7

VTrigger level VLM1H 1.4 1.6 1.9

Trigger level VLM2 2.0 2.5 2.7

Trigger level VLM3 3.0 3.7 4.5

Settling time VMLM2,VLM3 (VLM1H,VLM1L) 5 (50) µs

Page 6: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

68127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

1.6 Analog Comparator Characteristics

Note: All parameters are based on simulation results. None are tested in production

1.7 ADC Characteristics (ATtiny5/10, only)

Table 1-7. Analog Comparator Characteristics, TA = -40°C - 125°C

Symbol Parameter Condition Min Typ Max Units

VAIO Input Offset Voltage VCC = 5V, VIN = VCC / 2 < 10 40 mV

ILAC Input Leakage Current VCC = 5V, VIN = VCC / 2 -0.5 0.5 µA

tAPD

Analog Propagation Delay(from saturation to slight overdrive)

VCC = 2.7V 750

nsVCC = 4.0V 500

Analog Propagation Delay(large step change)

VCC = 2.7V 100

VCC = 4.0V 75

tDPD Digital Propagation Delay VCC = 1.8V - 5.5 1 2 CLK

Table 1-8. ADC Characteristics. T = -40°C – 125°C. VCC = 2.5V – 5.5V

Symbol Parameter Condition Min Typ Max Units

Resolution 8 Bits

Absolute accuracy(Including INL, DNL, and Quantization, Gain and Offset Errors)

VREF = VCC = 4V,ADC clock = 200 kHz

1.0 LSB

VREF = VCC = 4V,ADC clock = 1 MHz

2.0 LSB

VREF = VCC = 4V,ADC clock = 200 kHzNoise Reduction Mode

1.0 LSB

VREF = VCC = 4V,ADC clock = 1 MHzNoise Reduction Mode

2.0 LSB

Integral Non-Linearity (INL)(Accuracy after Offset and Gain Calibration)

VREF = VCC = 4V,ADC clock = 200 kHz

1.0 LSB

Differential Non-linearity (DNL)

VREF = VCC = 4V,ADC clock = 200 kHz

0.5 LSB

Gain ErrorVREF = VCC = 4V,ADC clock = 200 kHz

1.0 LSB

Offset ErrorVREF = VCC = 4V,ADC clock = 200 kHz

1.0 LSB

Conversion Time Free Running Conversion 65 260 µs

Clock Frequency 50 200 kHz

VIN Input Voltage GND VREF V

Input Bandwidth 7.7 kHz

RAIN Analog Input Resistance 100 MΩ

ADC Conversion Output 0 255 LSB

Page 7: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

78127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

1.8 Serial Programming Characteristics

Figure 1-3. Serial Programming Timing

Table 1-9. Serial Programming Characteristics, TA = -40°C to 125°C, VCC = 5V (Unless Oth-erwise Noted)

Symbol Parameter Min Typ Max Units

1/tCLCL Clock Frequency 2 MHz

tCLCL Clock Period 500 ns

tCLCH Clock Low Pulse Width 200 ns

tCHCH Clock High Pulse Width 200 ns

tIVCH Data Input to Clock High Setup Time 50 ns

tCHIX Data Input Hold Time After Clock High 100 ns

tCLOV Data Output Valid After Clock Low Time 200 ns

tCHIX

TPIDATA

tIVCH

tCHCLtCLCH

tCLCL

TPICLK

tCLOV

Transmit ModeReceive Mode

Page 8: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

88127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

2. Typical CharacteristicsThe data contained in this section is largely based on simulations and characterization of similardevices in the same process and design methods. Thus, the data should be treated as indica-tions of how the part will behave.

The following charts show typical behavior. These figures are not tested during manufacturing.During characterisation devices are operated at frequencies higher than test limits but they arenot guaranteed to function properly at frequencies higher than the ordering code indicates.

All current consumption measurements are performed with all I/O pins configured as inputs andwith internal pull-ups enabled. Current consumption is a function of several factors such as oper-ating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executedand ambient temperature. The dominating factors are operating voltage and frequency.

A sine wave generator with rail-to-rail output is used as clock source but current consumption inPower-Down mode is independent of clock selection. The difference between current consump-tion in Power-Down mode with Watchdog Timer enabled and Power-Down mode with WatchdogTimer disabled represents the differential current drawn by the Watchdog Timer.

The current drawn from pins with a capacitive load may be estimated (for one pin) as follows:

where VCC = operating voltage, CL = load capacitance and fSW = average switching frequency ofI/O pin.

2.1 Active Supply Current

Figure 2-1. Active Supply Current vs. VCC (Internal Oscillator, 8 MHz)

ICP VCC CL f×× SW≈

ACTIVE SUPPLY CURRENT vs. VCCINTERNAL OSCILLATOR, 8 MHz

125 °C85 °C25 °C

-40 °C

0

0,5

1

1,5

2

2,5

3

3,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

Page 9: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

98127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-2. Active Supply Current vs. VCC (Internal Oscillator, 1 MHz)

Figure 2-3. Active Supply Current vs. VCC (Internal Oscillator, 128 kHz)

ACTIVE SUPPLY CURRENT vs. VCCINTERNAL OSCILLATOR, 1 MHz

125 °C85 °C25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

I CC (m

A)

ACTIVE SUPPLY CURRENT vs. VCCINTERNAL OSCILLATOR, 128 KHz

125 °C85 °C

25 °C-40 °C

0

0,02

0,04

0,06

0,08

0,1

0,12

1,5 2 2,5 3 3,5 4 4,5 5 5,5VCC (V)

I CC (m

A)

Page 10: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

108127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-4. Active Supply Current vs. VCC (External Clock, 32 kHz)

2.2 Idle Supply Current

Figure 2-5. Idle Supply Current vs. VCC (Internal Oscillator, 8 MHz)

ACTIVE SUPPLY CURRENT vs. VCCINTERNAL OSCILLATOR, 32 KHz

125 °C

85 °C25 °C

-40 °C

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

IDLE SUPPLY CURRENT vs. VCCINTERNAL RC OSCILLATOR, 8 MHz

125 °C85 °C25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

Page 11: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

118127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-6. Idle Supply Current vs. VCC (Internal Oscillator, 1 MHz)

2.3 Power-down Supply Current

Figure 2-7. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)

IDLE SUPPLY CURRENT vs. VCCINTERNAL RC OSCILLATOR, 1 MHz

125 °C85 °C25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (m

A)

POWER-DOWN SUPPLY CURRENT vs. VCCWATCHDOG TIMER DISABLED

125 °C

85 °C

25 °C-40 °C0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (u

A)

Page 12: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

128127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-8. Power-down Supply Current vs. VCC (Watchdog Timer Enabled)

2.4 Pin Pull-up

Figure 2-9. I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V)

POWER-DOWN SUPPLY CURRENT vs. VCCWATCHDOG TIMER ENABLED

0

2

4

6

8

10

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (u

A)

125 °C

85 °C25 °C

-40 °C

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

125 °C

85 °C

25 °C

-40 °C

0

10

20

30

40

50

60

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

VOP (V)

I OP

(uA

)

Page 13: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

138127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-10. I/O Pin Pull-up Resistor Current vs. input Voltage (VCC = 2.7V)

Figure 2-11. I/O pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

0

10

20

30

40

50

60

70

80

35,225,115,00

VOP (V)

I OP (u

A)

125 °C

85 °C

25 °C

-40 °C

I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

0

20

40

60

80

100

120

140

160

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

VOP (V)

I OP (u

A)

125 °C

85 °C25 °C

-40 °C

Page 14: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

148127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-12. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V)

Figure 2-13. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE

0

5

10

15

20

25

30

35

40

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2

VRESET (V)

I RE

SE

T (u

A)

125 °C85 °C

25 °C-40 °C

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE

0

10

20

30

40

50

60

35,225,115,00

VRESET (V)

I RE

SE

T (u

A)

125 °C85 °C

25 °C-40 °C

Page 15: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

158127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-14. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

2.5 Pin Driver Strength

Figure 2-15. I/O Pin Output Voltage vs. Sink Current (VCC = 1.8V)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE

0

20

40

60

80

100

120

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

VRESET (V)

I RE

SE

T (u

A)

125 °C85 °C

25 °C-40 °C

I/O PIN OUTPUT VOLTAGE vs. SINK CURRENTVCC = 1.8V

125 °C

85 °C

25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

IOL (mA)

V OL (

V)

Page 16: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

168127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-16. I/O Pin Output Voltage vs. Sink Current (VCC = 3V)

Figure 2-17. I/O pin Output Voltage vs. Sink Current (VCC = 5V)

I/O PIN OUTPUT VOLTAGE vs. SINK CURRENTVCC = 3V

125 °C

85 °C

25 °C-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 1 2 3 4 5 6 7 8 9 10IOL (mA)

VO

L (V

)

I/O PIN OUTPUT VOLTAGE vs. SINK CURRENTVCC = 5V

125 °C

85 °C

25 °C-40 °C

0

0,2

0,4

0,6

0,8

1

1,2

0 2 4 6 8 10 12 14 16 18 20IOL (mA)

VO

L (V

)

Page 17: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

178127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-18. I/O Pin Output Voltage vs. Source Current (VCC = 1.8V)

Figure 2-19. I/O Pin Output Voltage vs. Source Current (VCC = 3V)

I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENTVCC = 1.8V

125 °C85 °C

25 °C

-40 °C

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5IOH (mA)

VO

H (V

)

I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENTVCC = 3V

125 °C85 °C

25 °C-40 °C

1,5

1,7

1,9

2,1

2,3

2,5

2,7

2,9

3,1

0 1 2 3 4 5 6 7 8 9 10IOH (mA)

VO

H (V

)

Page 18: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

188127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-20. I/O Pin output Voltage vs. Source Current (VCC = 5V)

2.6 Pin Threshold and Hysteresis

Figure 2-21. I/O Pin Input Threshold Voltage vs. VCC (VIH, IO Pin Read as ‘1’)

I/O PIN OUTPUT VOLTAGE vs. SOURCE CURRENTVCC = 5V

125 °C85 °C

25 °C-40 °C

3,8

4

4,2

4,4

4,6

4,8

5

5,2

0 2 4 6 8 10 12 14 16 18 20

IOH (mA)

V OH (V

)

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCCVIH, IO PIN READ AS '1'

0

0,5

1

1,5

2

2,5

3

3,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Thre

shol

d (V

)

125 °C85 °C25 °C

-40 °C

Page 19: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

198127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-22. I/O Pin Input threshold Voltage vs. VCC (VIL, IO Pin Read as ‘0’)

Figure 2-23. I/O Pin Input Hysteresis vs. VCC

I/O PIN INPUT THRESHOLD VOLTAGE vs. VCCVIL, IO PIN READ AS '0'

0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Thre

shol

d (V

)

125 °C85 °C25 °C

-40 °C

I/O PIN INPUT HYSTERESIS vs. VCC

0

0,2

0,4

0,6

0,8

1

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Inpu

t Hys

tere

sis

(V)

125 °C

85 °C

25 °C

-40 °C

Page 20: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

208127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-24. Reset Pin as I/O, Input Threshold Voltage vs. VCC (VIH, I/O Pin Read as ‘1’)

Figure 2-25. Reset Pin as I/O, Input Threshold Voltage vs. VCC (VIL, I/O pin Read as ‘0’)

RESET PIN AS I/O THRESHOLD VOLTAGE vs. VCCVIH, RESET READ AS '1'

0

0,5

1

1,5

2

2,5

3

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Thre

shol

d (V

)

125 °C85 °C25 °C

-40 °C

RESET PIN AS I/O THRESHOLD VOLTAGE vs. VCCVIL, RESET READ AS '0'

0

0,5

1

1,5

2

2,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Thre

shol

d (V

)

125 °C85 °C25 °C

-40 °C

Page 21: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

218127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-26. Reset Input Hysteresis vs. VCC (Reset Pin Used as I/O)

Figure 2-27. Reset Input Threshold Voltage vs. VCC (VIH, I/O Pin Read as ‘1’)

RESET PIN AS I/O, INPUT HYSTERESIS vs. VCCVIL, PIN READ AS "0"

125 °C

85 °C

25 °C

-40 °C

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Inpu

t Hys

tere

sis

(V)

RESET INPUT THRESHOLD VOLTAGE vs. VCCVIH, IO PIN READ AS '1'

0

0,5

1

1,5

2

2,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Thre

shol

d (V

)

125 °C85 °C25 °C

-40 °C

Page 22: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

228127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-28. Reset Input Threshold Voltage vs. VCC (VIL, I/O pin Read as ‘0’)

Figure 2-29. Reset Pin, Input Hysteresis vs. VCC

RESET INPUT THRESHOLD VOLTAGE vs. VCCVIL, IO PIN READ AS '0'

0

0,5

1

1,5

2

2,5

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

125 °C85 °C25 °C

-40 °C

RESET PIN INPUT HYSTERESIS vs. VCC

125 °C85 °C25 °C

-40 °C

0

0,2

0,4

0,6

0,8

1

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Inpu

t Hys

tere

sis

(V)

Page 23: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

238127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

2.7 Analog Comparator Offset

Figure 2-30. Analog Comparator Offset

2.8 Internal Oscillator Speed

Figure 2-31. Watchdog Oscillator Frequency vs. VCC

Analog Comparator OffsetVcc = 5V

-0,002

0

0,002

0,004

0,006

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Vin

Offs

et

85 °C

125 °C

25 °C

-40 °C

WATCHDOG 128 kHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE

125 °C

85 °C

25 °C-40 °C

0,09

0,095

0,1

0,105

0,11

0,115

0,12

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

F RC (M

Hz)

Page 24: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

248127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-32. Calibrated Oscillator Frequency vs. VCC

Figure 2-33. Calibrated Oscillator Frequency vs. Temperature

CALIBRATED 8.0MHz OSCILLATOR FREQUENCY vs. OPERATING VOLTAGE

125 °C85 °C

25 °C

-40 °C

7,4

7,6

7,8

8

8,2

8,4

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Freq

uenc

y (M

Hz)

CALIBRATED 8.0MHz OSCILLATOR FREQUENCY vs. TEMPERATURE

5.0 V

3.0 V

1.8 V

7,5

7,6

7,7

7,8

7,9

8

8,1

8,2

8,3

-40 -20 0 20 40 60 80 100 120 140Temperature

Freq

uenc

y (M

Hz)

Page 25: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

258127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-34. Calibrated Oscillator Frequency vs, OSCCAL Value

2.9 VLM Thresholds

Figure 2-35. VLM1L Threshold of VCC Level Monitor

CALIBRATED 8.0MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUEVCC = 3V

125 °C

85 °C25 °C

-40 °C

0

2

4

6

8

10

12

14

16

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240OSCCAL (X1)

Freq

uenc

y (M

Hz)

VLM THRESHOLD vs. TEMPERATUREVLM2:0 = 001

1,35

1,36

1,37

1,38

1,39

1,4

1,41

1,42

1,43

1,44

1,45

-40 -20 0 20 40 60 80 100 120 140

Temperature (C)

Thre

shol

d (V

)

Page 26: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

268127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-36. VLM1H Threshold of VCC Level Monitor

Figure 2-37. VLM2 Threshold of VCC Level Monitor

VLM THRESHOLD vs. TEMPERATUREVLM2:0 = 010

1,45

1,5

1,55

1,6

1,65

1,7

-40 -20 0 20 40 60 80 100 120 140Temperature (C)

Thre

shol

d (V

)

VLM THRESHOLD vs. TEMPERATUREVLM2:0 = 011

2,43

2,44

2,45

2,46

2,47

2,48

-40 -20 0 20 40 60 80 100 120 140Temperature (C)

Thre

shol

d (V

)

Page 27: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

278127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-38. VLM3 Threshold of VCC Level Monitor

2.10 Current Consumption of Peripheral Units

Figure 2-39. Temperature Dependence of VLM Current vs. VCC

VLM THRESHOLD vs. TEMPERATUREVLM2:0 = 100

3,4

3,5

3,6

3,7

3,8

3,9

-40 -20 0 20 40 60 80 100 120 140Temperature (C)

Thre

shol

d (V

)

VLM SUPPLY CURRENT vs. VCCVLM2:0 = 001

125 °C85 °C

25 °C

-40 °C

0

50

100

150

200

250

300

350

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (u

A)

Page 28: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

288127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Figure 2-40. Watchdog Timer Current vs. VCC

2.11 Reset Pulsewidth

Figure 2-41. Minimum Reset Pulse Width vs. VCC

WATCHDOG TIMER CURRENT vs. VCC

125 °C

85 °C25 °C

-40 °C

0

2

4

6

8

10

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I CC (u

A)

MINIMUM RESET PULSE WIDTH vs. VCC

125 °C85 °C25 °C

-40 °C

0

500

1000

1500

2000

2500

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

Pul

sew

idth

(ns)

Page 29: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

298127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

3. Ordering Information

Notes: 1. Tape and reel.

2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-ous Substances (RoHS). NiPdAu finish.

3. Top/bottomside markings for ATtiny4:

– Topside: T4x (x stands for “die revision”)

– Bottomside: z8zzz [8 stands for (-40°C to 125°C)]

3.1 ATtiny4

Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range

10 1.8 - 5.5V ATtiny4-TS8R(3) 6ST1Industrial

(-40°C to 125°C)

Package Type

6ST1 6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23)

Page 30: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

308127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Notes: 1. Tape and reel.

2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-ous Substances (RoHS). NiPdAu finish.

3. Top/bottomside markings for ATtiny5:

– Topside: T5x (x stands for “die revision”)– Bottomside: z8zzz [8 stands for (-40°C to 125°C)]

3.2 ATtiny5

Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range

10 1.8 - 5.5V ATtiny5-TS8R(3) 6ST1Industrial

(-40°C to 125°C)

Package Type

6ST1 6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23)

Page 31: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

318127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

Notes: 1. Tape and reel.

2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-ous Substances (RoHS). NiPdAu finish.

3. Top/bottomside markings for ATtiny9:

– Topside: T9x (x stands for “die revision”)– Bottomside: z8zzz [8 stands for (-40°C to 125°C)]

3.3 ATtiny9

Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range

10 1.8 - 5.5V ATtiny9-TS8R(3) 6ST1Industrial

(-40°C to 125°C)

Package Type

6ST1 6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23)

Page 32: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

328127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

3.4 ATtiny10

Notes: 1. Tape and reel.

2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-ous Substances (RoHS). NiPdAu finish.

3. Top/bottomside markings for ATtiny10:

– Topside: T10x (x stands for “die revision”)

– Bottomside: z8zzz [8 stands for (-40°C to 125°C)]

Speed (MHz) Power Supply Ordering Code(1) Package(2) Operational Range

10 1.8 - 5.5V ATtiny10-TS8R(3) 6ST1Industrial

(-40°C to 125°C)

Package Type

6ST1 6-lead, 2.90 x 1.60 mm Plastic Small Outline Package (SOT23)

Page 33: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

338127D–Appendix A–AVR–08/11

ATtiny4/5/9/10

4. Revision History

Revision No. History

8127A–Appendix A–AVR–02/10 Initial revision

8127D–Appendix A–AVR–08/11 Updated contact information

Page 34: ATtiny4/5/9/10 - Appendix Aww1.microchip.com/downloads/en/DeviceDoc/8127_125.pdf4 8127D–Appendix A–AVR–08/11 ATtiny4/5/9/10 1.4 Clock Characteristics 1.4.1 Accuracy of Calibrated

8127D–Appendix A–AVR–08/11

Headquarters International

Atmel Corporation2325 Orchard ParkwaySan Jose, CA 95131USATel: (+1)(408) 441-0311Fax: (+1)(408) 487-2600

Atmel Asia LimitedUnit 01-5 & 16, 19FBEA Tower, Millennium City 5418 Kwun Tong RoadKwun Tong, KowloonHONG KONGTel: (+852) 2245-6100Fax: (+852) 2722-1369

Atmel Munich GmbHBusiness CampusParkring 4D-85748 Garching b. MunichGERMANYTel: (+49) 89-31970-0 Fax: (+49) 89-3194621

Atmel Japan9F, Tonetsu Shinkawa Bldg.1-24-8 ShinkawaChuo-ku, Tokyo 104-0033JAPANTel: (+81)(3) 3523-3551Fax: (+81)(3) 3523-7581

Product Contact

Web Sitewww.atmel.com

Technical [email protected]

Sales Contactwww.atmel.com/contacts

Literature Requestswww.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to anyintellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORYWARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULARPURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OFTHE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes norepresentations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specificationsand product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedotherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for useas components in applications intended to support or sustain life.

© 2011 Atmel Corporation. All rights reserved.

Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other termsand product names may be trademarks of others.