26
E-MRS – Strasbourg 2010 1 Laboratoire de Simulation atomistique http://inac.cea.fr/sp2m/L_Sim Atomistic simulations of point defect diffusion in Si and SiGe P. Pochet, D. Caliste, K. Rushchanskii, F. Lançon & T. Deutsch CEA-UJF  INAC Institute for Nanoscience and Cryogenics Partially founded by the OSiGe_Sim project ANR-05-NANO-004

Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 1Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Atomistic simulations of point defect diffusion in Si and SiGe

P. Pochet, D. Caliste, K. Rushchanskii, F. Lançon & T. Deutsch 

CEA­UJF  INAC Institute for Nanoscience and Cryogenics

Partially founded by the OSiGe_Sim project ANR-05-NANO-004

Page 2: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 2Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Context and outline

Diffusion in the microelectronic material

Ge & PD diffusionStrainCharge stateDopant

© 2006 STMicroelectronics© 2006 CEA-Recherche Fondamentale

0 10 20 30 40 500

0.5

1

1.5

2

2.5

X[nm]

Z[n

m]

0 10 20 30 40 500

0.5

1

1.5

2

2.5

X[nm]

Z[n

m]

● Some insight of Ge diffusion in SiGe

● The case of Si vacancy diffusion

● Summary and outlooks

SiGe Cmos SiGe QD

The need of multi-scale for diffusion simulations !

Page 3: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 3Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

The multi-scale method for diffusion studies

Kinetic Lattice Monte Carlo

ab initio calculationMigrationE

m

FormationE

f

Kinetic

Phenomenological model

Coupling

Analysis

Equilibrium

DFT (CPMD, SIESTA): 216 atoms simulation box, Γ or 2x2x2, only some typical configurations; NEB driver for saddle point calculation

Coupling through models that reproduce the DFT energies for all possible configurations

BKL-type KLMC simulations (resident time)

Page 4: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 4Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Diffusion in Siy-Ge

1 - y alloys (DFT step only)

* Vacancy diffusion for y < 0.70 and T < ~ 1000 °C

* Dual diffusion for lower concentration

Vacancy and interstitial diffusion

Fahey et al. '89

Strohm et al. '02

DFT study of Ge diffusion in Si

GeSi

Ge@Si

[Strohm et al. 2002]

[Fahey et al. 1989]

Page 5: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 5Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Formation energy Ef = 3.6 eV (216-2k)

Migration path with a ring mechanism

D. Caliste, P. Pochet, T. Deutsch, F. Lançon PRB 75, 125203 (2007)

The vacancy mechanisms

Jahn-Teller effect

Ge

Si

pairing

<Em> = 0.37 eV

Only one Ge in the Si box

Page 6: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 6Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Mixed dumbbell d<110> 3.16 eV

Hexagonal GeH 3.45 eV

Hexagonal SiH 3.33 eV

The interstitial formation

D. Caliste, P. Pochet, T. Deutsch, F. Lançon PRB 75, 125203 (2007)

Page 7: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 7Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Second neighbor diffusion

D. Caliste, P. Pochet, T. Deutsch, F. Lançon PRB 75, 125203 (2007)

The migration mechanism of the <110> dumbbell

Through hexagonal interstitial

Page 8: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 8Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Direct migration of GeH : <Em> ~ 0.10 eV

Back movement GeH --> d<110> : Em = 0.15 eV

D. Caliste, P. Pochet, T. Deutsch, F. Lançon PRB 75, 125203 (2007)

The interstitial migration mechanism

d<110> --> GeH Em = 0.44 eV

d<110> --> SiH Em = 0.37 eV

GeH

d<110>d<110>

Kick-off scheme diffusion but with a dumbbell to hexagonal ratio is not << 1 !

Direct migration of GeH : <Em> ~ 0.10 eV

Forth movement GeH --> d<110> : Em = 0.15 eV

Direct migration of GeH : <Em> ~ 0.10 eV

Forth movement GeH --> d<110> : Em = 0.15 eV

<Em > = 0.44 eV

Page 9: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 9Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Low formation energy:

Ef = 2.62 eV

High migration energy:

Em = 1.63 eV

D. Caliste, P. Pochet, T. Deutsch, F. Lançon PRB 75, 125203 (2007)

The FFCD mechanism: an intrinsic mechanism

[Pandey, PRL 57, 2287 (1986) and Goedecker, PRL 88, 235501 (2002)]

~ SWin C

60

Page 10: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 10Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Ge diffusion in Si (comparison with experiments)

For FFCD Ea = 4.2 eV Saddle point unknown

For interstitials Ea = 3.7 eV E

a = E

f + <E

m> unknown

For vacancies Ea = 4.0 eV E

a = E

f + <E

m> 4.18 eV

D. Caliste, P. Pochet, T. Deutsch, F. Lançon PRB 75, 125203 (2007)

All mediators might contribute to diffusion as observed in experimentsbut the Ge diffusion activation energy is ~ 5 eV ?!

Direct use of ab initio value: 1 mediator only

[Strohm et al. 2002]

For complex diffusion mechanism, effective activation energies could be higher than the direct sum of individual one ?

Need of Monte Carlo step for correct physical average !

Page 11: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 11Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Watkins Em

= 0.45 eV direct measurement of Em

[MSS. Proc. 3, 227-235 (2000)]

Bracht et al. Em = 1.8 eV measurement of E

a[PRL 91, 245502 (2003)]

Ranki et al. Em

= 1.2 eV measurement of Ea

[PRL 93, 255502 (2004)]

The case of Si vacancy

Can we explain these scattered data from effective phenomena ?

An old but controversial story for migration energy ...

Page 12: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 12Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

DFT step: vacancy formation energy

3.52 eV (216-1k) 3.6 eV (Dannefaer 1986)In Si, DFT fit well with exp

Jahn-Teller effect G D Watkins 1992

[D. Caliste PhD (2005); see also Wright (2006)]

Si pairing

Only neutral vacancy ![G. Watkins 1992]

Page 13: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 13Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

0.30 eV 1.19 eV

NE

B+

DII

S 2

16-1

k

1 V 2 V

Exp: 0.45 eV Exp: 1.3 eV

DFT step: vacancy migration energy

[ Watkins '79 ] [ Watkins '65 ]

Page 14: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 14Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Coupling step: migration landscape

D. Caliste and P. Pochet PRL 97 135901 (2006)

Page 15: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 15Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

2 vacancies and 0,1 à 18 M silicon atoms

Monte Carlo step

Einstein formula

--> D as function of T and C

v

D. Caliste and P. Pochet PRL 97 135901 (2006)

Average on 20 trajectories

time (s)

Mea

n sq

uare

dis

plac

emen

t

Mea

n sq

uare

dis

plac

emen

t

r2(t) = 2 dDtTT = 1200 K

Page 16: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 16Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Non-Arrhenius diffusion is predicted !

--> Em D

Si

3 diffusion regimes !

10 - 7 at - 1

4 10 - 6 at - 1

Page 17: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 17Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Monte Carlo simulations

Associated

Dissociated

D. Caliste and P. Pochet; PRL 97 135901 (2006)

Step-like trajectory in intermediate temperature ?

Mea

n sq

uare

dis

plac

emen

t

time (s)

2 x

1V

2 x

1V

2V

T = 1200 K

Page 18: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 18Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Concurrent diffusion in 1V or 2V

2V migration (slow) 1V migration (fast)2V dissociation

Three temperature regime rationalization

Analytical derivative gives a model for effective migration energy

D. Caliste and P. Pochet PRL 97 135901 (2006)

With fα and f

β being [0-1] bounded

Page 19: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 19Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

0.45 eV

> high T or low Cv

T < 200 K ~ équilibium

Em = 0.45 eV

650-900 KHighly doped

Em = 1.3 eV

1050-1150 K

e- irradiation

Em = 1.8 ± 0,5 eV

Watkins '79

Ranki '04

Bracht '03

regi

on I

Model vs MC simulations (high T)

low Cv <-- medium C

v <--

high C

v D. Caliste and P. Pochet PRL 97 135901 (2006)

Page 20: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 20Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

1.25 eV

< 850 K for Cv =10-7 at-1

T < 200 K ~ équilibium

Em = 0.45 eV

650-900 KHighly doped

Em = 1.3 eV

1050-1150 K

e- irradiation

Em = 1.8 ± 0,5 eV

Watkins '79

Ranki '04

Bracht '03

regi

on I

II

Model vs MC simulations (low T)

D. Caliste and P. Pochet PRL 97 135901 (2006)

Page 21: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 21Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

850-1300 K for Cv=10-7 at-1

T < 200 K ~ équilibium

Em = 0.45 eV

650-900 KHighly doped

Em = 1.3 eV

1050-1150 K

e- irradiation

Em = 1.8 ± 0,5 eV

Watkins '79

Ranki '04

Bracht '03

2.1 eV re

gion

II

Model vs MC simulations (intermediate T)

D. Caliste and P. Pochet PRL 97 135901 (2006)

Page 22: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 22Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

T < 200 K ~ équilibium

Em = 0.45 eV

650-900 KHighly doped

Em = 1.3 eV

1050-1150 K

e- irradiation

Em = 1.8 ± 0.5 eV

[ Ranki '04 ]

Experiment reconciliation

Em = 0.45 eV

Em = 2.1 eV

Em = 1.25 eV

[ Bracht '03 ]

[ Watkins '79 ]

D. Caliste and P. Pochet PRL 97 135901 (2006)

Page 23: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 23Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

3 temperature regimes already observed in Si !

Low T, slow diffusion 2V

Evolution of the He cavity radius as function of implantation T

Low T, fast diffusion 1V

Intermediate T, slow diffusion 1V

Fast diffusion allows effusion; slow diffusion allows cavity formation. The slower the diffusion the bigger the mean cavity radius.

[M. L. David et al JAP 93 1438 (2003)]

D. Caliste and P. Pochet PRL 97 135901 (2006)

I

III

I

II

Page 24: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 24Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Summary

Multi-scale simulation is a powerful tool for diffusion studies

DFT step is not enough when concurrent mechanisms are involved.

Coupling between DFT and KLMC is a good solution

Effective mechanisms might explain simulation/experiment discrepancy

Drawbacks:

On lattice simulations

Pre-calculated events database

In complex diffusion mechanism effective activation energies might be higher than the direct sum of individual one !

Page 25: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 25Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Growth on Ge QD on Si using ab initio and off-lattice on-the-fly KMC

MUSCADE project founded 2010-2012

Study of possible mechanisms of LID in SOG silicon (cf 4.3)

Outlooks

Strain effect:

[K. Z. Rushchanskii, et al. APL 92, 152110 (2008)]

?

Work in progress to go above our first analysis

Charge effect:Work in progress to develop an accurate ab initio scheme

[N. Mousseau et al. (2008)]

Page 26: Atomistic simulations of point defect diffusion in Si and SiGe€¦ · Laboratoire de Simulation atomistique EMRS – Strasbourg 2010 1 Atomistic simulations of point defect diffusion

E­MRS – Strasbourg 2010 26Laboratoire de Simulation atomistique

http://inac.cea.fr/sp2m/L_Sim

Acknowledgment to all the OSiGe_Sim partners:

P. Blaise and P. Rivallin (Leti)

A. Pakfar and H. Jaouen (STmicroelectronics)

P. Ganster, A. Saul and G. Treglia (CINAM)

S. Fetah, A. Dkhissi, A. Upadhyay, A. Estève, G. Landa and M. Djafari-Rouhani (LAAS)

Acknowledgments

References:

D. Caliste and P. Pochet PRL 97 135901 (2006)

D. Caliste, P. Pochet, T. Deutsch and F. Lançon PRB 75, 125203 (2007)

K. Z. Rushchanskii, P. Pochet and F. Lançon APL 92, 152110 (2008)

Partially founded by the OSiGe_Sim project ANR-05-NANO-004