4
Atomic Structure: The Quantum Mechanical Model Atomic Structure: The Quantum Mechanical Model Two models of atomic structure are in use today: the Bohr model and the quantu Two models of atomic structure are in use today: the Bohr model and the quantu mechanical model. The quantum mechanical model is based on mathematics. mechanical model. The quantum mechanical model is based on mathematics. Although it is more difficult to understand than the Bohr model, it can be us Although it is more difficult to understand than the Bohr model, it can be use exlain obser!ations made on comlex atoms. exlain obser!ations made on comlex atoms. A model is useful because it hels you understand what"s obser!ed in nature. A model is useful because it hels you understand what"s obser!ed in nature. # unusual to ha!e more than one model reresent and hel eole understand a unusual to ha!e more than one model reresent and hel eole understand a articular toic. articular toic. The quantum mechanical model is based on The quantum mechanical model is based on quantum theory quantum theory , which says matter also , which says matter also has roerties associated with wa!es. According to quantum theory, it"s imoss has roerties associated with wa!es. According to quantum theory, it"s imoss to $now the exact osition and momentum of an electron at the same time. This to $now the exact osition and momentum of an electron at the same time. This $nown as the $nown as the Uncertainty Principle Uncertainty Principle . The quantum mechanical model of the atom uses comlex shaes The quantum mechanical model of the atom uses comlex shaes of of orbitals orbitals %sometimes called %sometimes called electron clouds electron clouds &, !olumes of sace in which there &, !olumes of sace in which there is is likely likely to be an electron. So, this model is based on robability rather than ce to be an electron. So, this model is based on robability rather than ce 'our numbers, called 'our numbers, called quantum numbers quantum numbers , were introduced to describe the , were introduced to describe the characteristics of electrons and their orbitals: characteristics of electrons and their orbitals: (rincial quantum number: n (rincial quantum number: n Angular momentum quantum number: l Angular momentum quantum number: l Magnetic quantum number: Magnetic quantum number: Sin quantum number: Sin quantum number: The rincial quantum number The rincial quantum number The rincial quantum number n describes the a!erage distance of the orbital f The rincial quantum number n describes the a!erage distance of the orbital f the nucleus ) and the energy of the electron in an atom. #t can ha!e ositi!e the nucleus ) and the energy of the electron in an atom. #t can ha!e ositi!e %whole number& !alues: *, +, , -, and so on. The larger the !alue of n, the h %whole number& !alues: *, +, , -, and so on. The larger the !alue of n, the h energy and the larger the orbital. hemists sometimes call the orbitals energy and the larger the orbital. hemists sometimes call the orbitals electron electron shells shells .

Atomic Structure

Embed Size (px)

DESCRIPTION

english

Citation preview

Atomic Structure: The Quantum Mechanical ModelTwo models of atomic structure are in use today: the Bohr model and the quantum mechanical model. The quantum mechanical model is based on mathematics. Although it is more difficult to understand than the Bohr model, it can be used to explain observations made on complex atoms.A model is useful because it helps you understand whats observed in nature. Its not unusual to have more than one model represent and help people understand a particular topic.The quantum mechanical model is based onquantum theory, which says matter also has properties associated with waves. According to quantum theory, its impossible to know the exact position and momentum of an electron at the same time. This is known as theUncertainty Principle.The quantum mechanical model of the atom uses complex shapes oforbitals(sometimes calledelectron clouds), volumes of space in which there islikelyto be an electron. So, this model is based on probability rather than certainty.Four numbers, calledquantum numbers, were introduced to describe the characteristics of electrons and their orbitals: Principal quantum number: n Angular momentum quantum number: l Magnetic quantum number: Spin quantum number:

The principal quantum numberThe principal quantum number n describes the average distance of the orbital from the nucleus and the energy of the electron in an atom. It can have positive integer (whole number) values: 1, 2, 3, 4, and so on. The larger the value of n, the higher the energy and the larger the orbital. Chemists sometimes call the orbitalselectron shells.The angular momentum quantum numberThe angular momentum quantum numberldescribes the shape of the orbital, and the shape is limited by the principal quantum number n: The angular momentum quantum numberlcan have positive integer values from 0 to n1. For example, if the n value is 3, three values are allowed forl: 0, 1, and 2.The value ofldefines the shape of the orbital, and the value of n defines the size.Orbitals that have the same value of n but different values oflare calledsubshells. These subshells are given different letters to help chemists distinguish them from each other. The following table shows the letters corresponding to the different values ofl.Letter Designations of the Subshells

Value of l (subshell)Letter

0s

1p

2d

3f

4g

When chemists describe one particular subshell in an atom, they can use both the n value and the subshell letter 2p, 3d, and so on. Normally, a subshell value of 4 is the largest needed to describe a particular subshell. If chemists ever need a larger value, they can create subshell numbers and letters.The following figure shows the shapes of the s, p, and d orbitals.

As shown in the top row of the figure (a), there are two s orbitals one for energy level 1 (1s) and the other for energy level 2 (2s). The s orbitals are spherical with the nucleus at the center. Notice that the 2s orbital is larger in diameter than the 1s orbital. In large atoms, the 1s orbital is nestled inside the 2s, just like the 2p is nestled inside the 3p.The second row of the figure (b) shows the shapes of the p orbitals, and the last two rows (c) show the shapes of the d orbitals. Notice that the shapes get progressively more complex.The magnetic quantum numberThe magnetic quantum number is designated as:

This number describes how the various orbitals are oriented in space. The value of this number depends on the value ofl. The values allowed are integers from lto 0 to +l. For example, if the value ofl= 1 (p orbital), you can write three values for this number: 1, 0, and +1. This means that there are three different p subshells for a particular orbital. The subshells have the same energy but different orientations in space.The second row (b) of the figure shows how the p orbitals are oriented in space. Notice that the three p orbitals correspond to magnetic quantum number values of 1, 0, and +1, oriented along the x, y, and z axes.The spin quantum numberThe fourth and final quantum number is the spin quantum number, designated as:

This number describes the direction the electron is spinning in a magnetic field either clockwise or counterclockwise. Only two values are allowed: +1/2 or 1/2. For each subshell, there can be only two electrons, one with a spin of +1/2 and another with a spin of 1/2.