55
1 Winter Workshop on Comput ational Atomic Physics 06/13/22 Atomic Physics with Supercomputers Darío M . . Mitnik

Atomic Physics with Supercomputers. Darío M. Mitnik

Embed Size (px)

Citation preview

Page 1: Atomic Physics with Supercomputers. Darío M. Mitnik

1Winter Workshop on Computational Atomic Physics

04/21/23

Atomic Physics with Supercomputers

Darío M. . Mitnik

Page 2: Atomic Physics with Supercomputers. Darío M. Mitnik

2Winter Workshop on Computational Atomic Physics

04/21/23

Electron-Ion scatteringcalculations

Darío M. . Mitnik

Page 3: Atomic Physics with Supercomputers. Darío M. Mitnik

3Winter Workshop on Computational Atomic Physics

04/21/23

Atomic Physics with Supercomputers

Darío M. . Mitnik

Page 4: Atomic Physics with Supercomputers. Darío M. Mitnik

4Winter Workshop on Computational Atomic Physics

04/21/23

M. S. Pindzola, F. Robicheaux, J. Colgan,Auburn University, Auburn, AL

D. C. Griffin,Rollins College, Winter Park, FL

N. R. BadnellStrathclyde University, Glasgow, UK

Page 5: Atomic Physics with Supercomputers. Darío M. Mitnik

Outline

What are we calculating?

Why do we need supercomputers for such calculations?

How do we use the supercomputers in these calculations?

Page 6: Atomic Physics with Supercomputers. Darío M. Mitnik

What are we calculating?

Rate Coefficients

Cross Sections

Page 7: Atomic Physics with Supercomputers. Darío M. Mitnik

Electron-Impact Excitation

ki

Nelectron ion

kf

Eth

b

a

Page 8: Atomic Physics with Supercomputers. Darío M. Mitnik

Electron-Impact Excitation

<ai| V | bf>

a

b

i

f

Page 9: Atomic Physics with Supercomputers. Darío M. Mitnik

(N1) – electron ionkf

ke

Electron-Impact Ionization

ki

EI

N – electron ion

a

Page 10: Atomic Physics with Supercomputers. Darío M. Mitnik

Electron-Impact Ionization

<ai| V | ef>

a

e

i

f

Page 11: Atomic Physics with Supercomputers. Darío M. Mitnik

Radiative Recombination

N – electron ion

EI

(N+1) – electron ion

ki

a

b

Page 12: Atomic Physics with Supercomputers. Darío M. Mitnik

Radiative Recombination

Mba= <b| D | ai >

b

a+ i

Photoionization:

Radiative Recombination:

Mab = 42c2/(2ki) |Mba|2

Page 13: Atomic Physics with Supercomputers. Darío M. Mitnik

Dielectronic Recombination

Mba= <b| D | ai >

b

a+ i

Photoionization:

b

a+ i

n n

+

<b| V | n > <n| D | ai >

n + i n/2+

Page 14: Atomic Physics with Supercomputers. Darío M. Mitnik

N – electron ion

bEI

(N+1) – electron ion

Dielectronic Recombination

ki

n

a

Page 15: Atomic Physics with Supercomputers. Darío M. Mitnik

Dielectronic Recombination

EI

1s22s

1s22s2

Li-like

Be-like

1s22p

1s2 2

pnl

1s22p3/2

1s2 2

p 3/2n

l

Page 16: Atomic Physics with Supercomputers. Darío M. Mitnik

Dielectronic Recombination

D.M. Mitnik et al, Phys. Rev. A 61, 022705 (2000)

Page 17: Atomic Physics with Supercomputers. Darío M. Mitnik

Dielectronic Recombination

D.M. Mitnik et al, Phys. Rev. A 57, 4365 (1998)

Page 18: Atomic Physics with Supercomputers. Darío M. Mitnik

Electron-ion Recombination

D.M. Mitnik et al, Phys. Rev. A 59, 3592 (1999)

Page 19: Atomic Physics with Supercomputers. Darío M. Mitnik

Excitation-Autoionization

EI

1s22s

1s22s2

Li-like

Be-like

1s22p

1s22p3/2

1s2 2

p 3/2n

l

Page 20: Atomic Physics with Supercomputers. Darío M. Mitnik

Excitation-Autoionization

D.M. Mitnik et al, Phys. Rev. A 53, 3178 (1996)

Page 21: Atomic Physics with Supercomputers. Darío M. Mitnik

Excitation (resonances)

EI

1s22s

1s22s2

Li-like

Be-like

1s22p

1s22p3/2

1s2 2

p 3/2n

l

Page 22: Atomic Physics with Supercomputers. Darío M. Mitnik

Excitation (resonances)

D.M. Mitnik et al, Phys. Rev. A 62, 062711 (2000)

Page 23: Atomic Physics with Supercomputers. Darío M. Mitnik

Excitation (resonances)

D.C. Griffin et al, J. Phys. B 33, 4389 (2000)

Page 24: Atomic Physics with Supercomputers. Darío M. Mitnik

Why supercomputersin Atomic Physics?

only a few atomic physicists are using supercomputers

Page 25: Atomic Physics with Supercomputers. Darío M. Mitnik

“Collisional breakup in a quantum system of three charged particles”

M. S. Pindzola and F. Robicheaux, Phys. Rev. A 54, 2142 (1996).

Why supercomputersin Atomic Physics?

T. R. Rescigno et al., Science 286, 2474 (1999).

Page 26: Atomic Physics with Supercomputers. Darío M. Mitnik

Electron-Impact Ionization of Hydrogen

even the simplest example: e + H H + e + e

has resisted solution until now

Page 27: Atomic Physics with Supercomputers. Darío M. Mitnik

Methods

Perturbative methods

Non-Perturbative methods

Distorted Waves

Time-independent

Time-dependent

Page 28: Atomic Physics with Supercomputers. Darío M. Mitnik

Time-independent: R-matrix method

P. G. Burke and K. A. Berrington

27 key papers reprinted

Short Bibliography list:

547 references

Page 29: Atomic Physics with Supercomputers. Darío M. Mitnik

Time-independent: R-matrix method

Internal Region External Regiona

Target

H = E

~ sin(kr) + Kcos(kr)

1

( )a

R a ar

Page 30: Atomic Physics with Supercomputers. Darío M. Mitnik

Why supercomputers?

Size of (N+1)-Hamiltonian:

MXMAT = MZCHF x MZNR2 + MZNC2

# scattering channels

# of continuum orbitals for

given L

# (N+1) terms for given SL

158 x 50 + 100 = 8000 ~ 512 Mb

Page 31: Atomic Physics with Supercomputers. Darío M. Mitnik

Why supercomputers?

• Thousands of points are needed in order to map the narrow resonances.

Energy (eV)

Col

lisio

n S

tren

gth

D.C. Griffin et al, J. Phys. B 33, 4389 (2000)

Page 32: Atomic Physics with Supercomputers. Darío M. Mitnik

Time-Dependent method

Time-dependent Schrodinger equation:

1 21 2 1 2

( , , )( , ) ( , , )

r r ti H r r r r t

t

������������������������������������������������������������������������������������

1 2

2 21 2 1 2

1 2

1 1 1 1( , , ) ( , )

2 2r rH r r t V r rr r

��������������������������������������������������������

Page 33: Atomic Physics with Supercomputers. Darío M. Mitnik

Time-Dependent method

Time-dependent close-coupled equation:

1 2

2 21 1 1 1

1 2 2 2 2 21 2 1 1 1 2

1 1 ( 1) ( 1) 1 1( , )

2 2 2 2l l

l l l lT r r

r r r r r r

1 2

1 2 1 2

1 21 2 1 2

( , , )( , ) ( , , )

LSl l LS

l l l l

P r r ti T r r P r r t

t

1 2 1 2 1 2

1 2

' ' 1 2 ' ' 1 2' '

( , ) ( , , )L LSl l l l l l

l l

U r r P r r t

Page 34: Atomic Physics with Supercomputers. Darío M. Mitnik

Why supercomputers?

16 x 250 x 250 = 1000000

1 2 1 2( , , )LSl lP r r t

250 x 250 = 62500

# coupled channels

# partial waves# points in

spatial lattice

Page 35: Atomic Physics with Supercomputers. Darío M. Mitnik

Why supercomputers?

Memory

Time

Page 36: Atomic Physics with Supercomputers. Darío M. Mitnik

What is a supercomputer?

Distributed-Memory

Shared-Memory

Page 37: Atomic Physics with Supercomputers. Darío M. Mitnik

Glossary

functional parallelism

parallelization

data parallelism

Page 38: Atomic Physics with Supercomputers. Darío M. Mitnik

Example of data parallelism

• we have 10000 cards• we want to pick up the highest card• each comparison takes 1 second

Page 39: Atomic Physics with Supercomputers. Darío M. Mitnik

Example of data parallelism

1 processor10000 1 sec

Tim

e (s

ec)

Processors

2 processors5000 11 sec

10 processors1008 sec 100 processors

198 sec

10000 processors10000 sec

Page 40: Atomic Physics with Supercomputers. Darío M. Mitnik

Example of a simple program

print*, ‘hello world’stopend

call mpi_initcall mpi_ rank(iam,nproc)print*, ‘hello world, from process # ’,iamcall mpi_finalizestopend

Page 41: Atomic Physics with Supercomputers. Darío M. Mitnik

Example of a simple program

hello world

hello world, from process 2hello world, from process 0 hello world, from process 4 hello world, from process 1 hello world, from process 3

Page 42: Atomic Physics with Supercomputers. Darío M. Mitnik

The R-matrix I package

Inner-Region

STG1 : calculates the orbital basis and all radial integrals

STG2 : calculates LS-coupling matrix elements. solves the N-electron problem. sets the (N+1)-electron Hamiltonian

STG3 : diagonalizes the (N+1)-electron Hamiltonian in the continuum basis

Page 43: Atomic Physics with Supercomputers. Darío M. Mitnik

The R-matrix I package

Outer-Region

STGF : solves the external-region coupled equations.

STGICF : calculates level-to-level collision strengths by doing an intermediate- coupling frame transformation.

Page 44: Atomic Physics with Supercomputers. Darío M. Mitnik

Diagonalization Timing

Page 45: Atomic Physics with Supercomputers. Darío M. Mitnik

Example

191 x 34 + 506 = 7000

62-state calculation:

191 coupled channels

34 continuum-box orbitals

506 (N+1)-electron bound configurations

55-state calculation (Dell 603):

59 h and 41 min

62-state calculation (T3E-900) :

64-processors - 69 min.

Page 46: Atomic Physics with Supercomputers. Darío M. Mitnik

Parallelization of the external-region codes

processor 1

processor 6

Page 47: Atomic Physics with Supercomputers. Darío M. Mitnik

Time-Dependent method

Time evolution of a single-channel:

1 2 1 2 1 2( ) exp ( )LS LS LS

l l l l l lP t t i tH P t

Time-dependent Schrodinger equation:

1 2

1 2 1 2

1 21 2 1 2

( , , )( , ) ( , , )

LSl l LS LS

l l l l

P r r ti H r r P r r t

t

Page 48: Atomic Physics with Supercomputers. Darío M. Mitnik

Time-Dependent methodInitial condition for the solution:

1 2 1 1 2 1 2 1

1( , , 0) ( ) ( ) ( ) ( )

2 i is k s kP r r t P r G r P r G r

Page 49: Atomic Physics with Supercomputers. Darío M. Mitnik

Initial condition for the solution:

Page 50: Atomic Physics with Supercomputers. Darío M. Mitnik

Time-Dependent method

Page 51: Atomic Physics with Supercomputers. Darío M. Mitnik

Propagated wavefunction:

Page 52: Atomic Physics with Supercomputers. Darío M. Mitnik

Time-Dependent method

Cross Section:

2

22 1 2 1

4LS LSnlm nlm

LS

L S Ak

Projection of the wavefunction:

1 2, ' ' ' 1 ' ' ' 2( , , ( ) ( ))LSnlm n l m nlm n l m

LS r r rtA r

Page 53: Atomic Physics with Supercomputers. Darío M. Mitnik

Parallelization of the time-dependent codes

processor 1

processor 6

Page 54: Atomic Physics with Supercomputers. Darío M. Mitnik

Conclusions

Atomic Physics is still alive

Page 55: Atomic Physics with Supercomputers. Darío M. Mitnik