24
Atomic Scale Ordering in Metallic Nanoparticles Atomic Scale Ordering in Metallic Nanoparticles Structure: Atomic packing: microstructure? Cluster shape? Surface structure? Disorder?

Atomic packing: microstructure? • Cluster shape? • Surface

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Atomic packing: microstructure? • Cluster shape? • Surface

Atomic Scale Ordering in Metallic NanoparticlesAtomic Scale Ordering in Metallic Nanoparticles

Structure:

• Atomic packing: microstructure?

• Cluster shape?

• Surface structure?

• Disorder?

Page 2: Atomic packing: microstructure? • Cluster shape? • Surface

CharacterizationCharacterization

• Electron Microscopy• Scanning Transmission Electron Microscopy (STEM)• Electron Diffraction

• X-ray Absorption Spectroscopy• X-ray Absorption Near Edge Spectroscopy (XANES)

• Provides information on chemical states– Oxidation state– Density of states

• Extended X-ray Absorption Fine Structure (EXAFS)• Provides local (~10 Å) structural parameters

– Nearest Neighbors (coordination numbers)– Bond distances– Disorder

Page 3: Atomic packing: microstructure? • Cluster shape? • Surface

(111)

(001)

(110)

Face Centered Cubic StructureFace Centered Cubic Structure

Page 4: Atomic packing: microstructure? • Cluster shape? • Surface

Electron MicrodiffractionElectron Microdiffraction

[011] [112]

[310]

Electron diffraction probes the ordered microstructure of the nanoparticles. Above are 3 sample diffraction patterns for ~ 20 Å Pt nanoparticles. All are indexed as face-centered cubic (fcc).

Page 5: Atomic packing: microstructure? • Cluster shape? • Surface

XX--Ray Absorption SpectroscopyRay Absorption Spectroscopy• Absorption coefficient (µ) vs. incident photon energy

• The photoelectric absorption decreases with increasing energy

• “Jumps” correspond to excitation of core electrons

Adapted from Teo, B. K. EXAFS: Basic Principles and Data Analysis; Springer-Verlag: New York, 1986.

Abs

orpt

ion

Photon Energy

Page 6: Atomic packing: microstructure? • Cluster shape? • Surface

Extended XExtended X--ray Absorption Fine ray Absorption Fine StructureStructure

• oscillation of the X-ray absorption coefficient near and edge

• local (<10 Å) structure surrounding the absorbing atom

Photon Energy (eV)

11400 11600 11800 12000 12200 12400

Abs

orpt

ion

( µx)

0

1

EXAFS

Pt foil

µxII

= ln 0

I0 IT

x

Pt L3 edge (11564 eV)

Page 7: Atomic packing: microstructure? • Cluster shape? • Surface

• Excitation of a photoelectron with

wavenumber k = 2π/λ

initial final

e-

E0

PE = hν - E0

Ri

• Oscillations, χi(k): final state interference

between outgoing and backscattered photoelectron

)2sin()()( iii kRkAk =χ

Ri - distance to shell-iAi(k) - backscattering amp.

Basics of EXAFSBasics of EXAFS

Page 8: Atomic packing: microstructure? • Cluster shape? • Surface

Abs

orpt

ion

( µx)

0

1

Photoelectron Energy (eV)

0 200 400 600 800

µµ0µ0(0)

k2 χ(k)

(Å-2

)

0 2 4 6 8 10 12 14 16-3

-2

-1

0

1

2

3

k (Å-1)

)0()(

0

0

µµµχ −=k

Convert to wave number

Subtract background and normalize

Data AnalysisData Analysis

Resulting data is the sum of scattering from all shells

∑=i

i kk )()( χχ

)(202 Ehmk −= ν

h

Page 9: Atomic packing: microstructure? • Cluster shape? • Surface

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

| χ(r

)|(Å-3

)

r (Å)

R2

R3R4

Pt L3 edge, Pt foilR

1

Fourier TransformFourier Transform

Resolve the scattering from each distance (Ri) into r-space

Page 10: Atomic packing: microstructure? • Cluster shape? • Surface

MultipleMultiple--Shell FitShell Fit

Calculate Fi(k) and δi(k) for each shell-i (i = 1 to 6) using the FEFF computer code

))(2sin()()(222

2 kkRekR

kFNk iik

i

iii δχ σ += −

Non-linear least-square refinement: vary Ni, Ri, σ2i using the EXAFS equation

0 1 2 3 4 5 6 7 8 9 100

1

2

3Pt L3, Pt foil

Multiple-Shell Fit Bond distance, Ri (Å)

R1 R2 R3 R4 R5

fit 2.768(3) 3.914(4) 4.794(4) 5.535(5) 6.189(6)

actual 2.7719 3.9200 4.8010 5.5437 6.1981

Page 11: Atomic packing: microstructure? • Cluster shape? • Surface

SS2

SS3

SS4

SS5

DSTS

TR3

TR2

TR1

SS1

Multiple Scattering PathsMultiple Scattering Paths

In-plane atom

Above-plane atom

Absorbing atom

Page 12: Atomic packing: microstructure? • Cluster shape? • Surface

11560 11565 11570 11575 11580 11585 11590 11595 116000.0

0.2

0.4

0.6

0.8

1.0

1.2

Nor

mal

ized

abs

orpt

ion

coef

ficie

nt

Energy, eV

XX--Ray Absorption Near Edge Spectroscopy (XANES)Ray Absorption Near Edge Spectroscopy (XANES)

XANES measurements for reduced 10%, 40% Pt/C, 60% Pt/C Pt/C, and Pt foil at 200, 300, 473 and 673 K. A total of 16 measurements are shown. All overlay well with bulk Pt (Pt foil); therefore, the samples are reduced to their metallic state.

Page 13: Atomic packing: microstructure? • Cluster shape? • Surface

Size DependenceSize Dependence

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

Pt foil 60% Pt/C 40% Pt/C 10% Pt/C

FT M

agni

tude

, Å-3

r, Å0 2 4 6 8 10 12 14 16 18 20 22

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5 Pt foil 60% Pt/C 40% Pt/C 10% Pt/C

k2 χ (k)

, Å-2

k, Å-1

Size dependence on the extended x-ray absorption spectra. The amplitude of the EXAFS signal is directly proportional to the coordination numbers for eachshell; therefore, as the cluster size increases, the amplitude also will increase.

Page 14: Atomic packing: microstructure? • Cluster shape? • Surface

i 10% Pt/C 40% Pt/C 60% Pt/C Pt foil Bulk fcc1 8.3(5) 10.5(5) 11.4(6) 12.6(7) 122 2.3(1.1) 4.0(1.3) 4.7(1.7) 5.9(2.0) 63 10.9(3.2) 16.8(3.5) 19(4) 23(5) 244 5.5(1.4) 7.6(1.4) 8.5(1.6) 11(2) 125 5.4(3.4) 10(4) 11(4) 14(5) 24

0 1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

1.5

2.0

Data Fit

FT M

agni

tude

, Å-3

r, Å0 1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Data Fit

FT M

agni

tude

, Å-3

r, Å

Multiple Shell Fitting AnalysisMultiple Shell Fitting Analysis

10% Pt/C 40% Pt/C

Page 15: Atomic packing: microstructure? • Cluster shape? • Surface

0 2 4 6 8 10 12 14 16 18 20 22-1.5

-1.0

-0.5

0.0

0.5

1.0

k2 χ(k)

, Å-2

k, Å-1

200 K 300 K 473 K 673 K

0 1 2 3 4 5 6 7 8 9 100.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

200 K 300 K 473 K 673 K

FT M

agni

tude

, Å-3

r, Å

Temperature DependenceTemperature Dependence

Temperature dependence on the extended x-ray absorption spectra for 10% Pt/C. As the temperature increases, the dynamic disorder (σD

2) increases, causing the amplitude to decrease.

Page 16: Atomic packing: microstructure? • Cluster shape? • Surface

0 1 2 3 4 5 6 7 8 9 100.0

0.5

1.0

1.5

2.0

2.5

Data Fit

FT M

agni

tude

, Å-3

r, Å0 1 2 3 4 5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Data Fit

FT M

agni

tude

, Å-3

r, Å

0 1 2 3 4 5 6 7 8 9 100.0

0.2

0.4

0.6

0.8

1.0

Data Fit

FT M

agni

tude

, Å-3

r, Å0 1 2 3 4 5 6 7 8 9 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Data Fit

FT M

agni

tude

, Å-3

r, Å

First Shell Fitting:First Shell Fitting: 10% Pt/C10% Pt/C

200 K 300 K

473 K 673 K

Page 17: Atomic packing: microstructure? • Cluster shape? • Surface

Size Dependent Scaling of Bond Length and DisorderSize Dependent Scaling of Bond Length and Disorder

))(2sin()()(222

2 kkRekR

kFNk iik

i

iii δχ σ += −

200 300 400 500 600 700

2.7482.7502.7522.7542.7562.7582.7602.7622.7642.7662.7682.7702.7722.7742.7762.7782.7802.7822.7842.786

Dis

tanc

e, Å

Temperature, K

10% Pt/C 40% Pt/C 60% Pt/C Pt foil

( ) 2222dsrr σσσ +=−=

)/exp(1)/exp(1

2 E

E2TT

d Θ−−Θ−+=

ωµσ h

The EXAFS Disorder, σ2, is the sum of the static, σs

2, and dynamic, σd2,

disorder as follows:

The dynamic disorder, σd2, can be

separated by using the following relationship:

Page 18: Atomic packing: microstructure? • Cluster shape? • Surface

Hemispherical cuboctahedron, (111) basal plane

Hemispherical cuboctahedron, (001) basal plane

Spherical cuboctahedron

Structure and MorphologyStructure and Morphology

• Determining shape and texture

• Electron microscopy

• X-Ray absorption spectroscopy

• Molecular modeling

Page 19: Atomic packing: microstructure? • Cluster shape? • Surface

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

2

4

6

8

10

12

14

16

18

20

22

24Bulk 3NN and 5NN

Bulk 2NN

Bulk 1NN and 4NN

Coo

rdin

atio

n nu

mbe

r

L

1NN 2NN 3NN 4NN 5NN

0 10 20 30 40 50 60 70 80

Cluster diameter, Å

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

2

4

6

8

10

12

14

16

18

20

22

24

Bulk 2NN

Bulk 1NN and 4NN

Bulk 3NN and 5NN

1NN 2NN 3NN 4NN 5NN

Coo

rdin

atio

n nu

mbe

r

L

0 10 20 30 40 50 60 70 80

Cluster diameter, Å

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

2

4

6

8

10

12

14

16

18

20

22

24

No overlap between 1NN and 2NN

1NN 2NN 3NN 4NN 5NN

Coo

rdin

atio

n nu

mbe

r

L

0 10 20 30 40 50 60 70 80

Bulk 2NN

Bulk 1NN and 4NN

Bulk 3NN and 5NN

Cluster diameter, Å

Theoretical Theoretical vsvs. Experimental. Experimental

Spherical

Hemispherical

Page 20: Atomic packing: microstructure? • Cluster shape? • Surface

Molecular Modeling: Molecular Modeling: Understanding DisorderUnderstanding Disorder

• Probe bulk vs. surface relaxation.• Bulk:

Allow relaxation of entire structure.

• Surface:Allow relaxation of atoms bound in surface sites only.

Page 21: Atomic packing: microstructure? • Cluster shape? • Surface

2.64 2.66 2.68 2.70 2.72 2.74 2.76 2.78 2.80 2.820

10

20

30

40

50

60

70

Freq

uenc

y di

strib

utio

n

1NN distance, Å

Surface Relaxation

• Theoretical:<d1NN> = 2.74 Åσ2 = 0.0022 Å2

• Experimental:<d1NN> = 2.753(4) Å σ2 = 0.0017(2) Å2

2.67 2.68 2.69 2.70 2.71 2.72 2.73 2.74 2.75 2.760

10

20

30

40

50

60

70

Freq

uenc

y di

strib

utio

n

1NN distance, Å

• Theoretical:<d1NN> = 2.706 Åσ2 = 0.0003 Å2

• Experimental:<d1NN> = 2.753(4) Åσ2 = 0.0017(2) Å2

Bulk Relaxation

Bond Length Distributions: Bond Length Distributions: 10% Pt/C10% Pt/C

<d1NN>BULK = 2.77 Å<d1NN>FOIL = 2.761(2) Å

Page 22: Atomic packing: microstructure? • Cluster shape? • Surface

Bond Length Distributions:Bond Length Distributions: 40% Pt/C40% Pt/C

• Theoretical:<d1NN> = 2.689 Åσ2 = 0.0002 Å2

• Experimental:<d1NN> = 2.761(7) Åσ2 = 0.0010(2) Å2

Bulk Relaxation

2.68 2.70 2.72 2.74 2.760

50

100

150

200

250

300

350

400

Freq

uenc

y di

strib

utio

n

1NN distance, Å

Surface Relaxation

• Theoretical:<d1NN> = 2.76 Åσ2 = 0.0013 Å2

• Experimental:<d1NN> = 2.761(7) Åσ2 = 0.0010(2) Å2

2.66 2.68 2.70 2.72 2.74 2.76 2.78 2.80 2.820

500

1000

1500

2000

2500

3000

Freq

uenc

y di

strib

utio

n

1NN distance, Å

<d1NN>BULK = 2.77 Å<d1NN>FOIL = 2.761(2) Å

Page 23: Atomic packing: microstructure? • Cluster shape? • Surface

Future DirectionsFuture Directions

• In-depth modeling of relaxation phenomena.

• Further understanding the “nano-phase” behavior of bimetallic particles.

• Polymer matrices as supports and stabilizers for nanoparticles.• Silanes• Hydrogels

Page 24: Atomic packing: microstructure? • Cluster shape? • Surface

AcknowledgmentsAcknowledgments

Dr. Ralph Nuzzo

Dr. Andy GewirthDr. Tom RauchfussDr. John Shapley

Dr. Anatoly FrenkelDr. Michael Nashner

Dr. Ray TwestenDr. Rick Haasch

Nuzzo Research Group

Funding:Department of Energy

Office of Naval Research