27
Atmospheric chemistry II

Atmospheric chemistry II - Helsinki

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Atmospheric chemistry II - Helsinki

Atmospheric chemistry II

Page 2: Atmospheric chemistry II - Helsinki

Oxidizing atmosphere

• The main oxidants in the atmosphere are

– OH radical (·OH)

– Ozone

– Nitrate Radical (·NO3)

Page 3: Atmospheric chemistry II - Helsinki

The OH radical: main tropospheric oxidant

O3 + hvO2 + O(1D) (1)‏

O(1D) + M O + M (2)‏

O(1D) + H2O 2OH ‏(3)

Primary source:

Sink: oxidation of reduced species

CO + OH CO2 + H

CH4 + OH CH3 + H2O

HCFC + OH H2O +‏…

Major

OH sinks

GLOBAL MEAN [OH] = 1.2x106 molecules cm-3

and a lifetime of about 100 ms

Earths surface, 30º N

D.J. Jacob

Page 4: Atmospheric chemistry II - Helsinki

Tropospheric OH production takes place

in a narrow UV window (300-320 nm)‏

30 equinox

midday

Solar spectrum

D.J. Jacob

Page 5: Atmospheric chemistry II - Helsinki

O(1D)

RO2

HONO HCHO

OH HO2 H2O2 + O2HNO3

H2SO4 RO2 + O2

RO2

NOhν

NO2

SO2

NO O3

CH4 HCHO H2

CO NMHC O3

HO2

VOC

H2O

(Boy et al., ACP, 2005)

Page 6: Atmospheric chemistry II - Helsinki

Formation of HO2 Radical, examples

HCHO + hv ·H + HCO

·H+O2 +M·HO2+M

HCHO + hv H2 + CO

CO + ·OH CO2 + ·H

·H+O2 +M·HO2+M

Page 7: Atmospheric chemistry II - Helsinki

Reaction of HO2 To be included

• OH + O3 = HO2 : 1.70D-12*EXP(-940/TEMP) ;

• OH + H2 = HO2 : 7.70D-12*EXP(-2100/TEMP) ;

• OH + CO = HO2 : 1.30D-13;

• OH + H2O2 = HO2 : 2.90D-12*EXP(-160/TEMP) ;

• HO2NO2 = HO2 + NO2 : 5.2D-6*EXP(19900/TEMP) ;

• NO3 + H2O2 = HNO3 + HO2 : 4.1D-16 ;

• HCHO = CO + HO2 + HO2 : J(9);

– Cross section:3.60 D-20 cm2

– Quantum yield:0.9

Page 8: Atmospheric chemistry II - Helsinki

Reaction of HO2 To be included

• HO2 + O3 = OH : 2.03D-16*((TEMP/300)**4.57)* EXP(693/TEMP) ;

• OH + HO2 = dummy : 4.80D-11*EXP(250/TEMP) ;

• HO2 + HO2 = H2O2 : 2.20D-13*EXP(600/TEMP);

• HO2 + NO = OH + NO2 : 3.60D-12*EXP(270/TEMP) ;

• HO2 + NO2 = HO2NO2 : 1.4D-13 ;

• HO2 + NO3 = OH + NO2 : 4.00D-12 ;

Page 9: Atmospheric chemistry II - Helsinki

Reactions of OH to be included

• All HO2 including OH

• O1D = OH + OH : 2.20D-10*H2O ;

• H2O2 = OH + OH : J(3) ;– Cross section:33.04D-20 cm2

– Quantum yield:0.49

• HONO = OH + NO : J(7);– Cross section:5.19D-19 cm2

– Quantum yield:0.40

• HNO3 = OH + NO2 : J(8);– Cross section:4.29D-18 cm2

– Quantum yield:0.88

Page 10: Atmospheric chemistry II - Helsinki

Reactions of OH to be included

• OH + NO = HONO : 1.50D-11*EXP(TEMP/300)**-0.5 ;

• OH + NO2 = HNO3 : 2.4S-11*(TEMP/300)**-1.7 ;

• OH + NO3 = HO2 + NO2 : 2.00D-11 ;

• OH + HO2NO2 = NO2 : 1.90D-12*EXP(270/TEMP) ;

• OH + HONO = NO2 : 2.50D-12*EXP(-260/TEMP) ;

• OH + HNO3 = NO3 : 7.20D-15*EXP(785/TEMP);

Page 11: Atmospheric chemistry II - Helsinki

Formation of Sulfuric acid

• SO2 + ·OH + M ·HOSO2 + M

• ·HOSO2 + O2 ·HO2 + SO3

• H2O + SO3+ M H2SO4 + M

Page 12: Atmospheric chemistry II - Helsinki

Reactions to be included

1. O + SO2 = SO3 : 4.00D-32*EXP(-1000/TEMP)*M ;

2. OH + SO2 = HSO3 : 1.5D-12*(TEMP/300) ;

3. HSO3 = HO2 + SO3 : 1.30D-12*EXP(-330/TEMP)*O2 ;

4. SO3 = H2SO4 : 5.D-15*H2O ;

How d[SO3]/dt should look like?

= K1[O][SO2] + k3[HSO3]-k4[SO3]

Page 13: Atmospheric chemistry II - Helsinki

Monoterpenes oxidation by OH radicals

Page 14: Atmospheric chemistry II - Helsinki

Reaction included in the model

• APINENE + OH = APINAO2 :1.20D-11*EXP(444/TEMP) ;

Page 15: Atmospheric chemistry II - Helsinki

Ozone in the troposphere

Greenhouse gas

Toxic pollutant in surface air

But it is the main precursor of OH and plays therefore

a key role in maintaining the oxidizing power of

the troposphere

O3 + hvO2 + O(1D) (1)‏

O(1D) + M O + M (2)‏

O(1D) + H2O 2OH ‏(3)

Page 16: Atmospheric chemistry II - Helsinki

Tropospheric ozone (O3): Global budget

O3

O2h

O3

OH HO2

h, H2O

Deposition

NO

H2O2

CO, VOC

NO2

h

STRATOSPHERE

TROPOSPHERE

8-18 km

1165Deposition475Transport from

stratosphere

4230Chem loss in

troposphere4920Chem prod in

troposphere

GEOS-CHEM model budget terms, Tg O3 yr-1

D.J. Jacob

H2O

Page 17: Atmospheric chemistry II - Helsinki

Depending on the NO/HOx ratio

Ozone production:

CO + ·OH → ·H + CO2

·H + O2 + M → ·HO2 + M

(b) HO2 + NO → OH + NO2

NO2 + hν (λ < 420 nm) → NO + O

O + O2 → O3

Ozone destruction:

CO + OH → H + CO2

H + O2 + M → HO2 + M

(a) HO2 + O3 → 2O2 + OH

Ra/Rb = Ka[HO2][O3] / Kb[HO2][NO] =2.5E-4 * [O3]/[NO]

Break-even concentration ≈ 2.5 10-4 (20 ppb O3 ≈ 5 ppt NO)

Page 18: Atmospheric chemistry II - Helsinki

Reactions to be included in the model

• O = O3 : 5.60D-34*O2*N2*((TEMP/300)**-2.6) + 6.00D-34*O2*O2*((TEMP/300)**-2.6) ;

• O3 = O1D : J(1) ; – Cross section:1.137D-17 cm2

– Quantum yield:0.8

• O + O3 = dummy : 8.00D-12*EXP(-2060/TEMP) ;

• NO + O3 = NO2 : 1.40D-12*EXP(-1310/TEMP) ;

• NO2 + O3 = NO3 : 1.40D-13*EXP(-2470/TEMP) ;

• And all those involving O3 shown in OH and HO2 sections

Page 19: Atmospheric chemistry II - Helsinki

Monoterpenes Oxidation by Ozone

• In a first step, ozone will be added to the double bond forming a cyclic structure:

Page 20: Atmospheric chemistry II - Helsinki

D-Limonene oxidation by Ozone

APINENE + O3 = 0.77 * OH + APINOOA : 1.01D-15*EXP(-732/TEMP) ;

Page 21: Atmospheric chemistry II - Helsinki

The nitrate radical – NO3

The third important oxidant is the nitrate radical

NO2 + O3 NO3‏→ + O2

and is in equilibrium with N2O5 according to

NO2 + NO3 N2O5‏↔‏M‏+ + M

During daytime it photolyze rapidly by two reactions

NO3 + hν (λ‏700‏>‏nm)‏→‏NO‏+‏O2

NO3 + hν (λ‏580‏>‏nm)‏→‏NO2 + O

Typically NO3 mixing ratios:

daytime‏≈‏few‏ppts

night‏≈‏up‏to‏several‏hundreds‏of‏ppt

Page 22: Atmospheric chemistry II - Helsinki

Reactions to be include• All above and:

• NO2 + O3 = NO3 : 1.40D-13*EXP(-2470/TEMP) ;

• NO + NO3 = NO2 + NO2 : 1.80D-11*EXP(110/TEMP) ;

• NO2 + NO3 = NO + NO2 : 4.50D-14*EXP(-1260/TEMP) ;

• NO2 + NO3 = N2O5 : 1.50D-12*(TEMP/300)**-0.7) ;

• N2O5 = NO2 + NO3 : 9.7D14*((TEMP/300)**-0.1)*EXP(-11080/TEMP) ;

• NO3 + H2O2 = HNO3 + HO2 : 4.1D-16 ;

• NO3 + NO3 = NO2 + NO2 : 8.5D-13*EXP(-2450./TEMP) ;

Page 23: Atmospheric chemistry II - Helsinki

Reactions to be include

• NO3 = NO : J(5);

– Cross section: 4.58D-17 cm2

– Quantum yield:0.35

• NO3 = NO2 + O : J(6) ;

– Cross section:4.58D-17 cm2

– Quantum yield:0.60

Page 24: Atmospheric chemistry II - Helsinki

Monoterpenes NO3 oxidation

APINENE + NO3 = NAPINAO2 : 1.19D-12*EXP(490/TEMP) ;

Page 25: Atmospheric chemistry II - Helsinki

A word on organics

• Note that in our model we only will use alpha-pinene, and only 1 oxidation path per oxidant.

• Also we will use a fixed concentration of alpha pinene. In next lectures you will learn how to implement emissions in your model.

Page 26: Atmospheric chemistry II - Helsinki

Starting the methane oxidation is the reaction with OH:

CH4 CH3‏→‏OH‏+ + H2O

The methyl radical reacts rapidly adds O2:

CH3 + O2 CH3O2‏→

The methylperoxy radical is considered part of the HOx-family and its main sinks are the reaction with HO2 and NO.

In the overall following reaction chain the C(-IV) atom in CH4 is successively oxidized to C(+IV) in CO2.

Consider high NOx-atmosphere:

CH4 + 10 O2 -> CO2 + H2O + 5 O3 + 2 OH

Consider now a low NOx-situation:

CH4 + 3 OH + 2 O2 -> CO2 + 3 H2O + HO2

Ozone production and radical conversion or source is only reached in a high NOx-atmosphere. This results show the critical role of NOx for maintaining O3 and OH in the troposphere.

Methane oxidation mechanism

Page 27: Atmospheric chemistry II - Helsinki

NO NO2

Oxidation of methane

CH4 + OH kCH4+OH = 9.65x10-20∙T

∙exp(-1082/T) cm3 Molek.-

CH3 + H2O (+O2)

CH3O2

HCHO

CH3OOH

+HO2+RO2

0.67 HCHO + CH3OH+NO2

CH3OONO2

kCH3O2+HO2= 3.80x10-13∙exp(780/T) cm3 Molek.-1 s-1

kCH3O2+RO2= 1.82x10-13∙exp(416/T) cm3 Molek.-1 s-1

kCH3O2+NO = 3.00x10-12∙exp(280/T) cm3 Molek.-1 s-1