43
Lecture 3 – Chapter 2 More on Maxwell’s Equations Quantum Properties of Radiation Flux and Intensity Solid Angle ATMOS 5140

ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Lecture3– Chapter2

• MoreonMaxwell’sEquations• QuantumPropertiesof Radiation• FluxandIntensity• SolidAngle

ATMOS5140

Page 2: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Maxwell’sEquations

• Changingelectricfieldinducesamagneticfield• Changingmagneticfieldinducesanelectricfield• Doesnotneedmaterialmedium(vacuumworks)• QuantitativeInterplaydescribedbyMaxwell’sEquations

Page 3: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Direction of propagation

Electric field vector

Magnetic field vector

Page 4: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Maxwell’sEquations

Gauss’sLawofElectricField

Gauss’sLawofMagneticField

Faraday’sLaw

Ampere’sLawandMaxwell’sadditionofdisplacementcurrentdensity

D=ElectricdisplacementE=ElectricfieldB=MagneticinductionH=MagneticfieldJ=ElectricCurrent

=densityofelectriccharge

Page 5: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Maxwell’sEquationsD=ElectricdisplacementE=ElectricfieldB=MagneticinductionH=MagneticfieldJ=ElectricCurrent

𝜀 = 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦𝑜𝑓𝑠𝑝𝑎𝑐𝑒𝜇 = 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑓𝑡ℎ𝑒𝑚𝑒𝑑𝑖𝑢𝑚

𝜎 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑜𝑓𝑚𝑒𝑑𝑖𝑢𝑚

Page 6: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Maxwell’sEquationsD=ElectricdisplacementE=ElectricfieldB=MagneticinductionH=MagneticfieldJ=ElectricCurrent

=densityofelectriccharge

Page 7: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

• Sinusoidalplane-wavesolutionsareparticularsolutionstotheelectromagneticwaveequation.• Thegeneralsolutionoftheelectromagneticwaveequationinhomogeneous,linear,time-independentmediacanbewrittenasalinearsuperpositionofplane-wavesofdifferentfrequenciesandpolarizations.

Maxwell’sEquationsforplanewaves

Page 8: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

FigurefromTimGarrett

Page 9: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Maxwell’sEquationsforplanewaves

Page 10: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Maxwell’sEquationsforplanewaves

ComplexVectors(realandimaginaryparts)Ifyouneedarefresher:watchKhanvideo

https://www.youtube.com/watch?v=kpywdu1afas

Page 11: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Maxwell’sEquationsforplanewaves

ComplexVectors(realandimaginaryparts)

Constantcomplexvectors

Constantcomplexwave vectors(hereonlyconsiderrealpart)

Page 12: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

WaveVector

• Thewavevector,k,countsthewavenumberinaparticulardirection.

• Spatialfrequencyofawave• Forexample,thewavenumberofthebluelineisthenumberofnodes(reddots)youseeperunitdistancetimes π.

• Count2nodesin4unitsofdistance,or3nodesin6unitsofdistance½nodesperunitdistance.

• Wavenumberisthenumberofradiansperunitofdistance

k=1/2π

Page 13: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Maxwell’sEquationsforplanewaves

Ifk’’=0,thentheamplitudeofthewaveisconstantThenthemediumisnonabsorbing!

Page 14: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

• Indexofrefraction(alsocalledrefractiveindex)- N

Maxwell’sEquationsforplanewaves

Page 15: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Maxwell’sEquationsforplanewaves

Inavacuum:

k’’=0

PHASESPEED

Page 16: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Maxwell’sEquationsforplanewaves

Page 17: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

RefractiveIndex

• Therefractiveindexofamaterialiscriticalindeterminingthescatteringandabsorptionoflight,withtheimaginarypartoftherefractiveindexhavingthegreatesteffectonabsorption.

Page 18: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

RealworlduseofIndexofRefractions

Page 19: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Fig.3

CitationFredericE.Volz,"InfraredRefractiveIndexofAtmosphericAerosolSubstances,"Appl.Opt. 11, 755-759(1972);https://www.osapublishing.org/ao/abstract.cfm?uri=ao-11-4-755

Image©1972OpticalSocietyofAmericaandmaybeusedfornoncommercialpurposesonly.Reportacopyrightconcernregardingthisimage.

EasiertomeasureRefractiveIndexintheIRthaninthevisible

Page 20: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Fig.2

CitationFredericE.Volz,"InfraredRefractiveIndexofAtmosphericAerosolSubstances,"Appl.Opt. 11, 755-759(1972);https://www.osapublishing.org/ao/abstract.cfm?uri=ao-11-4-755

Image©1972OpticalSocietyofAmericaandmaybeusedfornoncommercialpurposesonly.Reportacopyrightconcernregardingthisimage.

Page 21: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

A variety of values for the refractive index of BC has been used in global climate models including the OpticalPropertiesofAerosolsandClouds(OPAC)value of 1.74 − 0.44i [Hess et al., 1998]. As reviewed by Bond and Bergstrom [2006], reported values of the refractive index of light absorbing carbon vary widely; the real part, n, appears to vary from that of water to that of diamond, and the imaginary part, k, varies from that of negligibly absorbing material to that of graphite. Bond and Bergstrom [2006] hypothesize that strongly absorbing carbon with a single refractive index exists and that some of the variation in reported values results from void fractions in the material. Based on agreement between measured real and imaginary parts of the refractive index of light absorbing carbon, Bond and Bergstrom [2006] recommended a value of 1.95 − 0.79i at 550 nm. They caution, however, that this value may not represent void-free carbon. Stier et al. [2007] found that this value led to better agreement with observed atmospheric absorption, compared with the OPAC value. Motekiet al. [2010] found that the refractive index of ambient BC in the Tokyo urban area was about 2.26 − 1.26i at 1064 nm. The OPAC assumption for imaginary refractive index is not taken from combustion-generated particles, is lower than either of the latter two recommendations, and would lead to a MAC prediction about 30% lower if all other factors were equal.

Page 22: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

• Indexofrefraction- N• Flux– F(W/m2)

Maxwell’sEquationsforplanewaves

Page 23: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Flux- Poynting vector

• Theinstantaneousfluxdensityoftheelectricfieldinthedirectionofthewaveis

• Foraharmonicwave(averageovercompletecycle)

𝐹 = 12 𝑐𝜀=𝐸

?

𝑆 = 𝐸×𝐻

Page 24: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

• Indexofrefraction- N• Flux– F(W/m2)• Absorptioncoefficient– 𝛽E

Maxwell’sEquationsforplanewaves

Page 25: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

AbsorptionConsiderscalaramplitudeofthewave

Nowgobacktoourdefinitionofflux

Recallthatourimaginarypartofwavevectorisresponsibleforabsorption

Page 26: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Absorption

𝛽E = 4π𝑛H/λ

KLM=distancerequiredforthewave’senergytobeattenuatedtoe-1 (about37%)

Page 27: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Absorption

Page 28: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah
Page 29: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Polarizationparameterapplyingtotransversewavesthatspecifiesthegeometricalorientationoftheoscillations

the"polarization"ofelectromagneticwavesreferstothedirectionoftheelectricfield.

Page 30: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Polarization

(a) (b) (c)

(d) (e) (f )

Linearpolarization

Circularpolarization

Ellipticalpolarization(HybridofLinearandCircular)

Page 31: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah
Page 32: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

QuantumPropertiesofRadiation

Page 33: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Wavevs.Particle

• WaveNatureofRadiationmatters• ComputingScatteringandreflectionpropertiesofatmosphericparticles

• Airmolecules,aerosol,clouddroplets,raindrops• AndSurfaces

• QuantizedNatureofradiation• AbsorptionandEmissionofradiationbyINDIVIDUALAtomsandmolecules

• Photochemicalreactions

Page 34: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

• BroadbandRadiation• Widerangeoffrequencies

• MonochromaticRadiation Radiation• Singlefrequency(onecolor)• Morecommonlyuse:quasimonochromatic(rangeoffrequencies)

• Coherent• Perfectsynchronization• ArtificialSource– radar,lidar,microwave

• IncoherentRadiation• Notphaselocked• Nosynchronization• Naturalradiationintheloweratmosphere

Page 35: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Monochromatic Flux

Broadband Flux

Wm-2 um-1

Wm-2

Page 36: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

SphericalCoordinates

ElevationorZenith

Page 37: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

SphericalCoordinates

ΩΩz = cos θ

Ω x = sin θ cos φ

Ωy = sin θ sin φ

x

y

z

θ

φ

Page 38: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah
Page 39: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Steradian

θ

φ

z

x y

θ

dω = sinθ dθ dφ

Page 40: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

Intensity

dA ∝ cos 𝜃 = 𝑛U V ΩX

Page 41: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

RelationshipbetweenFluxandIntensityUpwardFlux– Integrateoverupperhemisphere

DownwardFlux– Integrateoverlowerhemisphere

Page 42: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

RelationshipbetweenFluxandIntensity

Page 43: ATMOS 5140 Lecture 3 –Chapter 2 - University of Utah

RelationshipbetweenFluxandIntensity