27

Asymptotic Methods in

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Asymptotic Methods in
Page 2: Asymptotic Methods in

Asymptotic Method s i n the Theory o f Stochasti c Differential Equation s

Page 3: Asymptotic Methods in

This page intentionally left blank

Page 4: Asymptotic Methods in

Translations o f

MATHEMATICAL MONOGRAPHS

Volume 7 8

Asymptotic Method s i n the Theor y o f Stochasti c Differential Equation s A. V. Skorokhod

^//i^^^Svjo America n Mathematica l Societ y }h Providence , Rhod e Islan d

10.1090/mmono/078

Page 5: Asymptotic Methods in

A. B . CKOPOXOi l

ACHMIITOTHHECKHE METOilbl TEOPM M

CTOXACTH^ECKHX IIH$$EPEHIIHAJIbHbIX

yPABHEHMM

« H A Y K A » , M O C K B A , 198 7

Transla ted fro m th e Russia n b y H . H . McFade n Transla t ion edite d b y Be n Silve r

2000 Mathematics Subject Classification. P r imar y 60-XX ; Secondar y 34 -XX , 4 7 - X X .

ABSTRACT. Th e topic s in this monograph ar e ergodic theory fo r Markov processe s and fo r solution s of stochastic differentia l equations , stochasti c differentia l equation s containin g a smal l parameter , and stabilit y theor y fo r solution s o f systems o f stochasti c differentia l equations . Th e mai n par t o f the materia l i s presente d fo r th e firs t time . Th e boo k i s intende d fo r specialist s i n th e theor y o f random processe s an d it s applications .

Bibliography: 6 6 titles .

Library o f Congres s Cataloging-in-Publicat io n Dat a

Skorokhod, A . V . (Anatoli i Vladimirovich) , 1930 -Asymptotic method s i n th e theor y o f stochasti c differentia l equations . (Translations o f mathematica l monographs , v . 78 ) Translation of : Asimptoticheski e metod y teori i stokhasticheskik h differentsial'nyk h uravnenii . Includes bibliographica l references . 1. Stochasti c differentia l equations . 2 . Asymptoti c expansions . I . Title . II . Series .

QA274.23.S5313 198 9 519. 2 89-1769 8 ISBN 0-8281-4531- 4 (hardcover) ; ISB N 978-0-8218-4686- 5 (softcover )

© 198 9 b y th e America n Mathematica l Society . Al l right s reserved . Reprinted b y th e America n Mathematica l Society , 2008 .

Translation authorize d b y th e Ail-Union Agenc y fo r Authors ' Rights , Mosco w

The America n Mathematica l Societ y retain s al l right s except thos e grante d t o th e Unite d State s Government .

Printed i n th e Unite d State s o f America .

Information o n copyin g an d reprintin g ca n b e foun d i n th e bac k o f thi s volume . @ Th e pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s

established t o ensur e permanenc e an d durability . Visit th e AM S hom e pag e a t http:/ /www.ams.org /

10 9 8 7 6 5 4 3 2 1 1 3 1 2 1 1 1 0 09 0 8

Page 6: Asymptotic Methods in

Contents

Foreword i x

List of Notation x i

Introduction xii i

CHAPTER I . Ergodic theorems 1 § 1. General ergodic theorems 1

1.1. Ergodic theorems for semigroups of measure-preservin g transformations 1

1.2. Homogeneous Markov processes. Invariant measures and ergodic theorems 6

1.3. Harris recurrence 1 5 §2. Densities for transition probabilities and resolvents for

Markov solutions of stochasti c differential equation s 2 3 2.1. Nondegenerate diffusio n processe s 2 4 2.2. Diffusion processe s with degenerate diffusion 2 7 2.3. Processes with jumps 3 5

§3. Ergodic theorems for one-dimensional stochasti c equations 4 1 3.1. Diffusion processe s on the line 4 2 3.2. Diffusion processe s on an interval 5 3 3.3. Processes with reflection a t the boundary 5 5

§4. Ergodic theorems for solutions of stochastic equations in Rd 5 7 4.1. Invariant measures for processes on compact spaces 5 8 4.2. Locally compact spaces 6 3 4.3. Solutions of stochasti c equations in Rd 6 6

CHAPTER II . Asymptotic behavior of systems of stochastic equations containing a small parameter 7 7 §1. Equations with a small right-hand side 7 7

1.1. A general theorem on convergence to a diffusion proces s 7 7

Page 7: Asymptotic Methods in

vi CONTENT S

1.2. Ordinary differentia l equation s with a rando m right-hand sid e 8 0

1.3. A theorem o n integra l continuit y wit h respec t t o a parameter fo r diffusio n processe s 9 7

1.4. Stochasti c equations with smal l diffusio n 9 9 §2. Processes with rapi d switchin g 10 2

2.1. Processes with a discrete component 10 3 2.2. An ergodic theorem fo r jump processe s 10 6 2.3. An estimate fo r a process with a discrete component 11 0 2.4. A limit theore m fo r processe s with rapidl y varyin g

discrete component 11 4 2.5. Dynamical system s with rapi d switchin g 11 7

§3. Averaging over variables fo r system s of stochasti c differentia l equations 13 4 3.1. A general theorem o n averagin g 13 4 3.2. A diffusion proces s under the influence o f a rapid

dynamical syste m i n the presence of feedback 14 4 3.3. A dynamical syste m unde r the influence o f a rapid

diffusion process . Neutral cas e 15 6 3.4. A dynamical syste m unde r th e influenc e o f a rapid

diffusion process . Neutral case , large times 16 3

CHAPTER III . Stability . Linea r systems 18 3 §1. Stability of sample paths of homogeneou s Marko v processe s 18 3

1.1. Definition 18 3 1.2. A Feller process on a compact metri c space 18 7 1.3. Stabilit y and instabilit y o f one-dimensional continuou s

processes 19 6 1.4. Stabilit y and instabilit y o f Felle r processe s in a locally

compact spac e 19 8 §2. Linear equations i n R d an d th e stochasti c semigroup s

connected wit h them. Stability 20 5 2.1. Linea r equation s 20 5 2.2. Operator equations . Representation o f solution s 21 1 2.3. Commutative cas e 22 2 2.4. Homogeneous case . Invariant subspace s 22 5 2.5. Mean squar e stability 23 1 2.6. Stability with probability 1 23 6 2.7. p-Stability 24 6

Page 8: Asymptotic Methods in

CONTENTS vi i

§3. Stability of solutions of stochastic differential equation s 25 1 3.1. Stability an d instabilit y i n first approximation 25 1 3.2. Diffusion equation s with homogeneous coefficient s 25 9

CHAPTER IV . Linear stochastic equations i n Hilbert space . Stochastic semigroups . Stability 27 1 §1. Linear equations with bounded coefficient s 27 1

1.1. General equations i n Hilber t spac e 27 1 1.2. Linea r equation s 27 9 1.3. Linear stochasti c equations i n Hilber t spac e 28 5 1.4. Stochasti c Hilbert-Schmid t semigroup s 29 1

§2. Strong stochastic semigroup s with second moments 29 6 2.1. Stron g and weak random operator s 29 6 2.2. Processes with independen t increment s that ar e

continuous i n | | • || 5 30 0 2.3. A stochastic differentia l equatio n 30 5 2.4. Second-order stochasti c semigroups o f bounde d

variation 30 9 2.5. Stochasti c equations o f diffusion typ e with constan t

coefficients 31 8 §3. Stability 32 2

3.1. Examples of stable and unstabl e infinite-dimensiona l systems 32 2

3.2. Stability i n the mean squar e 32 7

Bibliography 33 3

Page 9: Asymptotic Methods in

This page intentionally left blank

Page 10: Asymptotic Methods in

Foreword

The 198 2 boo k o n stochasti c differentia l equation s writte n jointly b y the autho r an d Iosi f Il'ic h Gikhma n di d no t includ e a number o f area s in this theory that are important for applications . Therefore , w e decided to write a book that would bring together materia l relating to applied ar-eas in the theory of stochasti c equations. W e intended to treat equations in infinite-dimensional spaces , in particular, infinite system s of stochasti c equations; the theory of linear equations in infinite-dimensional spaces and the semigroups connected with them, in particular , stochasti c partial dif-ferential equation s of evolution type; equations for conditionally Markov processes an d the equations o f nonlinea r filtration connected wit h them; and the asymptotic behavior of solutions of stochastic equations, including ergodic theory, the method o f averaging, an d the theory of stability . Th e plan of th e book wa s discussed fo r a fairly lon g time, an d we convince d ourselves at last that it was impossible to present all these topics in a single book. W e then decided to treat the last topic. Thi s choice was made under the influenc e o f th e interests of Iosi f Il'ich , who, a s a student o f Nikola i Nikolaevich Bogolyubov, had directed much attention to the study of the asymptotic behavior of systems undergoing random perturbations.

A serious illness did not permit Iosif Il'ic h to work on this book. No w he i s no longer, but the book i s published. I t would certainly have been different i f h e had take n part in it s writing—h e ha d a better feeling fo r the "physical" aspects of mathematica l theorie s and could convey thi s in his expositions, thus giving them more substance. Moreover , he knew far more than was written in his (and others') works.

While recognizing how far this book was from what we had envisioned, I wrote it nevertheless, hoping at least by the choice of topic to pay homage to the shining memory of my teacher and friend.

A. V. Skorokhod

ix

Page 11: Asymptotic Methods in

This page intentionally left blank

Page 12: Asymptotic Methods in

List of Notation

R—the rea l line.

i?+—the se t of nonnegative numbers .

a A b and a V b—the smalle r and larger o f the respective number s

a,beR.

Rd—the rf-dimensional Euclidea n space .

\x\—the absolut e value of a number x € R o r the norm o f

a vector x e X, wher e X i s a Euclidean space .

(x,y)—the inne r produc t i n a Euclidean space .

X x Y —the Cartesion produc t o f set s X an d Y.

(x9y)—an elemen t of X x Y\x e X, y e 7 .

&x,<^{X)—the a-algebr a o f Bore l subsets of a metric space X.

(Ra)ms—Lebesgue measur e on a set S.

sf ®>38 —the product o f cr-algebra s srf and SS.

\lstfn—the smallest cr-algebr a containing srfn.

a(£Q, a e A) —the cr-algebr a generated by the variables {£ a,ae A}.

L(X, Y) —the linea r space of linear operator s fro m a linear spac e

A" to a linear space F .

\\A\\—the norm o f a linear operator A e L{X, Y).

A*— th e operato r adjoin t t o A {A* e L(Y,X)).

{e^}—an orthonorma l basis in a Euclidean spac e X.

irA = 2^^(Ae k,ek).

x o y e L{X, X) —defined b y (x o y)z = (x, z)y, wher e X i s a Euclidean

space.

(p'{x)—the function i n L(X, Y) define d fo r tp : X — • Y b y the

equality

<p'(x)y = j-9(x + ty) I /=o, x,yeX, teR.

\\<p\\= sup|«?(x)| .

Cx—the spac e of continuous functions o n X.

Page 13: Asymptotic Methods in

This page intentionally left blank

Page 14: Asymptotic Methods in

Introduction

Asymptotic problem s fo r stochasti c differentia l equation s aros e an d were solved simultaneously with the very beginnings of the theory of such equations, because the founder of this theory, I . I . Gikhman, was consid-ering first and foremos t problem s o n asymptoti c behavior , an d h e con -structed the equation s themselve s partly i n orde r to be abl e to pose an d solve thes e problem s rigorously . I n thi s he , a s a studen t o f N . N . Bo -golyubov, wa s continuin g th e tradition s o f th e ne w directio n develope d in the 1930' s by N. M . Krylov and Bogolyubov i n investigations o n non-linear mechanics—th e stud y of system s subjec t t o th e actio n o f rando m perturbations. A cycle of papers by Krylov and Bogolyubov [l]-[5 ] were devoted t o thes e investigations . The y established , i n particular , ergodi c theorems for Markov processes with a phase space of a very general form. Special mention should be made of [1] , in which a study was made of the behavior o f a system subjec t t o th e actio n o f a rapidly variabl e rando m force that becomes a "white noise" in the limit. I t is this paper that served as an impetus for the creation by Gikhman of the theory of stochastic dif-ferential equations . I n [l]-[5] various approaches were considered to the rigorous definition o f a dynamical syste m subjec t to the actio n o f a ran-dom force o f "whit e noise" type, as well a s the definition o f a stochastic differential equatio n in a random field of forces with independent values, and results were obtained on the asymptotic behavior of the system when the field varies (fo r example , whe n impuls e action s becom e continuou s actions). (It o used the convenient concep t of a stochastic integral to con-struct a stochasti c equatio n i n [1 ] and [2] ; this for m o f th e equatio n i s more accepted at present.)

We indicate tw o direction s i n the asymptoti c investigatio n o f system s with random actions: 1 ) investigation of the behavior of systems as t —> oo , and 2) investigation of systems depending on a small parameter as this pa-rameter tends to zero. Th e mixed problem also relates here—investigation

xiii

Page 15: Asymptotic Methods in

XIV INTRODUCTION

of a syste m a s a parameter tend s t o zer o an d t tend s t o infinit y simul -taneously.

The mai n system s considere d ar e thos e describabl e b y Marko v proc -esses that are, in turn, solutions of stochastic differential equations . How -ever, many of the results are simpler to formulate an d prove for Markov processes, and even for processes of a more general form. I t is often con-siderations of convenience that dictate the choice of the form of a system. We remark als o that , i n additio n t o problem s o n th e behavio r o f a sys-tem, ne w problems connected with the study of the asymptoti c behavio r of distributions (transitio n probabilities) aris e for stochastic systems.

In considering the asymptotic behavior of a system as t —• oo we are pri-marily interested in a definite "stabilization" of the system. Thi s term can be used t o characteriz e an y regularity tha t manifest s itsel f i n th e behav-ior of th e system . Th e crudest typ e o f suc h stabilization i s boundedness in probability . Unde r fairl y natura l assumption s abou t th e probabilisti c properties of the system, boundedness in probability implies ergodicity— this property characterize s mor e precisely th e behavior o f th e syste m o n the whole unbounded interva l o f variation. Eve n when the system i s not bounded in probability, it can fail to diverge to infinity but instead return to a neighborhood of the original state with probability 1 . The n it has an infinite invarian t measure , an d we ca n judge th e qualitativ e behavio r o f the system on the basis of exact quantitative laws.

Although ergodi c theor y (includin g ergodi c theor y fo r Marko v proc -esses) is very well developed, some questions connected with this theory, as well as some results relating specifically to solutions of stochastic equations, are appearing here for the first time i n a monograph. Shurenkov' s book [1] contains the most complete reflection of the state of ergodic theory for Markov processes, along with a detailed bibliography.

Questions involving (asymptotic) stability of a system in a neighborhood of an equilibrium state or involving instability of the system arise naturally in the study of the behavior of systems on an infinite interval . Unde r very general assumptions , stabilit y implie s asymptoti c stabilit y fo r stochasti c systems, an d instabilit y wit h positiv e probabilit y implie s instabilit y wit h probability 1 . Linear systems for which the point 0 is the only equilibrium point are of special interest. Suc h systems are either stable or unstable. I n the latter case the system either diverges to infinity, or oscillates and hence has an invariant measure.

Gikhman founded the theory of stability for solutions of stochastic dif-ferential equations in [6] and [7], and then Khas'minskil developed it fur-ther i n [l]-[5] . W e not e tha t th e stud y o f stabilit y o f linea r system s i s

Page 16: Asymptotic Methods in

INTRODUCTION xv

closely connecte d wit h th e stud y o f product s o f independen t identicall y distributed matrices (about this see Bellman, Kesten, and Furstenberg (see Furstenberg [1]) , Tutubalin [1] , and Sazono v an d Tutubalin [1]) .

We mentio n als o result s o f Kulinich [1 ] tha t hav e no t appeare d i n a book: fo r recurren t processe s h e foun d condition s fo r th e existenc e o f a limit distributio n fo r a solution o f a stochastic equatio n unde r a suitabl e normalization.

Carrying result s relatin g t o stochasti c equation s i n finite-dimensiona l spaces ove r t o th e infinite-dimensiona l cas e is fa r fro m trivial . Althoug h the form o f stochasti c equatio n propose d b y Gikhma n i s insensitive t o a change in the dimension o f the space, the more natural form base d on the Ito integral needed a certain reinterpretation (Daletski i [1], [2]). The study of linear systems led to the concept of a stochastic semigroup (Skorokho d [1]> [2], [4], and Butsa n [1]) . Mean-squar e stabilit y o f solution s o f linea r equations involve s stability o f certai n no w nonrandom semigroup s i n th e Banach spac e o f linea r operator s actin g i n a Hilber t space . Ther e i s a fairly complet e exposition o f the theory of stability of such semigroups in Daletskii and Krein's book [1] . A small parameter i n the equation has the effect tha t som e term s i n th e equatio n becom e larg e i n compariso n wit h others, and sinc e a stochastic differentia l equatio n contain s fou r differen t terms (th e differentia l o f th e unknow n solution , th e drift , th e diffusion , and th e jumps), w e obtain differen t problem s wit h a smal l paramete r b y placing th e smal l paramete r a s a coefficien t o f differen t group s o f terms . Most natural is the problem when the system is determined by an ordinary differential equatio n wit h a smal l rando m perturbation . The n unde r a mixing conditio n fo r th e proces s o n th e right-han d sid e i t behave s like a solution o f a stochastic equation o f diffusion typ e on large time intervals . Another class of problems is connected with the presence of rapidly varying components i n th e system . I f thes e component s hav e ergodi c properties , then thei r effec t o n the remainin g component s i s "averaged", i.e. , fo r th e latter a closed equation i s obtained whos e coefficients ar e the coefficient s of the original equation , average d with respec t to an ergodi c distribution . These kinds o f theorem s generaliz e th e Bogolyubo v metho d o f averagin g to random systems. Gikhma n an d Khas'minskil occupied themselves with the justification o f the Bogolyubov method of averaging in various degrees of generality in the case of stochastic equations (se e also Stratonovich [1], [2], V. V. Sarafyan [1] , and Sarafya n an d Skorokho d [1]) .

We remark tha t fo r finit e Marko v chain s an d semi-Marko v processe s such a metho d o f averagin g wa s develope d b y Korolyu k an d Turbi n [1 ] (see also Turbin [1] ) as a method o f asymptoti c phase amalgamation .

Page 17: Asymptotic Methods in

XVI INTRODUCTION

A specia l plac e i s occupie d b y th e clas s o f problem s o n th e behavio r of a dynamica l syste m unde r th e influenc e o f a smal l diffusion . The y have bee n investigate d b y Venttsel ' an d Freidli n [1 ] (se e als o Venttsel ' [1], an d Sarafya n [1]) , and relat e t o th e determinatio n o f a n asymptoti c expression fo r th e probabilit y o f unlikel y events (larg e deviations ) suc h as, fo r example , th e syste m reachin g th e boundar y o f a domai n whos e interior contains a point o f stable equilibrium, du e to a small diffusion o r a transition o f the system from on e stable stat e to another .

Page 18: Asymptotic Methods in

Bibliography

V. I . ARNOI/ D

1. Mathematical methods in classical mechanics, 2n d ed. , "Nauka" , Moscow, 1979 ; English transl . of 1s t ed., Springer-Verlag , 1978 .

V. G . BABCHU K AN D L . G . KULINIC H

1. On a method for finding invariant sets of ltd stochastic differential equations, Teor . Veroyatnost . i Primenen . 2 3 (1978) , 454 ; Englis h transl., Theory Probab. Appl. 23 (1978), 434-435.

2. Solution of a class of linear systems of second-order ltd stochastic dif-ferential equations with a single Wiener process, Teor. Veroyatnost . i Primenen . 2 3 (1978) , 457-458 ; Englis h transl. , Theor y Probab . Appl. 23(1978), 438-439 .

M. BEBOUTOF F [M . V . BEBUTOV ]

1. Markov chains with a compact state space, Mat. Sb . 10(52 ) (1942) , 213-238. (English )

RICHARD BELLMA N

1. Limit theorems for non-commutative operators. I , Duke Math . J. 21 (1954), 491-500 .

GEORGE D . BIRKHOF F

1. Proof of the ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 17 (1931), 656-660.

Yu. N . BLAGOVESHCHENSKI I

1. Diffusion processes depending on a small parameter, Teor . Vero -yatnost. i Primenen . 7 (1962) , 135-152 ; Englis h transl . i n Theor y Probab. Appl. 7(1962).

333

Page 19: Asymptotic Methods in

334 BIBLIOGRAPHY

Yu. N . BLAGOVESHCHENSKI I AN D M . I . FREIDLI N

1. Some properties of diffusion processes depending on a parameter, Dokl. Akad . Nau k SSS R 13 8 (1961) , 508-511 ; Englis h transl . i n Soviet Math . Dokl . 2(1961) .

N. N . BOGOLYUBO V

1. Problems of dynamical theory in statistical physics, GITTL, Moscow, 1946; English transl., North-Holland, Amsterdam, and Interscience , New York, 1962 .

A. N . BORODI N

1. A limit theorem for the solutions of differential equations with a ran-dom right-hand side, Teor. Veroyatnost. i Primenen. 22 (1977), 498-512; English transl . in Theory Probab . Appl. 22 (1977).

G. P . BUTSA N

1. Stochastic semigroups, "Naukova Dumka" , Kiev , 1977 . (Russian)

Yu. L . DALETSKI I

1. Infinite-dimensional elliptic operators and the corresponding para-bolic equations, Uspekh i Mat . Nau k 2 2 (1967) , no . 4(136) , 3-54 ; English transl . in Russian Math . Surveys 22 (1967).

2. Stochastic differential geometry, Uspekh i Mat . Nauk 3 8 (1983), no. 3(231), 87-111; English transl. in Russian Math. Surveys 38 (1983).

Yu. L . DALETSKI I AN D M . G . KREI N

1. Stability of solutions of differential equations in Banach space, "Nauka", Moscow , 1970 ; English transl. , Amer . Math . Soc , Provi -dence, R.I. , 1974 .

E. B . DYNKI N

1. Markov processes, Fizmatgiz, Moscow , 1963 ; English transl. , Vols . I, II, Springer-Verlag, Berlin, and Academic Press, New York, 1965 .

WILLIAM FELLE R

1. An introduction to probability theory and its applications. Vol . II , Wiley, 1966 .

M. N . FREIDLI N

1. The averaging principle and theorems on large deviations, Uspekh i Mat. Nau k 3 3 (1978) , no . 5(203) , 107-160 ; English transl . i n Rus -sian Math . Surveys 33 (1978).

HARRY FURSTENBER G

1. Noncommuting random products, Trans . Amer . Math . Soc . 10 8 (1963), 377-428 .

Page 20: Asymptotic Methods in

BIBLIOGRAPHY 335

I. I . GlKHMA N

1. On the effect of a random process on a dynamical system, Nauchn . Zap. Kiev. Univ . Mekh.-Mat . Fak. 5 (1941), 119-132 . (Ukrainian )

2. On passing to the limit in dynamical systems, Nauchn . Zap . Kiev . Univ. Mekh.-Mat. Fak. 5 (1941), 141-149 . (Ukrainian )

3. On a scheme for formation of random processes, Dokl . Akad. Nau k SSSR 58 (1947) , 961-964 . (Russian )

4. On some differential equations with random functions, Ukrain . Mat . Zh. 2 (1950), no. 3 , 45-69. (Russian )

5. On the theory of differential equations of random processes. I, II , Ukrain. Mat. Zh. 2 (1950), no. 4, 37-63; 3 (1951), 317-339; English transl. in Amer. Math. Soc. Transl. (2 ) 1 (1955).

6. On a theorem ofN. N. Bogolyubov, Ukrain. Mat. Zh. 4 (1952), 215-219. (Russian )

7. Differential equations with random functions, Winte r School Theory Probab. an d Math . Statist . (Uzhgorod , 1964) , Izdat . Akad . Nau k Ukrain. SSR, Kiev, 1964 , pp. 41-85. (Russian )

8. Stability of solutions of stochastic differential equations, Limi t The -orems and Statistical Inference (S . Kh. Sirazhdinov, editor), "Fan", Tashkent, 1966 , pp. 14-45 ; English transl. in Selected Transl. Math. Statist, an d Probab. , Vol . 12 , Amer. Math . Soc , Providence , R.I. , 1973.

I. I . GlKHMA N AN D A . Y A . DOROGOVTSEV

1. On stability of solutions of stochastic differential equations, Ukrain . Mat. Zh. 17 (1965), no. 6, 3-21; English transl. in Amer. Math. Soc. Transl. (2)72(1968) .

I. I . GlKHMA N AN D A . V . SKOROKHO D

1. The theory of stochastic processes. I , II, III, "Nauka", Moscow, 1971, 1973, 1975 ; English transl., Springer-Verlag, 1974 , 1975 , 1979 .

2. Stochastic differential equations and their applications, "Naukov a Dumka", Kiev, 1982 . (Russian )

T. E . HARRI S

1. The existence of stationary measures for certain Markov processes, Proc. Third Berkeley Sympos. Math. Statist, and Probab. (1954/55), Vol. 2 , Univ . o f Californi a Press , Berkeley , Calif. , 1956 , pp . 113 -124.

EBERHARD HOPF

1. Ergodentheorie, Springer-Verlag , 1937 ; reprint, Chelsea, New York, 1948.

Page 21: Asymptotic Methods in

336 BIBLIOGRAPHY

KlYOSI IT O

1. On a stochastic integral equation, Proc. Japan Acad. 22 (1946), 32 -35.

2. On stochastic differential equations, Mem. Amer. Math . Soc . No. 4 (1951).

R. Z . KHAS'MINSKI I

1. On the averaging principle for parabolic and elliptic differential equa-tions and Markov processes with small diffusion, Teor . Veroyatnost. i Primenen. 8 (1963), 3-25; English transl. in Theory Probab. Appl. 8 (1963) .

2. On random processes determined by differential equations with a small parameter, Teor . Veroyatnost . i Primenen . 1 1 (1966) , 240 -259; Englis h transl . in Theory Probab . Appl. 11 (1966).

3. A limit theorem for solutions of differential equations with a random right-hand side, Teor. Veroyatnost. i Primenen. 11 (1966), 444-462; English transl . in Theory Probab . Appl. 11 (1966).

4. On the averaging principle for ho stochastic differential equations, Kybernetika (Prague ) 4 (1968), 260-279. (Russian )

5. Stability of systems of differential equations under random perturba-tions of their parameters, "Nauka" , Moscow , 1969 ; English transl. , Stochastic stability of differential equations, Sijthoff and Noordhoff , Alphen aa n den Rijn , 1980 .

A. KHINTCHIN E [A . YA . KHINCHIN ]

1. Zu Birkhoffs Losung des Ergodenproblems, Math . Ann. 107 (1932) , 485-488.

A. N . KOLMOGORO V

1. Markov chains with countably many states, Bull. Univ. Moscou Ser. Internat. Sect . A Math. Mec . 1 (1937/38), no . 3 . (Russian ; Frenc h summary)

V. S . KOROLYU K AN D A . F . TURBI N

1. Mathematical foundations for phase amalgamation of complex sys-tems, "Naukova Dumka" , Kiev , 1978 . (Russian)

N. M . KRYLO V AN D N . N . BOGOLYUBO V

1. Les proprietes ergodiques des suites des probability en chaine, C. R. Acad. Sci . Paris 204 (1937) , 1545-1546 .

Page 22: Asymptotic Methods in

BIBLIOGRAPHY 337

2. L'effet de la variation statistique des parametres sur les proprietes ergodiques des systemes dynamiques non conservatifs, Zap . Kafedr . Mat. Fiz . Inst . Budlvel . Mat . Akad . Nau k Ukrain . SS R 3 (1937) , 154-171 (Ukrainian) ; French transl , ibid. , 172-190 .

3. General measure theory in nonlinear mechanics, Zap. Kafedr . Mat . Fiz. Inst. Budlvel . Mat. Akad. Nauk Ukrain . SSR 3 (1937), 55-11 2 (Ukrainian); French transl. , La theorie generate de la mesure dans son application a Vetude des systemes dynamiques de la mecanique non lineaire, Ann. of Math . (2 ) 38 (1937) , 65-113.

4. Sur les equations de Fokker-Planck deduites dans la theorie des per-turbations a I'aide d'une methode basee sur les proprietes spectrales de Vhamiltonien perturbateur, Zap. Kafedr. Mat . Fiz. Inst. Budlvel . Mat. Akad. Nauk Ukrain . SSR 4 (1939), 5-80 (Ukrainian) ; Frenc h transl., ibid. , 81-157 .

5. On some problems in the ergodic theory of stochastic systems, Zap . Kafedr. Mat . Fiz . Inst . Budlvel . Mat . Akad . Nau k Ukrain . SS R 4 (1939), 243-287. (Ukrainian )

N. V . KRYLO V

1. Controlled diffusion processes, "Nauka" , Moscow , 1977 ; Englis h transl., Springer-Verlag , 1980 .

G. L . KULINIC H

1. Limit distributions for the solution of a stochastic diffusion equation, Teor. Veroyatnost . i Primenen . 1 3 (1968), 502-506 ; English transl . in Theory Probab . Appl. 13 (1968).

PAUL MALLIAVI N

1. Geometrie differentielle stochastique, Sem . Math . Sup. , vol . 64 , Presses Univ. Montreal , Montreal , 1978 .

Yu. A . MITROPOI/SKI I

1. Problems in the asymptotic theory of nonstationary oscillations, "Nauka", Moscow , 1964 ; Englis h transl. , Israe l Progra m Sci . Transls., Jerusalem, an d Davey , New York, 1965 .

JAQUES NEVE U

1. Bases mathematiques du calcul des probability, Masson , Paris, 1964; English transl. , Holden-Day, Sa n Francisco, Calif. , 1965 .

V. V . SARAFYA N

1. On the limit behavior of the largest eigenvalue of an elliptic operator with a small parameter, Mat. Sb. 127(169) (1985) , 538-554; English transl. in Math . USSR Sb . 55 (1986).

Page 23: Asymptotic Methods in

338 BIBLIOGRAPHY

V. V . SARAFYA N AN D A . V . SKOROKHO D

1. On fast-switching dynamical systems, Teor. Veroyatnost. iPrimenen. 32 (1987) , 658-669 ; Englis h transl . i n Theor y Probab . Appl . 3 2 (1987).

V. V . SAZONO V AN D V . N . TUTUBAU N

1. Probability distributions on topological groups, Teor. Veroyatnost . i Primenen. 1 1 (1966), 3-55; English transl. in Theory Probab. Appl. 11 (1966).

V. M . SHURENKO V

1. Ergodic theory and related equations in the theory of random processes, "Naukova Dumka", Kiev, 1981 . (Russian)

A. V . SKOROKHO D

1. Operator martingales and stochastic semigroups, Teoriya Sluchai -nykh Protsessov, vyp. 4, "Naukova-Dumka", Kiev, 1976 , pp. 86-94. (Russian)

2. Random linear operators, "Naukova Dumka", Kiev , 1978 ; English transl., Reidel , 1983 .

3. Stochastic equations for complex systems, "Nauka", Moscow, 1983 ; English transl., Reidel, 1988 .

4. Operator stochastic differential equations and stochastic semigroups, Uspekhi Mat. Nauk 37 (1982), no. 6(228), 157-183 ; English transl. in Russian Math. Surveys 37 (1982).

5. Integration in Hilbert space, "Nauka" , Moscow , 1975 ; Englis h transl., Springer-Verlag , 1974 .

R. P . STRATONOVIC H

1. Selected questions of the theory of fluctuations in radio engineering, "Sovet. Radio", Moscow, 1961 ; English transl., Topics in the theory of random noise. Vol. I: General theory of random processes. Nonlin-ear transformations of signals and noise, Gordon and Breach, New York, 1963 .

2. Conditional Markov processes and their application to the theory of optimal control, Izdat . Moskov. Gos. Univ., Moscow, 1966 ; English transl., Amer. Elsevier, New York, 1968 .

A. F . TURBI N

I. An application of the theory of perturbations of linear operators to the solution of some problems connected with Markov chains and semi-Markov processes, Teor. Veroyatnost . i Mat . Statist . Vyp . 6 (1972), 118-128 ; Englis h transl . i n Theor y Probab . Math . Statist . No. 6(1975)(1976) .

Page 24: Asymptotic Methods in

BIBLIOGRAPHY 339

V. N . TUTUBALI N

1. On limit theorems for products of random matrices, Teor . Vero -yatnost. i Primenen . 1 0 (1965) , 19-32 ; Englis h transl . i n Theor y Probab. Appl. 10(1965) .

A. D . VENTTSEL '

1. Robust limit theorems on large deviations for Markov random processes. I, II, III, Teor. Veroyatnost . i Primenen. 21 (1976), 235-252, 512-526 ; 24 (1979), 673-691; English transl. in Theory Probab. Appl. 21 (1976); 24 (1979).

A. D . VENTTSEL ' AN D M . I . FREIDLI N

1. Fluctuation in dynamical systems under the influence of random per-turbations, "Nauka" , Moscow , 1979 ; English transl. , Random per-turbations of dynamical systems, Springer-Verlag , 1984 .

Page 25: Asymptotic Methods in

This page intentionally left blank

Page 26: Asymptotic Methods in

Copying an d reprinting . Individua l reader s o f thi s publication , an d non -profit librarie s actin g fo r them , ar e permitte d t o mak e fai r us e o f th e material , such a s t o cop y a chapte r fo r us e i n teachin g o r research . Permissio n i s grante d to quot e brie f passage s fro m thi s publicatio n i n reviews , provide d th e customar y acknowledgment o f th e source i s given.

Republication, systemati c copying , o r multipl e reproductio n o f an y materia l in thi s publicatio n i s permitte d onl y unde r licens e fro m th e America n Mathe -matical Society . Request s fo r suc h permissio n shoul d b e addresse d t o th e Ac -quisitions Department , America n Mathematica l Society , 201 Charles Street , Prov -idence, Rhod e Islan d 02904-2294 , USA . Request s ca n als o b e mad e b y e-mai l t o reprint-permissicnfiams.org.

Page 27: Asymptotic Methods in