60
Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj [email protected] 20 Sep 2010 http://pioneer.netserv.chula.ac.th/~sanongn1/course.html

Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj [email protected]

Embed Size (px)

Citation preview

Page 1: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Rheology and

Polymer Characterization

Asst Prof Anongnat [email protected]

20 Sep 2010

http://pioneer.netserv.chula.ac.th/~sanongn1/course.html

Page 2: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Fundamentals:

• Why Rheology ?

• Fundamental Rheology Concepts and Parameters

• Fundamental Rheometry Concepts

• Viscosity, Viscoelasticiy and the Storage Modulus

• The Linear Viscoelastic Region (LVR)

Page 3: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

AGENDA

• Why Rheology ?

• Fundamental Rheology Concepts and Parameters

• Fundamental Rheometry Concepts

• Viscosity, Viscoelasticiy and the Storage Modulus

• The Linear Viscoelastic Region (LVR)

Page 4: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

A Rheological Paradox

Sometimes it does ____ Sometimes it doesn’t ____

Page 5: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

BECAUSE …

If a material is pumped, sprayed, extended, extruded, molded, coated, mixed, chewed, swallowed, rubbed, transported, stored, heated, cooled, aged …

RHEOLOGY is important ….!!

Page 6: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

AGENDA

• Why Rheology ?

• Fundamental Rheology Concepts and Parameters

• Fundamental Rheometry Concepts

• Viscosity, Viscoelasticiy and the Storage Modulus

• The Linear Viscoelastic Region (LVR)

Page 7: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

“παντα ρει” (everything flows … )

- Heraclito de Samos (500 A.C.)

Time Scale in Rheology

Deborah Number De = λ / texpJudges 5:5

Page 8: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Definition of Rheology

Rheology is the science of

____?____ and ____?___ of matter under controlled testing conditions .

• flow• deformation

Page 9: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Definition of Rheology

Rheology is the science of deformationand flow of matter under controlledtesting conditions .

• Flow is a special case of deformation• Deformation is a special case of flow

Page 10: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Simple Shear Deformation and Shear Flow

τ = FA

y0

x(t)

θ

Vy0

1 d x(t)y0d t

Strain, γ =x(t)y0

Strain Rate, γ = .

Shear Modulus, G = τγ

V

y

xA

z

Shear Deformation

Viscosity, η =τγ.

γ. = ∆γ∆t

=

Page 11: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Range of Rheological Material Behavior

Rheology: The study of deformation and flow of matter at specified conditions.

Range of material behaviorSolid Like --------- Liquid Like

(Ideal Solid ------------- Ideal Fluid)

Classical Extremes

Page 12: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Classical Extremes: Elasticity

1678: Robert Hooke develops his “True Theory of Elasticity”

“The power of any spring is in the same proportion with the tension thereof.”

Hooke’s Law: τ = G γ or (Stress = G x Strain)

where G is the RIGIDITY MODULUS

Page 13: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Linear and Non-Linear Stress-Strain Behavior of Solids

Non-Linear RegionG = f(γ)

Linear RegionG is constant

σ

G

1000.00.010000 0.10000 1.0000 10.000 100.00% strain

1000

1.000

10.00

100.0

G' (

Pa)

100.0

0.01000

osc.

str

ess

(Pa)

Page 14: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Classical Extremes: Viscosity

1687: Isaac Newton addresses liquids and steady simple shearing flow in his “Principia”

“The resistance which arises from the lack of slipperiness of the parts of the liquid, other things being equal, is proportional to the velocity with which the parts of the liquid are separated from one another.”

Newton’s Law: τ = ηγ

where η is the Coefficient of Viscosity

Page 15: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Newtonian and Non-Newtonian Behavior of Fluids

γ

τ

η

Newtonian Regionη Independent of γ

Non-Newtonian Regionη = f(γ)

1.0001.000E-5 1.000E-4 1.000E-3 0.01000 0.1000

shear rate (1/s)

1.000E5

10000

η (P

a.s)

1.000E5

1.000

10.00

100.0

1000

10000

τ(P

a)

Page 16: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

PARAMETERS for Rheological PropertiesClassical Extremes

Ideal Solid -- [External Force] -- Ideal Fluid

STEEL WATERStrong Structure Weak StructureRigidity FluidityDeformation FlowRetains/recovers form Losses form Stores Energy Dissipates Energy

(Purely Elastic – R. Hooke, 1678) [Energy] (Purely Viscous – I. Newton, 1687)ELASTICITY VISCOSITYStorage Modulus Loss Modulus

REAL BehaviorApparent Solid [Energy + time] Apparent Fluid

- viscoelastic materials -

Page 17: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Types of non-Newtonian fluids

• Deformation rate dependent viscosity• Yield Stress (plasticity)• Elasticity• Thixotropy• Transient behaviour

Page 18: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Dilatancy (shear thickening)Plastic and Pseudoplastic (shear thinning)

Stress-strain rate curve

Page 19: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

apparent viscosity as a function of time

Page 20: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

AGENDA

• Why Rheology ?

• Fundamental Rheology Concepts and Parameters

• Fundamental Rheometry Concepts

• Viscosity, Viscoelasticiy and the Storage Modulus

• The Linear Viscoelastic Region (LVR)

Page 21: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Viscometer vs. Rheometer

• Viscometer: instrument that measures the viscosity of a fluid over a limited shear rate range

• Rheometer: instrument that measures:• Viscosity over a wide range of shear rates, and…• Viscoelasticity of fluids, semi-solids and solids

Page 22: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Frame of Reference…

• Recognize that a rheometer is a highly sensitive device used to quantify viscoelastic properties of the molecular structure of materials.

• A rheometer can not always mimic the conditions of a process, application or use.

• Rheometers determine apparent properties under a wide range of testing conditions.

– The apparent behavior can be used as a “finger print” or “benchmark” of the material.

Page 23: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Constitutive Relations

ModulusStrainStress

=

Viscosity=rateShear

Stress

Page 24: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Measuring Systems - Geometries

ParallelPlates

Cone andPlate

ConcentricCylinders

Rectangular Torsion

Very Low to Medium Viscosity

Very Low to High

Viscosity

Low Viscosity to soft Solids Soft to Rigid

Solids

Decane Water Steel

Page 25: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

AGENDA

• Why Rheology ?

• Fundamental Rheology Concepts and Parameters

• Fundamental Rheometry Concepts

• Viscosity, Viscoelasticiy and the Storage Modulus

• The Linear Viscoelastic Region (LVR)

Page 26: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Dynamic Testing

Deformation

Response

Phase angle δ

An oscillatory (sinusoidal) deformation (stress or strain)is applied to a sample.

The material response (strain or stress) is measured.

The phase angle δ, or phase shift, between the deformation and response is measured.

Page 27: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Dynamic Viscoelastic Material Response

Phase angle 0° < δ < 90°

Stress

Strain

Page 28: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Viscoelastic Parameters

The Elastic (Storage) Modulus:Measure of elasticity of material. The ability of the material to store energy.

G' = (stress*/strain)cosӨ

G" = (stress*/strain)sinӨThe Viscous (loss) Modulus:The ability of the material to dissipate energy. Energy lost as heat.

The Complex Modulus: Measure of materials overall resistance to deformation.

G* = Stress*/StrainG* = G’ + iG”

Tan σ= G"/G'Tan Delta:Measure of material damping - such as vibration or sound damping.

Page 29: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Dynamic Time Sweep (Time Ramp)

Stre

ss o

r Stra

in

Time

DeformationThe material response is monitored at a constant frequency, amplitude and temperature.

USESTime dependent ThixotropyCure StudiesStability against thermal degradationSolvent evaporation/drying

Page 30: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

AGENDA

• Why Rheology ?

• Fundamental Rheology Concepts and Parameters

• Fundamental Rheometry Concepts

• Viscosity, Viscoelasticiy and the Storage Modulus

• The Linear Viscoelastic Region (LVR)

Page 31: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Dynamic Stress or Strain Sweep(Torque Ramp)

The material response to increasing deformation amplitude (stress or strain) is monitored at a constant frequency and temperature.

Stre

ss o

r Stra

in

Time

Deformation

USESIdentify Linear Viscoelastic RegionStrength of dispersion structure - settling stabilityResilience

Page 32: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Dynamic Strain Sweep: Material Response

Non-Linear RegionG = f(γ)Linear Region

G is constant

σ

G

1000.00.010000 0.10000 1.0000 10.000 100.00% strain

1000

1.000

10.00

100.0

G' (

Pa)

100.0

0.01000

osc.

stre

ss (P

a)

Critical Strain γc

Page 33: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Frequency Sweep

The material response to increasing frequency (rate of deformation) is monitored at a constant amplitude (stress or strain) and temperature.S

tress

or S

train

Time

Deformation

USESViscosity Information - Zero Shear η, shear thinningElasticity (reversible deformation) in materialsMW & MWD differences Polymer Melts and Polymer solutions.Finding Yield in gelled dispersionsHigh and Low Rate (short and long time) modulus properties.Extend time or frequency range with TTS

Page 34: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Time Sweep on Latex

225.00

25.00 50.00 75.00 100.0 125.0 150.0 175.0 200.0

time (s)

100.0

0

20.00

40.00

60.00

80.00

G' (

Pa)

Structural Recovery after Preshear

Page 35: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Dynamic Strain Sweep: Material Response

Non-Linear RegionG = f(γ)Linear Region

G is constant

σ

G

1000.00.010000 0.10000 1.0000 10.000 100.00% strain

1000

1.000

10.00

100.0

G' (

Pa)

100.0

0.01000

osc.

stre

ss (P

a)

Critical Strain γc

Page 36: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Oscillation Model Fitting for Classic Polymer Data [Polyacrylamide Soln.]

10000.01000 0.1000 1.000 10.00 100.0ang. frequency (rad/sec)

1000

1.000E-4

1.000E-3

0.01000

0.1000

1.000

10.00

100.0

G' (

Pa)

1000

1.000E-4

1.000E-3

0.01000

0.1000

1.000

10.00

100.0

G'' (Pa)

100.0

0.1000

1.000

10.00

n' (Pa.s)

TA InstrumentsPolyacrylamideSolution 20 C

4 ElementMaxwell Fit

Straight LineFit to TerminalRegion of Data

Slope = 1.96

Slope = 0.97

G'

G" n'

Page 37: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Defining Shear Rate Ranges

Bearings, engines103 to 107Lubrication

Atomization, spray drying105 to 106Spraying

Paper manufacture104 to 106High-speed coating

Skin creams, lotions104 to 105Rubbing

Painting103 to 104Brushing

Pumping liquids, blood flow100 to 103Pipe Flow

Liquids manufacturing101 to 103Mixing and stirring

Confectionery, paints101 to 102Dip coating

Foods101 to 102Chewing and Swallowing

Polymers, foods100 to 102Extruders

Toilet bleaches, paints, coatings10-1 to 101Draining off surfaces under gravity

Paints, Printing inks10-2 to 10-1Leveling due to surface tension

Medicines, Paints, Salad Dressing10-6 to 10-3Sedimentation of fine powders in liquids

ExamplesShear Rate Range

Situation

Page 38: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Stress Relaxation Experiment

Response of Classical Extremes

time0

time0

stress for t>0is constant

time0

stress for t>0 is 0

Stre

ss

Str e

s s

Str a

in

Hookean Solid Newtonian Fluid

Page 39: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Stress Relaxation Experiment (cont’d)

Response of Material

For small deformations (strains within the linear region) the ratio of stress to strain is a function of time only.

This function is a material property known as the STRESS RELAXATION MODULUS, G(t)

G(t) = s(t)/γ

Stress decreases with timestarting at some high value and decreasing to zero. S

tress

time0

Page 40: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Creep Recovery Experiment

Response of Classical Extremes

– Stain for t>t1 is constant– Strain for t >t2 is 0

time

Stra

in

time

Stra

in

time

– Stain rate for t>t1 is constant– Strain for t>t1 increase with time– Strain rate for t >t2 is 0

t2S

tress

t1

t1 t2 t2t1

Page 41: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Creep Recovery Experiment:Response of Viscoelastic Material

Reference: Mark, J., et.al., Physical Properties of Polymers ,American Chemical Society, 1984, p. 102.

Creep t1> 0

timet 1 t2

RecoverableStrain

Recovery t 2= 0 (after steady state)

σ/η

Stra

in

Strain rate decreases with time in the creep

zone, until finally reaching a steady state.

In the recovery zone, the viscoelastic fluid recoils, eventually reaching a equilibrium at some small total strain relative to the strain at unloading.

Page 42: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Polyethylene Rheology @ 150 C

10.001.000E-4 1.00E-3 0.01000 0.1000 1.000

shear rate (1/s)

1000000

1000

10000

100000

visc

osity

(Pa.

s)

HDPE

LDPE

LLDPE

Page 43: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Polydimethylsiloxane - Cox-Merz Data

10001.000E-5 1.000E-3 0.1000 10.00shear rate (1/s)

100000

100.0

1000

10000

visc

osity

(Pa.

s)

PDMS.05F-Flow stepPDMS.08F-Flow step

Dynamic data gives highshear rates unattainable in flow

Creep or Equilibrium FlowDynamicFrequencySweep

η (γ) = η∗ (ω).

Page 44: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Dynamic Temperature Ramp or Step and Hold: Material Response

Temperature

Terminal RegionRubbery PlateauRegion

TransitionRegion

Glassy Region

Loss Modulus (E" or G")

Storage Modulus (E' or G')log

E' (

G')

and

E" (G

")

Page 45: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Molecular Structure - Effect of Molecular Weight

Rubbery PlateauRegion

TransitionRegion

Glassy Region

log

E' (

G')

Temperature

MW has practically no effect on the modulus below Tg

LowMW

Med.MW

HighMW

Page 46: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Effect of Heating Rate on Temperature of Cold Crystallization in PET

Heating RateAfter QuenchCooling

Tg

melt

Crystallization [kinetic event]

Page 47: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

PET Bottle Resin – Cold CrystallizationTemperature Ramp at 3°C/min.Frequency = 1 HzStrain = 0.025%

G’

G”

tan δ

β- transition-56.62°C

α- transitionTg = 88.0°C

250.0-200.0 -150.0 -100.0 -50.0 0 50.0 100.0 150.0 200.0temperature (Deg C)

1.000E10

1.000E6

1.000E7

1.000E8

1.000E9

G' (

Pa)

1.000E10

1.000E6

1.000E7

1.000E8

1.000E9

G'' (Pa)

0.4000

0

0.05000

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

tan(

delta

)

ColdCrystallization

Page 48: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

PET Bottle Resin – Before and After DMA Scan

PET After Temperature Ramp Scan

(Cold Crystallization)

Pressed PET Bottle Resin

Page 49: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

PET Bottle Resin - Repeat Run After Cold Crystallization

250.0-200.0 -150.0 -100.0 -50.0 0 50.0 100.0 150.0 200.0temperature (Deg C)

1.000E10

10000

1.000E5

1.000E6

1.000E7

1.000E8

1.000E9

G' (

Pa)

1.000E10

10000

1.000E5

1.000E6

1.000E7

1.000E8

1.000E9

G'' (P

a)2.250

0

0.2500

0.5000

0.7500

1.000

1.250

1.500

1.750

2.000

tan(

delta

)

Temperature Ramp at 3°C/min.Frequency = 1 HzStrain = 0.025%G’

G”

tan δ

α- transitionTg = 103°C

MeltTm = 240°C

Page 50: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

PET Bottle Resin - Comparison of G’

250.0-150.0 -100.0 -50.0 0 50.0 100.0 150.0 200.0temperature (Deg C)

1.000E10

1.000E6

1.000E7

1.000E8

1.000E9

G' (

Pa)

Temperature Ramp at 3°C/min.Frequency = 1 HzStrain = 0.025%

ColdCrystallization

Repeat Run After Cold Crystallization

Initial Scan on Pressed Resin

Page 51: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Temperature

Hea

t Flo

w

GlassTransition

Crystallization

Melting

Cross-Linking(Cure)

Oxidation or

Decomposition

BECAUSE …Typical DSC Transitions

Describe Thermal Transitions of the Materials Structure

Quantitative Description of Consistency (structure) ?

Page 52: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

• Thermal Analysis describes thermal transitions

NEED to quantify ...

• Physical Properties of Structure • Strength or weakness of the Structure

and because …

Rheology can do these; therefore, it is much more informative tool

BECAUSE …

Page 53: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Shear

Flexure

Page 54: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Tension

Compression

Page 55: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th
Page 56: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Creep

Page 57: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Stress relaxation

Creep

Page 58: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Stress relaxation

Constant stressing rate

Creep

Page 59: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Stress relaxation

Constant stressing rate

Creep

Constant straining rate

Page 60: Asst Prof Anongnat Somwangthanarojpioneer.netserv.chula.ac.th/~sanongn1/rheology.pdf · Rheology and Polymer Characterization Asst Prof Anongnat Somwangthanaroj Anongnat.s@chula.ac.th

Acknowledgements

Abel Gaspar-Rosas, Ph.D. TA Instruments – Waters, IncFor graphs and figures