5
 MAE 311: Machines and Mechanisms I Spring 2014  Assignment #3 Due Date: 3/7/2014 Copyright 2014  Phillip M. Cormier and Jobaidur Khan Problem 1 (25 Points) The steel eyebolt shown in Figure 1 is loaded with a force of 75 pounds. The bolt is formed from round stock with a diameter of 0.25 inches, and has in inner bend radius of 0.5 inches in the eye and at the end of the shank. Estimate the stress at the inner and outer surf aces of section B, where  = 30°. Figure 1: Problem 1 Diagram Sol. d = 0.25 in, r o  = 0.75 on, r i  = 0.5 in, From table 3-4, for circular cross-section, we get, R = 0.125 in, r c  = 0.5 + 0.125 = 0.625 in in 618686 . 0 125 . 0 625 . 0 625 . 0 2 125 . 0 r r r 2 r r 2 2 2 2 2 c c 2 n    in 006314 . 0 618686 . 0 625 . 0 r r e n c    in 118686 . 0 5 . 0 618686 . 0 r r c i n i    in 131314 . 0 618686 . 0 75 . 0 r r c i o o    Cross-section area, 2 2 in 049087 . 0 4 d A    The angle  of the line of radius centers is,                 30 2 1 sin R d R 2 d R sin 1 1  Moment, in . lb f 44 . 23 30 S in 2 25 . 0 5 . 0 75 S in 2 d R F M    kpsi 7 . 18  psi 716 , 18 5 . 0 006314 . 0 049087 . 0 118686 . 0 44 . 23 049087 . 0 30 S in 75 Aer M c A FSin i i i     psi k 5 . 12  p si 478 , 12 75 . 0 006314 . 0 049087 . 0 131314 . 0 44 . 23 049087 . 0 30 S in 75 Aer Mc A FSin o o o    

Assignment #3 Solution - Spring 2014

Embed Size (px)

Citation preview

Page 1: Assignment #3 Solution - Spring 2014

8/11/2019 Assignment #3 Solution - Spring 2014

http://slidepdf.com/reader/full/assignment-3-solution-spring-2014 1/5

 MAE 311: Machines and Mechanisms I Spring 2014

 Assignment #3 Due Date: 3/7/2014

Copyright 2014 – Phillip M. Cormier and Jobaidur Khan

Problem 1 (25 Points)

The steel eyebolt shown in Figure 1 is loaded with a force of 75 pounds. The bolt is formed from round

stock with a diameter of 0.25 inches, and has in inner bend radius of 0.5 inches in the eye and at the end

of the shank. Estimate the stress at the inner and outer surfaces of section B, where  = 30°.

Figure 1: Problem 1 Diagram

Sol. d = 0.25 in, r o = 0.75 on, r 

i = 0.5 in,

From table 3-4, for circular cross-section, we get, R = 0.125 in, r c = 0.5 + 0.125 = 0.625 in

in618686.0

125.0625.0625.02

125.0

r r r 2

r r 

22

2

22

cc

2

n  

 

in006314.0618686.0625.0r r e nc    

in118686.05.0618686.0r r c ini    

in131314.0618686.075.0r r c ioo    

Cross-section area,2

2

in049087.04

dA  

 

The angle  of the line of radius centers is,

 

  

 

 

  

 

  30

2

1sin

R dR 

2dR sin 11  

Moment, in.lbf 44.2330Sin225.05.075Sin2dR FM    

kpsi7.18 psi716,185.0006314.0049087.0

118686.044.23

049087.0

30Sin75

Aer 

Mc

A

FSin

i

ii  

 

 psik 5.12 psi478,1275.0006314.0049087.0

131314.044.23

049087.0

30Sin75

Aer 

Mc

A

FSin

o

oo  

 

Page 2: Assignment #3 Solution - Spring 2014

8/11/2019 Assignment #3 Solution - Spring 2014

http://slidepdf.com/reader/full/assignment-3-solution-spring-2014 2/5

 MAE 311: Machines and Mechanisms I Spring 2014

 Assignment #3 Due Date: 3/7/2014

Copyright 2014 – Phillip M. Cormier and Jobaidur Khan

Problem 2 (25 Points)

The latch spring shown in Figure 2 supports a load of 3 pounds. Given the noted dimensions, determine

the following:

a) Determine the stresses at the top and bottom of the beam, just before the bend. b) Using curved beam theory, determine the inner and outer stresses at the bend.

c) Compare the stresses between the curved portion and bent portion to determine an effectivestress concentration factor.

Figure 2: Problem 2 Diagram

Sol. (a)

kpsi02.8 psi8021

12in1094.0in75.0

in1094.05.0in4lb3

I

Mc3

 

 

(b)  From table 3-4, for rectangular cross-section,

we get, r i = 0.125 in, r o = r i + h = 0.125 + 0.1094 = 0.2344 in

in174006.0

125.02344.0ln

1094.0

r r ln

hr 

io

n    

in005694.0174006.01797.0r r e nc    

in049006.0125.0174006.0r r c ini    

in060394.0174006.02344.0r r c ioo    

Cross-section area,2in08205.01094.075.0 bhA    

M = –  3 lb

 4 in = –  12 lb.in

The negative sign is due to convention, now the stresses,

kpsi1.10 psi070,10125.0005694.008205.0

049006.012

Aer 

Mc

i

ii  

 

kpsi62.6 psi618,62344.0005694.008205.0

060394.012

Aer 

Mc

o

oo  

 

Page 3: Assignment #3 Solution - Spring 2014

8/11/2019 Assignment #3 Solution - Spring 2014

http://slidepdf.com/reader/full/assignment-3-solution-spring-2014 3/5

 MAE 311: Machines and Mechanisms I Spring 2014

 Assignment #3 Due Date: 3/7/2014

Copyright 2014 – Phillip M. Cormier and Jobaidur Khan

(c)  Stress concentrations,

26.102.8

1.10K  i

i  

 

825.0

02.8

62.6K  o

o  

 

Problem 3 (50 Points Total)

Compute the factor of safety for points A and B using both the distortion energy theory and max shear

stress theory. The bar is made from AISI 1006 cold-drawn steel, and is loaded with force F = 550 N, P

= 4000 N, and T = 25 N-m. Determine the required diameter change to bring the most restrictive caseup to a factor of safety of 3.

Figure 3: Problem 3 Diagram

Sol. Using Table A-20, yp = 280 MPaLet’s analyze the point B,

x from bending 

xz

y

x from P 

Page 4: Assignment #3 Solution - Spring 2014

8/11/2019 Assignment #3 Solution - Spring 2014

http://slidepdf.com/reader/full/assignment-3-solution-spring-2014 4/5

 MAE 311: Machines and Mechanisms I Spring 2014

 Assignment #3 Due Date: 3/7/2014

Copyright 2014 – Phillip M. Cormier and Jobaidur Khan

For point B the bending stress from F will cause a normal stress in the x direction,

  MPa Pam

m N 

 M 

 I 

c M   F  F bend  x 16610166

015.0

1.05503232 6

33 

    

    

For point B the axial stress (tension) from P will cause a normal stress in the x direction,

  MPa Pa

m

 N 

 P 

 A

 P axial  6.22106.22

015.0

400044 6

22 

    

    

So, total axial stress at B, x = x,bend + axial = 188.6 MPa

Shear stress for torsion,

MPa7.37m015.0

m. N2516

d

T16

J

Tr 33T  

 

So, total shear stress, MPa7.37Txy    

So, according to DE, 4.17.3736.188280

32222   n

nn  xy x

 yp    

  

 

So, according to MSST, 38.17.3746.188280

42222   n

nn  xy x

 yp    

  

 

Let’s analyze the point A, 

For point A the axial stress (tension) from P will cause a normal stress in the x direction,

  MPa Pa

m

 N 

 P 

 A

 P axial  6.22106.22

015.0

400044 6

22 

    

    

x from P 

xz

y

Page 5: Assignment #3 Solution - Spring 2014

8/11/2019 Assignment #3 Solution - Spring 2014

http://slidepdf.com/reader/full/assignment-3-solution-spring-2014 5/5

 MAE 311: Machines and Mechanisms I Spring 2014

 Assignment #3 Due Date: 3/7/2014

Copyright 2014 – Phillip M. Cormier and Jobaidur Khan

Shear stress for torsion,

MPa7.37m015.0

m. N2516

d

T16

J

Tr 33T  

 

Shear stress from F,

  MPam

 N 

 F 

 A

 F  F  15.4

015.03

55016

3

16

3

422

 

    

    

So, total shear stress,  MPa F T  xz  55.3315.47.37             

So, according to DE, 27.455.3536.22280

32222   n

nn  xz  x

 yp    

  

 

So, according to MSST, 75.355.3546.22280

42222   n

nn  xz  x

 yp    

  

 

This is obvious from the previous calculation that MSST in point B gives most restrictive case. So, the

design calculation becomes,

333

FF bendx

d

2.560

d

m1.0 N55032

d

M32

I

cM

 

For point B the axial stress (tension) from P will cause a normal stress in the x direction,

222

5093400044

d d 

 N 

 P 

 A

 P axial 

 

    

    

So, total axial stress at B, 23 50932.560d d 

axial bend  x x             

Shear stress for torsion,333T

d

3.127

d

m. N2516

d

T16

J

Tr 

 

So, total shear stress,3Txy

d

3.127  

So, according to MSST,

  mmmd 

d d 

d d d n  xy x

 yp

2002.0 

03.127450932.560910280 

3.1274

50932.560

3

10280 4

22236

2

3

2

23

622

 

  

 

 

  

 

      

  

 

The diameter needs to be increased by 33%.