21
Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton Amann, a,b,* Pawel Mochalski, a Vera Ruzsanyi, a,b Yoav Broza, c and Hossam Haick c,* a Breath Research Institute, Leopold-Franzens University of Innsbruck, 6850 Dornbirn, Austria. b Department of Anesthesiology and Critical Care Medicine, Innsbruck Medical University, 6020 Innsbruck, Austria. c The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003, Israel. * Joint corresponding authors: [email protected], [email protected] Keywords: volatile cancer biomarkers, blood solubility, fat solubility, exhalation kinetics

Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

AssessmentoftheExhalationKineticsofVolatileCancerBiomarkersBasedontheirPhysicochemical

Properties

AntonAmann,a,b,*PawelMochalski,aVeraRuzsanyi,a,bYoavBroza,candHossamHaickc,*

a BreathResearchInstitute,Leopold-FranzensUniversityofInnsbruck,6850Dornbirn,Austria.

b Department of Anesthesiology and Critical Care Medicine, Innsbruck Medical University, 6020

Innsbruck,Austria.

c TheDepartmentofChemicalEngineeringandRussellBerrieNanotechnologyInstitute,Technion–

IsraelInstituteofTechnology,Haifa3200003,Israel.

*Jointcorrespondingauthors:[email protected],[email protected]

Keywords:volatilecancerbiomarkers,bloodsolubility,fatsolubility,exhalationkinetics

Page 2: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

Abstract:

Thecurrentreviewprovidesanassessmentoftheexhalationkineticsofvolatileorganiccompounds(VOCs) thathavebeen linkedwithcancer.Towards thisend,weevaluatevariousphysicochemicalproperties, such as ‘breath:air’ and ‘blood:fat’ partition coefficients, of 112 VOCs that have beensuggestedoverthepastdecadeaspotentialmarkersofcancer.Withthesedata,weshowthatthecancer VOC concentrations in the blood and in the fat span over 12 and 8 orders ofmagnitude,respectively, inordertoprovideaspecificcounterpartconcentration intheexhaledbreath(e.g.,1ppb). This finding suggests that these 112 different compounds have different storagecompartmentsinthebodyandthattheirexhalationkineticsdependsononeorcombinationofthefollowingfactors:(i)theVOCconcentrationsindifferentpartsofthebody;(ii)theVOCsynthesisandmetabolism rates; (iii) thepartition coefficients betweendifferent tissueswithblood and air; and(iv) the VOCs' diffusion constants. Based on this analysis, we discuss how this knowledge allowsmodelingandsimulationofthebehaviorofaspecificVOCunderdifferentsamplingprotocols(withandwithout exertion of effort).We end this reviewby a brief discussion on the potential role ofthesescenariosinscreeningandtherapeuticmonitoringofcancer.

Page 3: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

1.Introduction

1.1.Background

Volatile organic compounds (VOCs) of cancer havebeen found in breath, blood [1], headspaceofcancer cells [2-10], and in headspace of resected cancer tissues [11]. Exhaled breath, whichmaychange itschemicalsignaturedependingonthephysiologicalorpathophysiologicalstateofcancer[12-24],isconsideredasoneofthemostfascinatingbodyfluids/sources.Samplingofbreathisnon-invasiveandcanbeusedforscreening,atanintensivecareunit(ICU)[25,26],duringsurgery[27-29], ormonitoring pre and post-surgery [30]. Volatile compounds that do not appear normally inexhaledbreathcanbeusedfordetectionofbacterialor fungal infection in the lungs [31-35].Alsohydrogenandmethane [36]areproducedbybacteria in thegut,andshowhighconcentrations inpersons with fructose or lactose malabsorption after ingestion of these carbohydrates [37, 38].Other volatile compounds appear after ingestion of drugs, an example being 3-heptanone duringvalproate therapy [39]. 13C-labeled compounds such as 13C-uracil, 13C-dextromethorphan or 13C-pantoprazol are specifically administered to measure enzyme activity through the respectivepotentialtometabolizetheseprecursorswithproductionof13CO2measuredinexhaledbreath[40-45].Volatilecompoundsdonotonlyappearinexhaledbreath,butalsoinskinemanations[46,47],urine[48],blood[1]andsaliva[49].Inadditiontovolatileorganiccompounds,alsosmallinorganicmoleculeslikehydrogen,nitricoxide[50-61]orcarbonmonoxide[62]aremostinteresting.Anothermost interestingapplicationofvolatiles is theiruse in searchoperations [63,64].Thepotentialofvolatilesandofbreathanalysisforclinicaldiagnosisandtherapeuticmonitoringisenormous,eventhoughatthepresentstagethereareonlyveryfewbreathtestswhichhavegotapprovalbyFDAorby the EuropeanMedicines Agency (EMA). In particular, no breath tests based on endogenouslyproducedvolatilebiomarkersforcancerareFDA-orEMA-approved.

Themainreasonsforthepre-maturityofcancerbreathanalysisinrealclinicalsettingsisrelated,ingeneral,tothelackofstandardizationandtothepoorknowledgeofthebiochemicalpathwaysandexhalation kinetics of the cancer-related VOCs. The standardization aspects and the biochemicalpathwaysofthecancer-relatedVOCswerepresentedanddiscussedinearlierpapers[18,65-67].Inthepresentreview,wefocusonthediscussionoftheexhalationkineticsofthecancer-relatedVOCs.The exhalation kinetics can be determined by actual real-time measurements under differentconditions[68-76]orbysimulationoftheflowofsomecompoundwithinthebody[70,77-83].Withthisinmind,wepresentalistof112tentativecancer-relatedVOCspublishedintheliteratureduringthe lastdecade.Then,weclassifythe112cancer-relatedVOCswithrespecttotheir“fat-to-blood”and “blood-to-air” partition coefficients and show how these partition coefficients provideestimationontherelativeconcentrationsinalveolarbreath,bloodandthefatcompartmentofthehumanbody.Basedon thegeneratedensembleof thephysicochemicaldata,wediscusshow thebalancebetweenallofthesefactorsdeterminestheexhalationkineticsofcancerVOCs.

1.2.ExhalationkineticsofcancerVOCs

To illustrate the exhalation kinetics of cancer VOCs, we present isoprene as a representativeexample.Isopreneisthemostprominenthydrocarboninexhaledbreath,appearingat∼100ppbinhealthypersonswhodonotexertanyeffort[1,84].Inhumansitisbelievedtobesynthesizedinthe

Page 4: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

mevalonatepathway[85-87].Itcanbemeasuredinreal-timeduringanexperimentperformedatastationarybicycle[69,79,82]orevenduringsleep[68,72].

Recently, it was shown that isoprene appears at lower concentration in exhaled breath of lungcancer [88] and breast cancer patients [89], compared to healthy volunteers. So far, this result iscorroboratedby theobservation that thedecrease inconcentrationof isoprene is correlatedwiththe immune activation as measured by the neopterin concentration in blood [90]. While thesefindings offer isoprene as a potential cancer biomarker, it is important to know that theconcentrationof isoprenedependsverymuchonthespecificsamplingprotocol[69-72,78,81,82,91]. In either case, the clear isoprene’s in-situ signals achieved by on-line mass-spectrometrytechniques make it an ideal candidate for the investigation of cancer-related VOC exhalationkinetics.

Figure1showstheoutputofisoprene(innmol/L)duringanexperimentwithahealthyvolunteeronastationarybicycle.Forthesakeofcomparison,theoutputofacetone(inarbitraryunits)andCO2(inL/min)arepresentedonthesamefigure,too.Thespecificinvestigationsofisopreneandacetonehave the advantage that the respective concentrations in exhaled breath are high (∼100 ppb and∼400 ppb, respectively), which makes measurement and demarcation of exhaled vs. inhaledconcentrations comparatively easy. Theprotocol of this experiment changes between rest phasesand 75 W workload pedaling phases. During the first pedaling phase, the output of isopreneincreasesbyafactorof∼10,andsubsequentlydecreasesexponentially(stillduringpedalingphase),with a further decrease back to the baseline concentration during the rest phase. When thevolunteerstartstopedalagain,theincreaseinisopreneoutputismuchsmallerthanduringthefirstpedalingphase.Afteranotherrestphase,resumptionofthepedalingincreasestheisopreneoutput,butataratherlowlevel.Ittakesapproximately2hourstoresynthesizeisopreneinthebodyandtofilluptheisoprenestoresinsuchawaythatthehugeincreaseinisopreneoutputbyafactorof∼10appears again. Putting these findings in a more specific perspective, it is likely that isoprene isproducedandstoredintheperipheryofthehumanbody,probablyinthemuscles[79,91].Duringexertion of an effort, the blood flow through the muscles increases and leads to transport ofisoprene from the muscles to the lungs, where it is exhaled. The exponential decay of isopreneoutput (still duringpedalingphase) is a consequenceof thedepletionof isoprene in themuscles.During the restphase, theblood flow through themusclesgoesback tobaselineandsodoes theisopreneconcentration.It is importanttonoteinthiscontextthattheincreaseofconcentrationinbreathduringexertionofaneffortindicatesthatthespecificchoiceofthebreathsamplingprotocol(e.g.,quietlysitting,standing,afteraperiodofrest,etc.)isofgreatimportanceforbothhealthyandcancer states [92]. Inparticular,different samplingprotocolsmay result in verydifferent isopreneconcentrations (up to a factor of∼5).We expect that a similar situation is true formany volatilecancermarkers[70].

TogetamorethoroughlookontheexhalationkineticsofVOCs,itisimportanttoknowwhichVOCsbehaveaccordingtotheFarhiequation[93]:

valveolar

b:a A Q

CCV Vλ

=+ & & (1)

Page 5: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

TheFarhiequationisafirstveryimportantstepinmodelingoftheexhalationkinetics[69-72,78,80-82,91].Thisequation relates thealveolarconcentration (Calveolar)ofaVOCto theconcentration inmixedvenousblood( vC ).Asseeninthisequation,adecreaseintheconcentrationduringexertion

ofanefforthappensbecausethealveolarventilation( AV& )usuallyincreasesmorestronglythanthe

cardiacoutput ( QV& ).Anexampleofacompound thatdecreases inconcentrationduringeffort (in

linewithFarhi’sequation)isbutane.[70]

AnimportantphysicochemicalconstantintheFarhiequationisthe‘blood:air’partitioncoefficient(

b:aλ ). For isoprene, this partition coefficient is approximately 0.95 (mol/L)/(mol/L) [94, 95]. This

means that the concentration of isoprene in blood is ∼95% of the concentration in alveolar air.Incidentally,the‘blood:air’partitioncoefficientcanbequitedifferentfromthe‘water:air’partitioncoefficient ( w:aλ )at37°C. Incaseof isoprene, the w:aλ isapproximately0.28.The reason for this

differenceisthatbloodcontainslipids,whichtakeupalargeramountofisoprenethanwater.

Another important physicochemical constant is the ‘fat:blood’ partition coefficient ( f:bλ ). For

isoprene, this λf:b is approximately 82.0 (mol/L)/(mol/L) [96]. This means that the equilibriumconcentration of isoprene in fat is about 82 times the concentration of isoprene in blood. For anisoprene concentration of 150 ppb (∼5.8×10-9 mol/L) in alveolar air, the estimated equilibriumconcentrationinbloodis∼5.5×10-9mol/L(=0.95*5.8×10-9mol/L)andtheestimatedconcentrationinfatis4.5×10-7mol/L(=82*5.5×10-9mol/L).

For a 70 kgpersonof 1.80mheight, the volumeofblood is∼6 L and theamountof fat tissue isestimatedtobe12.78L[97].In6Lofbloodand12.78Loffat,weestimatetheamountofisoprenetobe∼3.3×10-8mol (=6×5.5×10-9mol)and∼5.8×10-6mol (=12.78×4.5×10-7L),respectively.Hencetheamountofisopreneinfatisestimatedtobe∼175timestheamountinblood.Withthisinmind,it is reasonable to claim that the exhalation kinetics of cancer-related VOCs depends on theconcentration of the respective VOC in different compartments of the body, on the partitioncoefficients between the different compartments (e.g.,λb:a and on the fat:air partition coefficientλf:a),andonthediffusionkineticsbetweendifferentcompartments.Inthefollowingsection,wewillpresentwaystoobtaineachoftheseparametersanddiscusstheinter-relationshipbetweentheseparametersaswellaswiththeexhaledVOC-relatedcancer.

2.Estimatingtheλb:aandλ f:b

For the majority of VOCs of interest, the λb:a and λf:b have not been measured. Nevertheless, anumberofpaperspresentrelevantdataonλb:a,λf:aandλf:bofVOCs[94,95,98-106].Inaddition,theλb:aofmanyhydrocarbonscanbeestimatedbasedontherespectiveλb:aofsimilar(butnotidentical)alkanesandisoalkaneswhichhavebeeninvestigatedinRef.[95].Finally,onemayestimateλb:ausingtheformulagivenbyPoulin&Krishnan[107]

λb:a = λo:w· λw:a· (a+0.3b) + λw:a· (c+0.7b) (2)

Page 6: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

Here,a≈0.0033isthefractionofneutrallipidsintheblood,b≈0.0024isthefractionofphospholipidsin the blood, and c≈0.82 is the fraction of water in the blood. The octanol:water partitioncoefficients (λo:w) canbe compiled fromScifinder (https://scifinder.cas.org),whereas thewater:airpartitioncoefficients(λw:a;Henry’sconstants)at25°CcanbetakenfromthecompilationofSander[108]orestimatedbytheEPISuiteTMsoftwaredevelopedattheUSenvironmentalprotectionagency(EPA, http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm). Otherwise, λw:a can beestimatedbyuseofsurrogatecompounds,forwhichλw:aisknown,withcorrectionbythequotientof the respective vapor pressures (of the compound in question and its surrogate compound).Furthermore, in order to estimate the Henry constants at 37°C, the derivative dln(λw:a)/d(1/T) asgiveninthecompilationbySander[108]canbeused,orthecorrespondingenthalpyofvaporization(ΔHvap)dividedbythegasconstant,R.

Similartotheλb:a,onemayestimateλf:ausingthemethodofPoulin&Krishnan,[107]givenbytheequation:

λf:a = λo:w· λw:a·(A+0.3B) + λw:a· (C+0.7B) (3)

Here,A≈0.798 is thefractionofneutral lipids intheadiposetissue(fat),B≈0.002 is thefractionofphospholipidsintheadiposetissue,andC≈0.15isthefractionofwaterintheadiposetissue.

3.Partitionscoefficientsofcancer-relatedVOCs

Duringthepastdecade,some112tentativecancerVOCsinexhaledbreathhavebeenreported[7,30, 67, 109-121]. There were 36 hydrocarbons, 7 alcohols, 8 aldehydes, 2 acids, 12 ketones, 12aromatic compounds, 2 heterocycles, 2 nitriles, 5 terpenes, 7 esters, 2 ethers, 1 sulfide, 2halogenated compounds, and 15 compounds from other chemical classes. Examples ofhydrocarbonsamongthislistof112VOCsare2-methyl-propane(CAS75-28-5)or5-methyl-tridecane(CAS25117-31-1).Exampleofanalcoholis1-octen-3-ol(CAS3391-86-4).Examplesofaldehydesarepentanal,hexanal,octanalandnonanal.Anexampleforaketone is6-methyl-5-hepten-2-one(CAS110-93-0).Anexampleofanaromaticcompoundisbenzophenone(CAS119-61-9).Anexampleofaterpene is "trans-caryophyllene" (CAS 87-44-5). In addition, also biomarkers in exhaled breathcondensatehavebeenpublished[122].

The112cancerVOCsinexhaledbreathcouldbeconsideredasbeingonanequalfootinginexhaledbreath. Nevertheless, the very different blood:air partition coefficients (λb:a) imply that therespectiveconcentrationsinbloodareratherdifferent,eveniftheconcentrationinbreathwouldbethe same. Each of the mentioned 112 compounds can be looked upon from many differentviewpoints.Hereareafewexamples:

• 2-Methyl-propane(CAS75-28-5)commonlyappearsinhumanbreath, insmokersandnon-smokers[123].ItisalsoreleasedbyStreptococcuspneumonia[31].Ithasbeensuggestedasvolatilebiomarkerforbreastcancerinexhaledbreath[111].

• 5-Methyl-tridecane (CAS 25117-31-1) has been suggested to be a volatile biomarker ofbreastcancer[111]andbelongstotheclassofmonomethylatedhydrocarbons,whichwere

Page 7: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

proposed to be used in the "breathmethylated alkane contour" (BMAC) for detection ofcancerandotherdiseases[124-130].

• Benzophenone (CAS 119-61-9) was observed in the context of feces,[131] axillary sweat[132]andsaliva[133]andwassuggestedasavolatilebiomarkerforlungcancer[134].

• Trans-Caryophyllene (CAS 87-44-5) has been observed on the surface of juicy grapefruits[135],infeces[131],skinemanations[133],humanbreastmilkandsaliva[133,136].

• 6-Methyl-5-hepten-2-one (CAS 110-93-0), is produced on skin by degradation of squalene(and, in particular so during the influence of ozone). This compound is, for example,observedwhenhealthyvolunteerssitinachambersothattheskinemanationsarecollectedand observed in the chamber indoor air. There are three volatiles, acetone, 6-methyl-5-hepten-2-one,andacetaldehyde,whichexhibitespeciallyhighemission rates throughskinexceeding 100 fmol×cm-2×min-1 without ozone influence [137]. Interestingly, 6-methyl-5-hepten-2-onehasrecentlybeobservedinexhaledbreathofgastriccancerpatients.[121]

Figure 2 presents the estimated values for the negative logarithm of the blood:air partitioncoefficients, viz. –log(λb:a). These λb:a are distributed over 12 orders of magnitude. Hence, if theconcentrations of the cancer VOCs would be equal in exhaled breath − e.g., at 1 ppb − theirconcentrations in blood would be very different and also be distributed over 12 orders ofmagnitude. An analogous situation holds for the λf:b (see Figure 3). Similarly as above, if theconcentrations of the cancer VOCs would be equal in exhaled breath − e.g., at 1 ppb − theirconcentrationsinfatwouldbeverydifferentandbedistributedover8ordersofmagnitude.Forthisreason when studying VOCs’ concentrations in cancer and relating them to potential metabolicpathwaysoneshouldestimate theblood/tissueconcentrationandby thesevalidate theunderlinemetabolicassumption.Thatis,elevatedconcentrationsinthebreathofacertainmoleculewillnotnecessaryreflectthesamemagnitudeofelevationinthetissue.

That volatile cancer biomarkers vary in concentration over many orders of magnitude is mostsurprising,andshouldchangethewaywelookatthesecompounds.Typically,ahighλf:b(as,e.g.,for3-methyl-hexane) will lead to high concentration of the respective volatile compound in lipidmembranes(e.g.,inendothelialcellsdemarcatingthebloodvessels).Highconcentrationswithinthelipid membranes may change their permeability properties. It can be expected, that lipophilicvolatilesbearconsiderableinfluenceonpathophysiologyofdisease.

Thefactthatthesecancer-relatedVOCshaveverydifferentphysicochemicalpropertiesisexpectedto be an advantage. The different λb:a and λf:b imply that the concentrations in differentcompartments(blood,fat,muscle,etc.)areverydifferent.Asaconsequence,theexhalationkineticscan be expected to be different. The release of these compounds from their “main storage”compartment depends on the blood flow through this compartment during sampling. Differentsamplingprotocols (withorwithoutexertionof aneffort, orduring increasedblood flow throughintestinal part of the body due to digestion processes after a meal, etc.) lead to differentconcentrationsofvolatiles.Measurementswithdifferent samplingprotocols couldbedone foranarbitraryVOCand,inparticular,forthe112cancer-relatedVOCsmentionedabove.Inthiscontext,lungandupperairways cancer cellsholdadistinguished statusasdue to their anatomic location,

Page 8: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

which allows them to release cancer-related VOCs directly into the exhaled air. Thus, the breathlevels of these species can be enriched as compared to the levels expected from their bloodconcentrations.Consequently,thebreathandbloodconcentrationsofthesevolatilecancermarkerscannoteasilyberelatedusinge.g.theFarhiequation.Nevertheless,fromthebreathanalysispointofviewthelocationofthesecancersisbeneficialastheirVOCs’fingerprintscanbedirectlydetected.

Detailedinvestigationsandevenreal-timeanalysisshouldbepossibleformanyofthese112cancerVOCsintheforeseeablefuture.Whileallofthese112compoundsaretheresultofempiricalstudies,additionalimportantaspectsthatwouldbeneededtobeaddressedconcerntheconnectionofsuchcompounds to real logical metabolic processes related to the disease. By doing so, one couldbiologically relate the concentrations emitted in breath, to concentrations in the different bodycompartments, and thus suggest indication for the disease development status. From atechnological point of view it would be wanted to specify certain threshold concentrations ofvolatiles in breath to guide changes in the clinical treatment. This would result in a therapeuticmonitoringguidedbytheexhaledconcentrationsofvolatiles.Byadaptingtheanalyticalandnano-technologyinthisdirectiononecanachieveanon-lineresponsebyphysicians.

4.Conclusions

The 112 volatile cancer biomarkers published during the last decade have very differentphysicochemicalproperties.Uptonow,noadvantagehasbeendrawnfromthisfact.Inthisreview,weshowedthattheblood:breathandblood:fatpartitioncoefficientsareverydifferentforthe112cancer-related VOCs. Even if the concentration of these 112 compounds would be identical inexhaled breath (e.g., 1 ppb), the respective concentrations in blood and in the fat compartmentwouldvary,respectively,over12and8ordersofmagnitude.Thismeansthatdifferentcompoundsmay be stored (or exist in equilibrium) in different compartments of the body. To gain a morecomprehensiveunderstandingonthecancer-relatedVOCs,acombinedinformationonappearanceand concentration of these VOCs in breath and blood [1], or in breath and urine or saliva, iscritical.[138]. Further information can be achieved by investigating exhaled breath and resectedtumortissuefromthesamepatient[11,30].Forasimplepointofcarescreeningtool,knowingtheexhalation kinetics and optimization of the sampling procedure is important. For research andeventualpharmaceuticaltreatmentalsotheunderstandingofbloodandtissueconcentrationwouldbecritical.

Page 9: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

Acknowledgment

Anton Amann gratefully appreciates funding from the Oncotyrol-project 2.1.1. The CompetenceCentre Oncotyrol is funded within the scope of the COMET - Competence Centers for ExcellentTechnologies through BMVIT, BMWFJ, through the province of Salzburg and the TirolerZukunftsstiftung/StandortagenturTirol.TheCOMETProgramisconductedbytheAustrianResearchPromotion Agency (FFG). PawelMochalski acknowledges support from the Austrian Science Fund(FWF) under Grant No. P24736-B23. Veronika Ruzsanyi gratefully acknowledges a Lise-Meitnerfellowship from the Austrian Science Fund (FWF) under Grant No. M1213-B18. A.A. and V.R.appreciate funding from the Austrian Agency for International Cooperation in Education andResearch(OeAD-GmbH,projectSPA04/158-FEM_PERS).A.A.,P.M.andV.R.thankthegovernmentofVorarlberg(Austria)foritsgeneroussupport.HossamHaickgratefullyacknowledgesthefundingfrom the FP7-Health Program under the LCAOS (grant agreement no. 258868) and the FP7’s ERCgrantunderDIAG-CANCER(grantagreementno.256639).

Page 10: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

Figure 1:Output of isoprene (nmol/min), acetone (arbitrary units) and CO2 (L/min) for a healthyvolunteerduringrestphasesandexertionofaneffortof75Wonastationarybicycle.IncaseofCO2,15exhalationsperminutewith3Litersofalveolarairwith4%ofCO2correspondto1.8Liters/minofCO2(=15*3*0.04L/min). Isopreneoutputthroughexhaledbreathmayincreaseuptoafactor∼10duringexertionofaneffort,whereastheconcentrationinbreathincreasesuptoafactor∼5.Inthisexperiment,twosteady-statesofisopreneexhalationappear,(A)at∼25nmol/min(correspondingtoproductionofisopreneintheliver)and(B)at∼100nmol/L(correspondingtoproductionofisopreneinthemuscles).Inapersonwithhighcholesterolbloodlevel,theproductionofisopreneintheliverwould be decreased under the influence of statins [139]. Reproduced from Ref. [69], DOI10.1088/1752-7155/3/2/027006,©IOPPublishing.ReproducedbypermissionofIOPPublishing.Allrightsreserved.

Page 11: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

Figure2:Partitioncoefficient,-log(λb:a),for112volatilecancerbiomarkerspublishedduringthelastdecade[7,30,67,109-121],aswellasacetoneand2-pentanoneforcomparison.Thecolorforthedifferent compound names is chosen according to the chemical class. Compounds with a higherlog(λb:a)willtendtobeinthebloodandviceversa.

Page 12: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

Figure3:Partitioncoefficient,-log(λf:b),for112volatilecancerbiomarkerspublishedduringthelastdecade[7,30,67,109-121],aswellasacetoneand2-pentanoneforcomparison.Thecolorforthedifferent compound names is chosen according to the chemical class. Compounds with a higherlog(λf:b)willtendtobeinthefatandviceversa.

Page 13: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

References

[1] Mochalski P, King J, KlieberM,Unterkofler K, HinterhuberH, BaumannM, andAmannA.Bloodandbreath levelsof selectedvolatileorganic compounds inhealthyvolunteers.TheAnalyst2013;138(7):2134-45.

[2] FilipiakW,SponringA,MikovinyT,AgerC,SchubertJ,MiekischW,AmannA,andTroppmairJ. Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 invitro.Cancercellinternational2008;8:17.

[3] SponringA,FilipiakW,MikovinyT,AgerC,SchubertJ,MiekischW,AmannA,andTroppmairJ.Releaseofvolatileorganiccompounds fromthe lungcancercell lineNCI-H2087 invitro.Anticancerresearch2009;29(1):419-26.

[4] SponringA,FilipiakW,AgerC,SchubertJ,MiekischW,AmannA,andTroppmairJ.Analysisof volatile organic compounds (VOCs) in the headspace of NCI-H1666 lung cancer cells.Cancerbiomarkers:sectionAofDiseasemarkers2010;7(3):153-61.

[5] BarashO,PeledN,HirschFR,andHaickH.Sniffingtheunique"odorprint"ofnon-small-celllungcancerwithgoldnanoparticles.Small2009;5(22):2618-24.

[6] FilipiakW,SponringA,FilipiakA,AgerC,SchubertJ,MiekischW,AmannA,andTroppmairJ.TD-GC-MSanalysis of volatilemetabolitesof human lung cancer andnormal cells in vitro.Cancerepidemiology,biomarkers&prevention : apublicationof theAmericanAssociationfor Cancer Research, cosponsored by the American Society of Preventive Oncology 2010;19(1):182-95.

[7] AmalH,DingL,LiuBB,TischU,XuZQ,ShiDY,ZhaoY,ChenJ,SunRX,LiuH,YeSL,TangZY,andHaickH.Thescent fingerprintofhepatocarcinoma: in-vitrometastasispredictionwithvolatileorganiccompounds(VOCs).Int.J.Nanomedicine2012;7:4135-4146.

[8] BarashO,PeledN,TischU,BunnPA,Jr.,HirschFR,andHaickH.Classificationoflungcancerhistology by gold nanoparticle sensors. Nanomedicine : nanotechnology, biology, andmedicine2012;8(5):580-9.

[9] PeledN,BarashO,TischU,IonescuR,BrozaYY,IlouzeM,MatteiJ,BunnPA,Jr.,HirschFR,and Haick H. Volatile fingerprints of cancer specific genetic mutations. Nanomedicine :nanotechnology,biology,andmedicine2013;9(6):758-66.

[10] Mochalski P, Sponring A, King J, Unterkofler K, Troppmair J, and Amann A. Release anduptakeofvolatileorganiccompoundsbyhumanhepatocellularcarcinomacells (HepG2) invitro.Cancercellinternational2013;13(1):72.

[11] FilipiakW,FilipiakA,SponringA,SchmidT,ZelgerB,AgerC,KlodzinskaE,DenzH,JamnigH,PizziniA, Troppmair J, andAmannA.Comparativeanalysesof volatileorganic compounds(VOCs) frompatients, tumors and transformed cell lines for the validationof lung cancer-derivedbreathmarkers.2013:submitted.

[12] Amann A, Poupart G, Telser S, Ledochowski M, Schmid A, and Mechtcheriakov S.Applicationsofbreathgasanalysis inmedicine. InternationalJournalofMassSpectrometry2004;239(2-3):227-233.

[13] BaumbachJI,VautzW,RuzsanyiV,andFreitagL.Metabolitesinhumanbreath:Ionmobilityspectrometers as diagnostic tools for lung diseases.Breath Analysis: for Clinical DiagnosisandATherapeuticMonitoring2005:53-66.

[14] Buszewski B, KesyM, Ligor T, and Amann A. Human exhaled air analytics: biomarkers ofdiseases.BiomedChromatogr2007;21(6):553-66.

Page 14: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

[15] AmannA and SmithD, eds.Volatile Biomarkers:Non-invasiveDiagnosis in PhysiologyandMedicine.2013,Elsevier:Amsterdam.

[16] SolgaSandRisbyT,Issuesandchallengesinhumanbreathresearch:perspectivesfromourexperience, in: Volatile Biomarkers: Non-invasive Diagnosis in Physiology and Medicine,AmannAandSmithD,Editors.2013,Elsevier:Amsterdam.p.19-24.

[17] Pleil JD, StiegelMA, andRisby TH. Clinical breath analysis: discriminating betweenhumanendogenous compoundsandexogenous (environmental) chemical confounders. Journal ofbreathresearch2013;7(1):017107.

[18] Haick H, Broza Y, Mochalski P, Ruzsanyi V, and Amann A. Assessment, origin, andimplementationofbreathvolatilecancermarkers.ChemicalSocietyreviews2013:inpress.

[19] KonvalinaGandHaickH.SensorsforBreathTesting:FromNanomaterialstoComprehensiveDiseaseDetection.AccChemRes2013.

[20] Broza YY and Haick H. Nanomaterial-based sensors for detection of disease by volatileorganiccompounds.Nanomedicine(Lond)2013;8(5):785-806.

[21] Tisch U and Haick H,Arrays of nanomaterial-based sensors for breath testing, in:VolatileBiomarkers: Non-invasive Diagnosis in Physiology and Medicine, Amann A and Smith D,Editors.2013,Elsevier:Amsterdam.

[22] TischUandHaickH.Arraysofchemisensitivemonolayer-cappedmetallicnanoparticlesfordiagnosticbreathtesting.ReviewsinChemicalEngineering2010;26(5-6):171-179.

[23] Tisch U and Haick H. Nanomaterials for cross-reactive sensor arrays.Mrs Bulletin 2010;35(10):797-803.

[24] LejaMA,LiuH,andHaickH.Breathtesting:thefuturefordigestivecancerdetection.Expertreviewofgastroenterology&hepatology2013;7(5):389-91.

[25] Trefz P, SchmidtM, Oertel P, Obermeier J, Brock B, Kamysek S, Dunkl J, Zimmermann R,Schubert JK, andMiekischW. ContinuousReal TimeBreathGasMonitoring in theClinicalEnvironment by Proton-Transfer-Reaction-Time-of-Flight-Mass Spectrometry. AnalyticalChemistry2013;85(21):10321-9.

[26] FilipiakW, Beer R, Sponring A, Filipiak A, Schiefecker A, Helmbok R, Lanthaler S, Ager C,Klodzinska E, Nagl M, Troppmair J, and Amann A. Pathogen-derived breath markers formonitoring of lower respiratory tract infections inmechanically ventilated patients. 2013:submitted.

[27] KazuiM,AndreoniKA,WilliamsGM,PerlerBA,BulkleyGB,BeattieC,DonhamRT,SehnertSS, Burdick JF, and Risby TH. Visceral lipid peroxidation occurs at reperfusion aftersupraceliacaorticcross-clamping.JVascSurg1994;19(3):473-7.

[28] Pabst F, Miekisch W, Fuchs P, Kischkel S, and Schubert JK. Monitoring of oxidative andmetabolic stress during cardiac surgery bymeans of breath biomarkers: an observationalstudy.Journalofcardiothoracicsurgery2007;2:37.

[29] BrownRH,WagnerEM,CopeKA,andRisbyTH.Propofolandinvivooxidativestress:effectsofpreservative.JBreathRes2009;3(1):016003.

[30] BrozaYY,KremerR,TischU,GevorkyanA,ShibanA,BestLA,andHaickH.Ananomaterial-basedbreathtestforshort-termfollow-upafter lungtumorresection.Nanomedicine(NewYork,NY,US)2012:doi:10.1016/j.nano.2012.07.009.

[31] FilipiakW,SponringA,BaurMM,AgerC,FilipiakA,WiesenhoferH,NaglM,TroppmairJ,andAmann A. Characterization of volatile metabolites taken up by or released fromStreptococcuspneumoniaeandHaemophilusinfluenzaebyusingGC-MS.Microbiology-Sgm2012;158:3044-3053.

Page 15: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

[32] FilipiakW,SponringA,BaurMM,FilipiakA,AgerC,WiesenhoferH,NaglM,TroppmairJ,andAmannA.MolecularanalysisofvolatilemetabolitesreleasedspecificallybystaphylococcusaureusandPseudomonasaeruginosa.BMCMicrobiol2012;12.

[33] FilipiakW, Sponring A, Filipiak A, BaurMM, Ager C,Wiesenhofer H,Margesin R, NaglM,Troppmair J, and Amann A, Volatile organic compounds (VOCs) released by pathogenicmicroorganismsinvitro:potentialbreathbiomarkersforearly-stagediagnosisofdisease,in:VolatileBiomarkers:Non-invasiveDiagnosisinPhysiologyandMedicine,AmannAandSmithD,Editors.2013,Elsevier:Amsterdam.p.463–512.

[34] Zhu J, Jimenez-Diaz J,BeanHD,DaphtaryNA,AliyevaMI, Lundblad LK, andHill JE.Robustdetection of P. aeruginosa and S. aureus acute lung infections by secondary electrosprayionization-mass spectrometry (SESI-MS) breathprinting: from initial infection to clearance.JournalofBreathResearch2013;7(3):037106.

[35] ZhuJ,BeanHD,WargoMJ,LeclairLW,andHillJE.Detectingbacteriallunginfections:invivoevaluationofinvitrovolatilefingerprints.JournalofBreathResearch2013;7(1):016003.

[36] Tuboly E, Szabo A, Eros G, Mohacsi A, Szabo G, Tengolics R, Rakhely G, and Boros M.Determinationofendogenousmethaneformationbyphotoacousticspectroscopy.JournalofBreathResearch2013;7(4):046004.

[37] Eisenmann A, Amann A, Said M, Datta B, and Ledochowski M. Implementation andinterpretationofhydrogenbreathtests.Journalofbreathresearch2008;2(4):046002.

[38] deLacyCostelloBP,LedochowskiM,andRatcliffeNM.The importanceofmethanebreathtesting:areview.Journalofbreathresearch2013;7(2):024001.

[39] ErhartS,AmannA,HaberlandtE,EdlingerG,SchmidA,FilipiakW,SchwarzK,MochalskiP,RostasyK,KarallD,andScholl-BurgiS.3-Heptanoneasapotentialnewmarkerforvalproicacidtherapy.Journalofbreathresearch2009;3(1):016004.

[40] ModakA.Breathtestswith13Csubstrates.JournalofBreathResearch2009;3(4):040201.

[41] ModakAS. Single timepoint diagnostic breath tests: a review. Journal of BreathResearch2010;4(1):017002.

[42] WagnerDA,SchatzR,CostonR,CuringtonC,BoltD,andToskesPP.Anew13CbreathtesttodetectvitaminB12deficiency:aprevalentandpoorlydiagnosedhealthproblem.JournalofBreathResearch2011;5(4):046001.

[43] Rubin T, von Haimberger T, Helmke A, and Heyne K. Quantitative determination ofmetabolizationdynamicsbyareal-time13CO2breathtest.Journalofbreathresearch2011;5(2):027102.

[44] ThackerDL,ModakA,FlockhartDA,andDestaZ.Is(+)-[13C]-pantoprazolebetterthan(+/-)-[13C]-pantoprazole for the breath test to evaluate CYP2C19 enzyme activity? Journal ofBreathResearch2013;7(1):016001.

[45] Modak AS. Regulatory issues on breath tests and updates of recent advances on [13C]-breathtests.JournalofBreathResearch2013;7(3):037103.

[46] RuzsanyiV,MochalskiP,SchmidA,WiesenhoferH,KlieberM,HinterhuberH,andAmannA.Ion mobility spectrometry for detection of skin volatiles. Journal of Chromatography B-AnalyticalTechnologiesintheBiomedicalandLifeSciences2012;911:84-92.

[47] Schmidt FM, Vaittinen O, Metsala M, Lehto M, Forsblom C, Groop PH, and Halonen L.Ammoniainbreathandemittedfromskin.JournalofBreathResearch2013;7(1):017109.

[48] Mochalski P, Krapf K, Ager C, Wiesenhofer H, Agapiou A, Statheropoulos M, Fuchs D,Ellmerer E, Buszewski B, and Amann A. Temporal profiling of human urine VOCs and itspotential roleunder the ruinsof collapsedbuildings.Toxicologymechanismsandmethods2012;22(7):502-11.

Page 16: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

[49] Al-Kateb H, de Lacy Costello B, and Ratcliffe N. An investigation of volatile organiccompounds from the saliva of healthy individuals using headspace-trap/GC-MS. Journal ofBreathResearch2013;7(3):036004.

[50] tenOeverJ,MandonJ,NeteaMG,vanDeurenM,HarrenFJ,CristescuSM,andPickkersP.Pulmonaryinfection,andnotsystemicinflammation,accountsforincreasedconcentrationsofexhalednitricoxideinpatientswithsepticshock.JournalofBreathResearch2013;7(3):036003.

[51] TarnokiDL,TarnokiAD,MeddaE,LittvayL,LazarZ,ToccaceliV,FagnaniC,StaziMA,NisticoL,BrescianiniS,PennaL,LucatelliP,BoattaE,ZiniC,FanelliF,BaracchiniC,MeneghettiG,KollerA,OsztovitsJ,JermendyG,PredaI,KissRG,KarlingerK,LannertA,HorvathT,SchillaciG,MolnarAA,GaramiZ,BercziV,andHorvathI.Geneticinfluenceontherelationbetweenexhaled nitric oxide and pulse wave reflection. Journal of Breath Research 2013; 7(2):026008.

[52] HiranoT,MatsunagaK,SugiuraH,MinakataY,KoaraiA,AkamatsuK,IchikawaT,FurukawaK, and IchinoseM.Relationshipbetweenalveolarnitricoxide concentration in exhaledairandsmallairwayfunctioninCOPD.JournalofBreathResearch2013;7(4):046002.

[53] Heffler E, Pizzimenti S, Badiu I, GuidaG, Ricciardolo FL, Bucca C, and RollaG.Nasal nitricoxideisamarkerofpoorasthmacontrol.JournalofBreathResearch2013;7(2):026009.

[54] CristescuSM,MandonJ,HarrenFJ,MerilainenP,andHogmanM.MethodsofNOdetectioninexhaledbreath.Journalofbreathresearch2013;7(1):017104.

[55] BoshierPR,HannaGB,andMarczinN.Exhalednitricoxideasbiomarkerofacutelunginjury:anunfulfilledpromise?JournalofBreathResearch2013;7(1):017118.

[56] Horvath I, Dweik R, and Barnes PJ. Exhaled nitric oxide comes of age. Journal of BreathResearch2012;6(4):040201.

[57] HögmanM.ExtendedNOanalysis inhealthanddisease. JournalofBreathResearch 2012;6(4):047103.

[58] BuccaC,CicolinA,GuidaG,HefflerE,BrussinoL,andRollaG.Exhalednitricoxide(FENO)innon-pulmonarydiseases.JournalofBreathResearch2012;6(2):027104.

[59] ShorterJH,NelsonDD,McManusJB,ZahniserMS,SamaSR,andMiltonDK.ClinicalstudyofmultiplebreathbiomarkersofasthmaandCOPD(NO,CO2,COandN2O)by infrared laserspectroscopy.JournalofBreathResearch2011;5(3).

[60] McCurdyMR, SharafkhanehA,Abdel-MonemH, Rojo J, and Tittel FK. Exhalednitric oxideparameters and functional capacity in chronic obstructive pulmonary disease. Journal ofBreathResearch2011;5(1):016003.

[61] MagoriE,HiltawskyK,FleischerM,SimonE,PohleR,vonSicardO,andTawilA.Fractionalexhalednitricoxidemeasurementwithahandhelddevice.JournalofBreathResearch2011;5(2):027104.

[62] Ryter SW and Choi AM. Carbon monoxide in exhaled breath testing and therapeutics.Journalofbreathresearch2013;7(1):017111.

[63] Agapiou A, Mikedi K, Karma S, Giotaki ZK, Kolostoumbis D, Papageorgiou C, Zorba E,Spiliopoulou C, Amann A, and Statheropoulos M. Physiology and biochemistry of humansubjectsduringentrapment.JournalofBreathResearch2013;7(1):016004.

[64] AgapiouA,MochalskiP,SchmidA,andAmannA,Potentialapplicationsofvolatileorganiccompounds in safety and security, in: Volatile Biomarkers: Non-invasive Diagnosis inPhysiologyandMedicine,AmannAandSmithD,Editors.2013,Elsevier:Amsterdam.p.515–558.

Page 17: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

[65] AmannA,LigorM,LigorT,BajtarevicA,AgerC,PienzM,DenzH,FieglM,HilbeW,WeissW,LukasP,JamnigH,HacklM,HaidenbergerA,SponringA,FilipiakW,MiekischW,SchubertJ,andBuszewskiB.Analysisofexhaledbreathforscreeningoflungcancerpatients.MagazineofEuropeanMedicalOncology2010;3:106-112.

[66] AmannA,CorradiM,MazzoneP, andMuttiA. Lungcancerbiomarkers inexhaledbreath.ExpertReviewofMolecularDiagnostics2011;11(2):207-17.

[67] HakimM,BrozaYY,BarashO,PeledN,PhillipsM,AmannA,andHaickH.Volatileorganiccompounds of lung cancer and possible biochmical pathways. Chem. Rev. 2012; 112:5949−5966.

[68] Amann A, Telser S, Hofer L, Schmid A, and Hinterhuber H, Exhaled breath gas as abiochemical probe during sleep, in: Breath Analysis for Clinical Diagnosis and TherapeuticMonitoring,AmannAandSmithD,Editors.2005,WorldScientific:Singapore.p.305-316.

[69] King J, Kupferthaler A, Unterkofler K, Koc H, Teschl S, Teschl G, MiekischW, Schubert J,HinterhuberH,andAmannA. Isopreneandacetoneconcentrationprofilesduringexerciseonanergometer.Journalofbreathresearch2009;3(2):027006.

[70] KingJ,MochalskiP,KupferthalerA,UnterkoflerK,KocH,FilipiakW,TeschlS,HinterhuberH,and Amann A. Dynamic profiles of volatile organic compounds in exhaled breath asdetermined by a coupled PTR-MS/GC-MS study. Physiological measurement 2010; 31(9):1169-84.

[71] KingJ,UnterkoflerK,TeschlG,TeschlS,MochalskiP,KocH,HinterhuberH,andAmannA.Amodeling-based evaluation of isothermal rebreathing for breath gas analyses of highlysolublevolatileorganiccompounds.Journalofbreathresearch2012;6(1):016005.

[72] King J, Kupferthaler A, Frauscher B, Hackner H, Unterkofler K, Teschl G, Hinterhuber H,AmannA,andHoglB.Measurementofendogenousacetoneandisopreneinexhaledbreathduringsleep.Physiologicalmeasurement2012;33(3):413-28.

[73] WinklerK,HerbigJ,andKohlI.Real-timemetabolicmonitoringwithprotontransferreactionmassspectrometry.JournalofBreathResearch2013;7(3):036006.

[74] WhiteIR,WillisKA,WhyteC,CordellR,BlakeRS,WardlawAJ,RaoS,GriggJ,EllisAM,andMonks PS. Real-timemulti-markermeasurement of organic compounds in human breath:towardsfingerprintingbreath.JournalofBreathResearch2013;7(1):017112.

[75] Mochalski P, Rudnicka J, Agapiou A, StatheropoulosM, Amann A, and Buszewski B. Nearreal-time VOCs analysis using an aspiration ion mobility spectrometer. Journal of BreathResearch2013;7(2):026002.

[76] KohlI,BeauchampJ,Cakar-BeckF,HerbigJ,DunklJ,TietjeO,TiefenthalerM,BoesmuellerC,WisthalerA,BreitenlechnerM,LangebnerS,ZaberniggA,ReinstallerF,WinklerK,GutmannR, and Hansel A. First observation of a potential non-invasive breath gas biomarker forkidneyfunction.JournalofBreathResearch2013;7(1):017110.

[77] AmannA,KingJ,KupferthalerA,UnterkoflerK,KocH,TeschlS,andHinterhuberH.ExhaledBreath Analysis - Quantifying the Storage of Lipophilic Compounds in the Human Body.ProceedingsofEcopole,20092009;3(1):9-13.

[78] KingJ,KocH,UnterkoflerK,MochalskiP,KupferthalerA,TeschlG,TeschlS,HinterhuberH,andAmannA.Physiologicalmodelingof isoprenedynamics inexhaledbreath. JTheorBiol2010;267(4):626-37.

[79] KocH,KingJ,TeschlG,UnterkoflerK,TeschlS,MochalskiP,HinterhuberH,andAmannA.TheroleofmathematicalmodelinginVOCanalysisusingisopreneasaprototypicexample.Journalofbreathresearch2011;5(3):037102.

Page 18: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

[80] King J, Unterkofler K, Teschl G, Teschl S, Koc H, Hinterhuber H, and Amann A. Amathematical model for breath gas analysis of volatile organic compounds with specialemphasisonacetone.Journalofmathematicalbiology2011;63(5):959-99.

[81] King J,Unterkofler K, Teschl S, AmannA, and TeschlG. Breath gas analysis for estimatingphysiological processes using anesthetic monitoring as a prototypic example. Conferenceproceedings : ... Annual International Conference of the IEEE Engineering inMedicine andBiology Society. IEEE Engineering inMedicine andBiology Society. Conference 2011;2011:1001-4.

[82] KingJ,KocH,UnterkoflerK,TeschlG,TeschlS,MochalskiP,HinterhuberH,andAmannA,Physiologicalmodeling foranalysisofexhaledbreath, in:VolatileBiomarkers:Non-invasiveDiagnosis in Physiology and Medicine, Amann A and Smith D, Editors. 2013, Elsevier:Amsterdam.p.27–46.

[83] Kohl I,Herbig J,Dunkl J,HanselA,DaniauxM,andHubalekM,SmokersbreathasseenbyProton-Transfer-Reaction Time-of-Flight mass spectrometry (PTR-TOF-MS), in: VolatileBiomarkers: Non-invasive Diagnosis in Physiology and Medicine, Amann A and Smith D,Editors.2013,Elsevier:Amsterdam.

[84] KushchI,ArendackaB,StolcS,MochalskiP,FilipiakW,SchwarzK,SchwentnerL,SchmidA,DzienA,LechleitnerM,WitkovskyV,MiekischW,SchubertJ,UnterkoflerK,andAmannA.Breathisoprene--aspectsofnormalphysiologyrelatedtoage,genderandcholesterolprofileasdeterminedinaprotontransferreactionmassspectrometrystudy.Clinicalchemistryandlaboratorymedicine:CCLM/FESCC2008;46(7):1011-8.

[85] ConkleJP,CampBJ,andWelchBE.Tracecompositionofhumanrespiratorygas.Archivesofenvironmentalhealth1975;30(6):290-5.

[86] Jansson BO and Larsson BT. Analysis of organic compounds in human breath by gaschromatography-mass spectrometry.The Journal of laboratory and clinicalmedicine 1969;74(6):961-6.

[87] Gelmont D, Stein RA, and Mead JF. Isoprene-the main hydrocarbon in human breath.Biochemicalandbiophysicalresearchcommunications1981;99(4):1456-60.

[88] BajtarevicA,AgerC,PienzM,KlieberM,SchwarzK,LigorM,LigorT,FilipiakW,DenzH,FieglM,HilbeW,WeissW,LukasP,JamnigH,HacklM,HaidenbergerA,BuszewskiB,MiekischW,Schubert J, and Amann A. Noninvasive detection of lung cancer by analysis of exhaledbreath.BMCcancer2009;9:348.

[89] Kohl I, Dunkl J, Herbig J, Hubalek M, Fiegl H, and Daniaux M. Zukunft desBrustkrebsscreenings – Atemgasanalyse für eine zukünftige nicht-invasive Medizin.GynäkologischeOnkologie2012;6:21.

[90] FuchsD,JamnigH,HeiningerP,KlieberM,SchroecksnadelS,FieglM,HacklM,DenzH,andAmann A. Decline of exhaled isoprene in lung cancer patients correlates with immuneactivation.JBreathRes2012;6(2):027101.

[91] KingJ,MochalskiP,UnterkoflerK,TeschlG,KlieberM,SteinM,AmannA,andBaumannM.Breathisoprene:muscledystrophypatientssupporttheconceptofapoolofisopreneintheperipheryofthehumanbody.Biochemicalandbiophysicalresearchcommunications2012;423(3):526-30.

[92] Amann A,MiekischW, Pleil J, Risby T, and SchubertW,Methodological issues of samplecollectionandanalysisof exhaledbreath, in:EuropeanRespiratory SocietyMonograph49,HorvathIanddeJongsteJC,Editors.2010,EuropeanRespiratorySociety:Lausanne.p.96-114.

[93] FarhiLE.Eliminationofinertgasbythelung.Respirationphysiology1967;3(1):1-11.

Page 19: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

[94] Mochalski P, King J, Kupferthaler A, Unterkofler K, Hinterhuber H, and Amann A.Measurement of isoprene solubility in water, human blood and plasma by multipleheadspace extraction gas chromatography coupled with solid phase microextraction. JBreathRes2011;5(4):046010.

[95] Mochalski P, King J, Kupferthaler A, Unterkofler K, Hinterhuber H, and Amann A. HumanbloodandplasmapartitioncoefficientsforC4-C8n-alkanes,isoalkanes,and1-alkenes.IntJToxicol2012;31(3):267-75.

[96] Filser JG, CsanadyGA,DenkB,HartmannM,KauffmannA, KesslerW, Kreuzer PE, Putz C,Shen JH, and Stei P. Toxicokinetics of isoprene in rodents and humans. Toxicology 1996;113(1-3):278-87.

[97] MorkAKandJohansonG.Ahumanphysiologicalmodeldescribingacetonekineticsinbloodandbreathduringvariouslevelsofphysicalexercise.ToxicolLett2006;164(1):6-15.

[98] PerbelliniL,BrugnoneF,CarettaD,andMaranelliG.Partitioncoefficientsofsomeindustrialaliphatic hydrocarbons (C5-C7) in blood and human tissues. British journal of industrialmedicine1985;42(3):162-7.

[99] Fiserova-Bergerova V and Diaz ML. Determination and prediction of tissue-gas partitioncoefficients.IntArchOccupEnvironHealth1986;58(1):75-87.

[100] ZahlsenK,EideI,NilsenAM,andNilsenOG. InhalationkineticsofC8toC101-alkenesandiso-alkanesintheratafterrepeatedexposures.Pharmacology&toxicology1993;73(3):163-8.

[101] Balaz S and Lukacova V. Amodel-based dependence of the human tissue/blood partitioncoefficients of chemicals on lipophilicity and tissue composition. Quantitative Structure-ActivityRelationships1999;18(4):361-368.

[102] Meulenberg CJ and Vijverberg HP. Empirical relations predicting human and rat tissue:airpartition coefficientsof volatileorganic compounds.Toxicologyandappliedpharmacology2000;165(3):206-16.

[103] Licata AC, DekantW, Smith CE, and Borghoff SJ. A physiologically based pharmacokineticmodel for methyl tert-butyl ether in humans: implementing sensitivity and variabilityanalyses.ToxicolSci2001;62(2):191-204.

[104] ThrallKD,GiesRA,Muniz J,WoodstockAD,andHigginsG.Route-of-entryandbraintissuepartition coefficients for common superfund contaminants. Journal of toxicology andenvironmentalhealth.PartA2002;65(24):2075-86.

[105] Abraham MH, Ibrahim A, and Acree WE, Jr. Air to blood distribution of volatile organiccompounds:alinearfreeenergyanalysis.Chemicalresearchintoxicology2005;18(5):904-11.

[106] Abraham MH and Ibrahim A. Air to fat and blood to fat distribution of volatile organiccompoundsanddrugs:linearfreeenergyanalyses.Europeanjournalofmedicinalchemistry2006;41(12):1430-8.

[107] PoulinP andKrishnanK.Analgorithm forpredicting tissue: bloodpartition coefficientsoforganicchemicals fromn-octanol:waterpartitioncoefficientdata.JToxicolEnvironHealth1995;46(1):117-29.

[108] Sander R. Compilation of Henry’s Law Constants for Inorganic and Organic Species ofPotential Importance in Environmental Chemistry. 1999: http://www.mpch-mainz.mpg.de/%7Esander/res/henry.html.AccessedOct10,2013.

[109] PoliD,CarbognaniP,CorradiM,GoldoniM,AcampaO,BalbiB,BianchiL,M.R,andMuttiA.Exhaled volatile organic compounds in patients with non-small cell lung cancer: crosssectionalandnestedshort-termfollow-upstudy.Respir.Res.2005;6(1):71.

Page 20: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

[110] Xue R, Dong L, Zhang S, Deng C, Liu T, Wang J, and Shen X. Investigation of volatilebiomarkers in liver cancer blood using solid-phase microextraction and gaschromatography/massspectrometry.RapidCommun.MassSpectrom.2008;22:1181-1186.

[111] PhillipsM,CataneoRN,DitkoffBA,FisherP,GreenbergJ,GunawardenaR,KwonCS,Rahbari-OskouiF,andWongC.Volatilemarkersofbreastcancerinthebreath.BreastJ.2003;9:184-191.

[112] PhillipsM,CataneoRN,SaundersC,HopeP,SchmittP,andWaiJ.Volatilebiomarkersinthebreathofwomenwithbreastcancer.JBreathRes2010;4(2):026003.

[113] Gaspar EM, Lucena AF, Duro da Costa J, and Chaves dasNevesH.Organicmetabolites inexhaled human breath--a multivariate approach for identification of biomarkers in lungdisorders.Journalofchromatography.A2009;1216(14):2749-56.

[114] HakimM,BillanS,TischU,PengG,Dvrokind I,MaromO,Abdah-BortnyakR,KutenA,andHaickH.Diagnosisofheadandneck cancer fromexhaledbreath.Br. J. Cancer 2011;104:1649-1655.

[115] Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, and Haick H.Detectionoflung,breast,colorectal,andprostatecancersfromexhaledbreathusingasinglearrayofnanosensors.Br.J.Cancer2010;103:542–551.

[116] PhillipsM,AltorkiN,AustinJHM,CameronRB,CataneoRN,KlossR,MaxfieldRA,MunawarMI,PassHI,andRashidA.Detectionoflungcancerusingweighteddigitalanalysisofbreathbiomarkers.Clin.Chim.Acta2008;393:76-84.

[117] PhillipsM,CataneoRN,DitkoffBA,FisherP,GreenbergJ,GunawardenaR,KwonSC,TietjeO,and Wong C. Prediction of breast cancer using volatile biomarkers in the breath. BreastCancerRes.Treat.2006;9919-21.

[118] SongG,Qin T, LiuH, XuGB, Pan YY, Xiong FX,GuKS, SunGP, andChen ZD.Quantitativebreath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 2010;67(2):227-231.

[119] FuchsP, LoesekenC,Schubert JK,andMiekischW.Breathgasaldehydesasbiomarkersoflungcancer.Int.J.Cancer2010;126:2663-2670.

[120] PhillipsM,AltorkiN,AustinJHM,CameronRB,CataneoRN,GreenbergJ,KlossR,MaxfieldRA,MunawarMI,andPassHI.Predictionoflungcancerusingvolatilebiomarkersinbreath.CancerBiomarkers2007;3(2):95-109.

[121] XuZQ,BrozaYY,IonsecuR,TischU,DingL,LiuH,SongQ,PanYY,XiongFX,GuKS,SunGP,Chen ZD, LejaM, andHaickH.Ananomaterial-basedbreath test for distinguishing gastriccancerfrombenigngastricconditions.BrJCancer2013;108(4):941-50.

[122] ZouY,WangL,ZhaoC,HuY,XuS,YingK,WangP,andChenX.CEA,SCCandNSElevelsinexhaledbreath condensate-possiblemarkers for early detectionof lung cancer. Journal ofBreathResearch2013;7(4):047101.

[123] FilipiakW,RuzsanyiV,MochalskiP,FilipiakA,BajtarevicA,AgerC,DenzH,HilbeW,JamnigH, Hackl M, Dzien A, and Amann A. Dependence of exhaled breath composition onexogenousfactors,smokinghabitsandexposuretoairpollutants.Journalofbreathresearch2012;6(3):036008.

[124] MorettiM,PhillipsM,AbouzeidA,CataneoRN,andGreenbergJ.Increasedbreathmarkersofoxidativestressinnormalpregnancyandinpreeclampsia.Americanjournalofobstetricsandgynecology2004;190(5):1184-90.

[125] Phillips M, Boehmer JP, Cataneo RN, Cheema T, Eisen HJ, Fallon JT, Fisher PE, Gass A,GreenbergJ,KobashigawaJ,ManciniD,RayburnB,andZuckerMJ.Heartallograftrejection:detectionwithbreathalkanesinlowlevels(theHARDBALLstudy).TheJournalofheartand

Page 21: Assessment of the Exhalation Kinetics of Volatile Cancer ... · Assessment of the Exhalation Kinetics of Volatile Cancer Biomarkers Based on their Physicochemical Properties Anton

lung transplantation : the official publication of the International Society for HeartTransplantation2004;23(6):701-8.

[126] Phillips M, Cataneo RN, Cheema T, and Greenberg J. Increased breath biomarkers ofoxidative stress in diabetes mellitus. Clinica chimica acta; international journal of clinicalchemistry2004;344(1-2):189-94.

[127] PhillipsM, CataneoRN,Greenberg J, GrodmanR,GunawardenaR, andNaiduA. Effect ofoxygen on breath markers of oxidative stress. The European respiratory journal : officialjournaloftheEuropeanSocietyforClinicalRespiratoryPhysiology2003;21(1):48-51.

[128] PhillipsM,CataneoRN,GreenbergJ,GrodmanR,andSalazarM.Breathmarkersofoxidativestressinpatientswithunstableangina.Heartdisease2003;5(2):95-9.

[129] PhillipsM,CataneoRN,GreenbergJ,GunawardenaR,NaiduA,andRahbari-OskouiF.Effectof age on the breath methylated alkane contour, a display of apparent new markers ofoxidativestress.TheJournaloflaboratoryandclinicalmedicine2000;136(3):243-9.

[130] Phillips M, Cataneo RN, Greenberg J, Gunawardena R, and Rahbari-Oskoui F. Increasedoxidative stress in younger aswell as in older humans.Clinica chimica acta; internationaljournalofclinicalchemistry2003;328(1-2):83-6.

[131] DeLacyCostelloBandRatcliffeNM,Volatileorganiccompounds(VOCs)foundinurineandstool, in:VolatileBiomarkers:Non-invasiveDiagnosis inPhysiologyandMedicine,AmannAandSmithD,Editors.2013,Elsevier:Amsterdam.

[132] PennDJ,OberzaucherE,GrammerK,FischerG,SoiniHA,WieslerD,NovotnyMV,DixonSJ,XuY,andBreretonRG.Individualandgenderfingerprintsinhumanbodyodour.JournaloftheRoyalSocietyInterface2007;4(13):331-340.

[133] SoiniHA,Klouckova I,WieslerD,OberzaucherE,GrammerK,DixonSJ,XuY,BreretonRG,PennDJ,andNovotnyMV.Analysisofvolatileorganiccompoundsinhumansalivabyastaticsorptive extraction method and gas chromatography-mass spectrometry. Journal ofChemicalEcology2010;36(9):1035-42.

[134] PhillipsM,AltorkiN,AustinJH,CameronRB,CataneoRN,KlossR,MaxfieldRA,MunawarMI,PassHI,RashidA,RomWN,SchmittP,andWaiJ.Detectionof lungcancerusingweighteddigital analysis of breath biomarkers. Clinica chimica acta; international journal of clinicalchemistry2008;393(2):76-84.

[135] Soini HA, Bruce KE, Klouckova I, Brereton RG, Penn DJ, and NovotnyMV. In situ surfacesampling of biological objects and preconcentration of their volatiles for chromatographicanalysis.AnalChem2006;78(20):7161-8.

[136] Kostelc JG, Preti G, Zelson PR, Tonzetich J, and Huggins GR. Volatiles of exogenous originfromthehumanoralcavity.Journalofchromatography1981;226(2):315-23.

[137] Mochalski P, Unterkofler K, Hinterhuber H, and Amann A. Emission of volatile organiccompoundsfromskinofhealthyvolunteers.2013:submitted.

[138] deLacyCostelloB,AmannA,Al-KatebH,FlynnC,FilipiakW,andRatcliffeNM.Areviewofthevolatilesfromthehealthyhumanbody.JBreathRes2013:toappear.

[139] RiederJ,LirkP,EbenbichlerC,GruberG,PrazellerP,LindingerW,andAmannA.Analysisofvolatile organic compounds: possible applications in metabolic disorders and cancerscreening.WienerklinischeWochenschrift2001;113(5-6):181-5.