25
Assessing the effect of hypoxia on cardiac metabolism using hyperpolarized 13 C magnetic 1 resonance spectroscopy 2 3 (Short Title – Le Page et al: Assessing the response of cardiac metabolism to hypoxia with 13 C MRS) 4 5 Lydia M. Le Page 1,2,3 , Oliver J. Rider 4 , Andrew J. Lewis 4 , Victoria Noden 1 , Matthew Kerr 1 , Lucia 6 Giles 1 , Lucy J. A. Ambrose 1 , Vicky Ball 1 , Latt Mansor 1 , Lisa C. Heather 1 *, and Damian J. Tyler 1,4 * 7 8 1 Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK 9 2 Department of Physical Therapy and Rehabilitation Science, University of California, San 10 Francisco, San Francisco, USA 11 3 Department of Radiology and Biomedical Imaging, University of California, San Francisco, San 12 Francisco, USA 13 4 Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, 14 University of Oxford, Oxford, UK 15 *joint last author 16 17 Corresponding author: 18 Dr Lydia Le Page, Departments of Physical Therapy and Rehabilitation Science, and Radiology 19 and Biomedical Imaging, University of California, San Francisco, San Francisco, 94158, CA, USA. 20 Email: [email protected] 21 22 Word Count: 3,152 23 Key words: hyperpolarized 13 C, cardiac metabolism, hypoxia, magnetic resonance spectroscopy 24 Abbreviations: HP: hyperpolarized; PDH: pyruvate dehydrogenase; LDH: lactate dehydrogenase; 25 BOLD: blood-oxygen-level dependent; PET: positron emission tomography; PDK: pyruvate 26 dehydrogenase kinase; HIF: hypoxia-inducible factor 27 . CC-BY-NC-ND 4.0 International license available under a was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made The copyright holder for this preprint (which this version posted December 13, 2018. ; https://doi.org/10.1101/495069 doi: bioRxiv preprint

Assessing the effect of hypoxia on cardiac metabolism using ...1 Assessing the effect of hypoxia on cardiac metabolism using hyperpolarized 13C magnetic 2 resonance spectroscopy 3

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Assessing the effect of hypoxia on cardiac metabolism using hyperpolarized 13C magnetic1

    resonancespectroscopy2

    3

    (ShortTitle–LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS)4

    5

    LydiaM.LePage1,2,3,Oliver J.Rider4,AndrewJ.Lewis4,VictoriaNoden1,MatthewKerr1,Lucia6

    Giles1,LucyJ.A.Ambrose1,VickyBall1,LattMansor1,LisaC.Heather1*,andDamianJ.Tyler1,4*7

    8

    1DepartmentofPhysiology,AnatomyandGenetics,UniversityofOxford,Oxford,UK9

    2Department of Physical Therapy and Rehabilitation Science, University of California, San10

    Francisco,SanFrancisco,USA11

    3DepartmentofRadiologyandBiomedicalImaging,UniversityofCalifornia,SanFrancisco,San12

    Francisco,USA13

    4OxfordCentreforClinicalMagneticResonanceResearch,DivisionofCardiovascularMedicine,14

    UniversityofOxford,Oxford,UK15

    *jointlastauthor16

    17Correspondingauthor: 18

    DrLydiaLePage,DepartmentsofPhysicalTherapyandRehabilitationScience,andRadiology19

    andBiomedicalImaging,UniversityofCalifornia,SanFrancisco,SanFrancisco,94158,CA,USA.20

    Email:[email protected]

    22

    WordCount:3,15223

    Keywords:hyperpolarized13C,cardiacmetabolism,hypoxia,magneticresonancespectroscopy24

    Abbreviations:HP:hyperpolarized;PDH:pyruvatedehydrogenase;LDH:lactatedehydrogenase;25

    BOLD: blood-oxygen-level dependent; PET: positron emission tomography; PDK: pyruvate26

    dehydrogenasekinase;HIF:hypoxia-induciblefactor27

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Abstractsummary28

    Hypoxiaplaysaroleinmanydiseasesandcanhaveawiderangeofeffectsoncardiacmetabolism29

    dependingontheextentofthehypoxicinsult.Non-invasiveimagingmethodscouldshedvaluable30

    lightonthemetaboliceffectsofhypoxiaontheheartinvivo.Hyperpolarizedcarbon-13magnetic31

    resonance spectroscopy (HP 13C MRS) in particular is an exciting technique for imaging32

    metabolismthatcouldprovidesuchinformation.33

    Theaimofourworkwas,therefore,toestablishwhetherhyperpolarized13CMRScanbeusedto34

    assesstheinvivoresponseofcardiacmetabolismtosystemicacuteandchronichypoxicexposure.35

    GroupsofhealthymaleWistarratswereexposedtoeitheracute(30minutes),oneweekorthree36

    weeks of hypoxia. In vivoMRS of hyperpolarized [1-13C]pyruvatewas carried out alongwith37

    assessmentsofphysiologicalparametersandejectionfraction.Nosignificantchangesinheart38

    rate, respiration rate, or ejection fraction were observed at any timepoint. Haematocrit was39

    elevatedafteroneweekandthreeweeksofhypoxia.40

    Thirtyminutesofhypoxiaresultedinasignificantreductioninpyruvatedehydrogenase(PDH)41

    flux,whereasoneor threeweeksof hypoxia resulted inaPDH flux thatwasnotdifferent to42

    normoxicanimals.Conversionofhyperpolarized[1-13C]pyruvateinto[1-13C]lactatewaselevated43

    followingacutehypoxia,suggestiveofenhancedanaerobicglycolysis.ElevatedHPpyruvateto44

    lactateconversionwasalsoseenattheone-weektimepoint,inconcertwithanincreaseinlactate45

    dehydrogenase (LDH) expression. Following three weeks of hypoxic exposure, cardiac46

    metabolismwascomparabletothatobservedinnormoxia.47

    Wehavesuccessfullyvisualizedoftheeffectsofsystemichypoxiaoncardiacmetabolismusing48

    hyperpolarized13CMRS,withdifferencesobservedfollowing30minutesand1weekofhypoxia.49

    This demonstrates the potential of in vivo hyperpolarized 13C MRS data for assessing the50

    cardiometaboliceffectsofhypoxiaindisease. 51

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Introduction52

    Oxygenation of tissue is key to survival andmaintenance of organ health. The heart has the53

    potential tobe exposed to a spectrumofhypoxic insults, ranging frommildandtransient, to54

    prolongedandsevere.Themetaboliceffectsofacutehypoxiaarewelldocumented,andnotably55

    involveincreasedglycolyticfluxandtransientlactateacidosis1,2.Prolongedandseverehypoxia56

    requires reprogramming of cardiac metabolism; the heart downregulates oxygen-consuming57

    processesandupregulatesglycolysisinanattempttomaximizeATPproductionunderoxygen58

    restrictedconditions3–5.Theeffectsofchronichypoxiaareobservedinresponsetohighaltitude6,59

    orasafactorinmanypathologicalconditions;examplesincludechronicobstructivepulmonary60

    disease7, complications in pregnancy8, sleep apnoea9, myocardial infarction (the peri-infarct61

    region)10andheartfailure11.62

    However,muchofthisexistingliteraturereliesonexvivoassessmentofthemetabolicchanges63

    thatoccur.Assuch,non-invasiveinvivomeasuresoftheeffectofoxygenlevelsoncardiactissue64

    wouldbevaluable,especiallyasthehypoxicresponsecanbeverytransient12.Imagingtechniques65

    havebeguntoprobeinvivooxygenlevels,andcurrentprominentmethodsincludeblood-oxygen-66

    leveldependent(BOLD)MRIandpositronemissiontomography(PET)imaging,althoughneither67

    isstandardclinicalpracticeasyet.BOLDMRIenablesassessmentofvascularoxygenation,using68

    theparamagneticnatureofdeoxyhaemoglobintocreateimagecontrast13;thistechniquehasnot69

    yetreachedtheclinicduetoacombinationofmanychallengesincludinglowsignal-to-noiseand70

    aneed forrobustanalysis14,whichstudieshavebeguntoaddress15.There isalsoanongoing71

    searchforPETprobestoassesshypoxia,themostpromisingofwhichiscurrently11C-acetate.72

    Clearanceofthistracerisdependentonoxidativemetabolism,andsoaccumulationindicateslow73

    oxygenpresence16.Itdoes,however,haveashorthalf-life17andsousagedependsonanearby74

    cyclotron,andaswithallPEToptions,patientswillbeexposedtoionizingradiationwhichmay75

    prohibitrepeatedmeasurements.76

    Spectroscopic imaging holds potential for providing non-invasive, non-radioactive metabolic77

    data.Imagingofcarbon-13(13C)inparticularcanbeveryinformativegiventheabundanceof78

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    4

    carbonpresentinmetabolites,includingthoseinpathwaysaffectedbyoxygenlevel.Although13C79

    spectroscopy suffers from inherently low sensitivity in vivo, the adventof hyperpolarized 13C80

    magneticresonancespectroscopy(HP13CMRS)offerstheuniqueabilitytomeasuretherateof81

    enzymefluxinvivo18.Itprovidesanenhancementofthe13Csignalof>10,000fold,andassuch,82

    enablesanon-invasivemeasurementofenzymaticfluxinrealtime.Intheheart,theglycolytic83

    pathwayiscentraltothemetabolicchangesthatoccurasoxygenlevelsfall.Themostestablished84

    hyperpolarized13C-labelledprobe,[1-13C]pyruvate,isrelevanttothispathway,asitallowsusto85

    visualise the fateofpyruvateeither throughmitochondrialpyruvatedehydrogenase(PDH) to86

    bicarbonate,orthroughcytosoliclactatedehydrogenase(LDH)intolactate19.Apreviousstudyby87

    Laustsenetal.20showedthevalueofhyperpolarizedpyruvateintheinvestigationofhypoxiain88

    thediabeticratkidney–demonstratinganabilitytomeasureincreasedlactateproductionafter89

    fifteenminutesofhypoxicanaesthesia.Hypoxiaisalsooneofmanypathologicalfactorsoftumor90

    development21,fluctuatingovertimeandinregionsofthetumor22,andassuchIvesonetal.used91

    HP13CMRSinamousetumormodel,showingthatinspirationofahypoxicatmospherecaused92

    increasedlactateproductionintumors23 .Oxidativestresshasbeeninvestigatedinafewnon-93

    cardiac studies, using HP dehydroascorbate24,25, but the toxicity of this compoundmay limit94

    translationtoclinicalstudies26.Indeed,thechallengesandfutureofhyperpolarizedprobesfor95

    assessingrenalandcardiacoxygenmetabolismhavebeendiscussedinareviewbySchroeder96

    andLaustsen27.Thusfar,nostudieshaveinvestigatedtheuseofHP13CMRStoassesstheeffect97

    ofhypoxiaonglucosemetabolismintheinvivoheart.98

    Inthisstudywehavethereforeassessedtheeffectofthreelengthsofhypoxicexposure–thirty99

    minutes, one week, and three weeks - on the in vivo rat heart, using hyperpolarized [1-13C]100

    pyruvate.WehavemeasuredtheconversionofHPpyruvatetobicarbonate,lactateandalanine101

    (Figure1A shows thebiochemical pathways involved).The level of oxygen saturation in the102

    bloodwasmatchedacrossgroups,andestablishedfollowingmeasurementinanimalshousedat103

    11%oxygenfrompreviousrodentstudiesinourlaboratory3,4.Alongsidecardiacmetabolismby104

    MRS,weassessedejectionfractionbyCINEMRIimaging,andmeasuredheartrateandrespiration105

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    5

    rateinallgroups. Wefurthermeasuredbodyweightandhaematocrit inthelongerexposure106

    groups(1weekand3weekshypoxia).Intheselattergroups,expressionlevelsofcardiacPDH107

    regulatorspyruvatedehydrogenasekinase(PDK)1,2and4,andtheexpressionleveloflactate108

    dehydrogenase(LDH),responsibleforconversionofpyruvatetolactate,werealsomeasuredin109

    cardiactissue.110

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Methods111

    Animalhandling:MaleWistarrats(initialbodyweight~200g,Harlan,UK)werehousedona112

    12:12-hlight/darkcycleinanimalfacilitiesattheUniversityofOxford.Allimagingstudieswere113

    performedbetween6amand1pmwithanimalsinthefedstate.Allproceduresconformedtothe114

    HomeOfficeGuidanceontheOperationoftheAnimals(ScientificProcedures)Actof1986andto115

    UniversityofOxfordinstitutionalguidelines.116

    117

    Hypoxicexposure118

    Agroupofhypoxically-housedanimals(n=6)andagroupofanimalshousedinnormoxia(n=4)119

    wereusedtoassessbloodoxygensaturation.Saturationwasmeasuredtobe74±2%(Figure1B)120

    in hypoxia, using a pulse oximeter on their hind paw (MouseOx, Starr Life Sciences). This121

    concentrationwassubsequentlymatchedforallhypoxicexposures.122

    123

    Experimentalgroupsforinvivoimaging124

    Three groups of animalswere exposed to three different lengths of hypoxia. Control groups125

    experiencednormoxiaonly.ThegroupsaresummarizedinFigure1C.126

    127

    Thirtyminutes (acute)hypoxia:Animals (n=9)were anaesthetisedusing isoflurane (2%) in128

    100%O2(2L/min).Metabolicandfunctionaldatawereacquiredinnormoxiaasdescribedinthe129

    imaging protocol below. Animals were then slowly introduced to hypoxia by increasing130

    replacementofoxygenwithnitrogenoverthirtyminutes,untilabloodoxygensaturationwhich131

    matchedthatoftheanimalshousedinthehypoxicchamberwasachieved(describedabove).A132

    second injection of hyperpolarized [1-13C]pyruvate was administered and a second data set133

    acquired.Acutehypoxiaelicitedsomerapidphysiologicalresponsessuchasincreasedventilation134

    andheartrate28,whichsettledpriortodataacquisition,allowingacquisitionofdatainastable135

    hypoxicstate.136

    137

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    7

    Oneweekofhypoxia:Animals (n=8)werehoused inanormobarichypoxic chamber forone138

    week,duringwhichtimetheoxygenconcentrationwasreduceddailyby1-2%untilatthefinal139

    daytheconcentrationwas11%.Animalswereweigheddaily,whichresultedinbriefexposureto140

    normoxia(nolongerthan5minutes).Animalsweresubsequentlyanaesthetisedunderhypoxia141

    (O2/N2mix)outsidethechamber,beforebeingplacedinthemagnetandtheimagingprotocol.142

    executed. A control group (n=6)was housed outside the hypoxic chamber in room air (21%143

    oxygen)foroneweekfromwhichnormoxicdatawereacquired.144

    145

    Threeweeksofhypoxia:Animals(n=8)wereintroducedtothenormobarichypoxicchamberas146

    fortheone-weekexperiments,butremainedinthechamberforafurther14daysat11%oxygen.147

    Animalswerethenanaesthetisedunderhypoxiaoutsidethechamber(O2/N2mix)andunderwent148

    theMRprotocolasfortheone-weekanimals,toobtaininvivocardiacmetabolicdata.Acontrol149

    group(n=8)washousedoutsidethehypoxicchamberinroomair(21%oxygen)forthreeweeks150

    fromwhichnormoxicdatawereacquired.151

    152

    Magnetic resonance (MR) protocol: Animals were anaesthetised with isoflurane (3.5%153

    induction and 2%maintenance). Ratswere positioned in a 7 T horizontal boreMR scanner154

    interfaced toaDirectDrive console (VarianMedicalSystems,Yarnton,UK),andahome-built155

    1H/13Cbutterflycoil(loopdiameter,2cm)wasplacedoverthechest.Correctpositioningwas156

    confirmed by the acquisition of an axial proton fast low-angle shot (FLASH) image (TE/TR,157

    1.17/2.33ms;matrixsize,64x64;FOV,60x60mm;slicethickness,2.5mm;excitationflipangle,158

    15°).AnECG-gatedaxialCINEimagewasobtained(slicethickness:1.6mm,matrixsize:128×128,159

    TE/TR:1.67/4.6ms, flip angle:15°) at the level of the papillarymuscles for ejection fraction160

    calculation. An ECG-gated shim was used to reduce the proton linewidth to ~120 Hz.161

    Hyperpolarized[1-13C]pyruvate(Sigma-Aldrich,Gillingham,UK)waspreparedby40minutesof162

    hyperpolarization at ~1K as described by Ardenkjaer-Larsen et al.18, before being rapidly163

    dissolved in a pressurised and heated alkaline solution. This produced a solution of 80mM164

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    8

    hyperpolarizedsodium[1-13C]pyruvateatphysiologicaltemperatureandpH,withapolarization165

    of~30%.Onemillilitreofthissolutionwasinjectedovertensecondsviaatailveincannula(dose166

    of ~0.32 mmol/kg). Sixty individual ECG-gated 13C MR slice selective, pulse-acquire cardiac167

    spectrawereacquiredover60safterinjection(TR,1s;excitationflipangle,5°;slicethickness168

    10mm,sweepwidth13,593Hz;acquiredpoints2,048;frequencycentredontheC1pyruvate169

    resonance)29.170

    171

    Tissue collection: All animals were sacrificed with an overdose of isoflurane following172

    completionof theMRprotocol. The heartwas rapidly removed,washedbriefly inphosphate173

    bufferedsaline,andsnap-frozeninliquidnitrogen.174

    175

    Blood analyses: Samples of blood were collected from the chest cavity on sacrificing, and176

    centrifugedat8,000rpmfor10minutes.Haematocritwasmeasuredusingamicrohaematocrit177

    reader(Hawksley,UK).178

    179

    Tissueanalysis:ForWesternblottingofcardiactissuefromoneweekandthreeweekgroups,180

    frozentissuewascrushedandlysisbufferaddedbeforetissuewashomogenised;aproteinassay181

    establishedtheproteinconcentrationofeachlysate.Thesameconcentrationofproteinfromeach182

    sample was loaded on to 12.5% SDS-PAGE gels and separated by electrophoresis30. Primary183

    antibodiesforPDK1and2werepurchasedfromNewEnglandBiolabsandAbgent,respectively;184

    anantibody forPDK4waskindlydonatedbyProf.MarySugden(QueenMary’s,Universityof185

    London,UK).AprimaryantibodyforLDHwaspurchasedfromAbcam(ab52488).Evenprotein186

    loadingandtransferwereconfirmedbyPonceaustaining(0.1%w/vin5%v/vaceticacid,Sigma-187

    Aldrich),andinternalstandardswereusedtoensurehomogeneitybetweensamplesandgels.188

    BandswerequantifiedusingUN-SCAN-ITgelsoftware(SilkScientific,USA)andallsampleswere189

    runinduplicateonseparategelstoconfirmresults.190

    191

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    9

    Magnetic resonancedataanalysis:All cardiac13C spectrawere analysedusing theAMARES192

    algorithminthejMRUIsoftwarepackage31.Figure1Dshowsexamplespectrasummedover30193

    seconds of acquisition in normoxic animals, acutely hypoxic animals and animals housed in194

    hypoxia for one and three weeks, showing cardiometabolic conversion of the injected195

    hyperpolarizedpyruvateintothedownstreamproductslactate,alanineandbicarbonate.Spectra196

    were DC offset-corrected based on the last half of acquired points. The peak areas of [1-197

    13C]pyruvate, [1-13C]lactate, [1-13C]alanine and[13C]bicarbonate at each time point were198

    quantifiedandusedasinputdataforakineticmodelbasedonthatdevelopedbyZierhutetal.32199

    andAthertonetal.33.PDHfluxwasquantifiedastherateof13Clabeltransferfrompyruvateto200

    bicarbonate.Therateof 13C labeltransfer frompyruvate to lactateandalaninewasusedasa201

    marker of lactate dehydrogenase activity and alanine aminotransferase activity respectively.202

    CINE images were analyzed using cmr42 software (Circle Cardiovascular Imaging, Calgary,203

    Canada)byanexperiencedanalystblindedtoexperimentalgroup.204

    205

    Statistical analyses: No significant differences were observed between the three normoxic206

    groups(acute,oneweekandthreeweeks)foranyparameter,thereforeallnormoxicvalueswere207

    combined for subsequent analysis. Values are reported as the mean ± standard deviation.208

    Differences between groups were assessed using a one-way ANOVA followed by a Tukey’s209

    multiplecomparisonstest.ThiswasperformedusingGraphPadPrismversion6.0gforMacOSX210

    (GraphPadSoftware, La JollaCaliforniaUSA,www.graphpad.com). Statistical significancewas211

    consideredifp≤0.05.212

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Results213

    Oxygensaturationwassuccessfullyreducedinallhypoxicgroupscomparedwithnormoxicdata214

    (Figure2A).215

    216

    Physiological Effects of Hypoxia: Hypoxia did not significantly affect in vivo heart rate,217

    respirationrateorleftventricularejectionfractioninanygroup(Figure2B,C,D).However,the218

    ANOVAforheartrategaveapvalueof0.051,andsoacomparisonbetweenthe30minuteand1-219

    weekhypoxiadatashouldbenoted(p=0.04).Oneweekofhypoxiacausedasignificantincrease220

    inhaematocritcomparedtonormoxia(49.3±0.6%and43±2%respectively),andhaematocritin221

    three-weekhypoxicanimalswassignificantly increasedcompared toone-weekandnormoxic222

    values(58±2%)(Figure2E);thisdemonstratessystemicadaptationtohypoxiaovertime.223

    Animalshousedinhypoxiaforoneweekshowedsignificantlylowerbodyweightsthannormoxic224

    animals. Following three weeks of hypoxia however, body weights were no different from225

    controls.226

    227

    MetabolicEffectsofHypoxia:228

    Invivodata:Following30minutesofhypoxia,animalsdemonstratedasignificantreductionin229

    PDH flux (50%) compared to normoxic animals (0.009±0.003 s-1 and 0.017±0.007 s-1230

    respectively;Figure 3A). In contrast, both 1 and3weeks of hypoxic exposure didnot show231

    significantlyalteredPDH flux,with valuesnot significantlydifferent fromcontrols (one-week232

    hypoxia:0.013±0.007s-1;three-weekshypoxia:0.017±0.011s-1;normoxia:0.017±0.007s-1).233

    234

    A significant (58%) increase inHP 13C label transfer to lactate (Figure3B),wasobserved in235

    comparing30minuteshypoxicexposuretonormoxicdata(0.032±0.008s-1and0.020±0.006s-1236

    respectively),indicativeofashort-termmetabolicshifttowardsanaerobicmetabolism.Afterone237

    weekof hypoxia, theunchangedPDH fluxwasaccompaniedby an increased rateof 13C label238

    transfertolactate(by40%)comparedtonormoxicanimals(0.028±0.008s-1and0.020±0.006s-239

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    11

    1respectively).Nodifferenceinfluxto13Clactatewasobservedfollowingthreeweeksofhypoxia240

    comparedtonormoxicdata(0.023±0.002s-1and0.020±0.001s-1respectively).Nochangeinthe241

    rateof13Clabeltransfertoalaninewasseenatanytimepoint(Figure3C).242

    243

    Biochemicalanalyses:244

    Cardiac tissue from the one-week and three-week hypoxic groups was assessed ex vivo. In245

    agreementwiththeunchangedPDHfluxatboththesetimepoints,nosignificantdifferencesin246

    theproteinexpressionlevelsoftheregulatorycardiacPDKisoforms(1,2and4)wereobserved247

    (Figure4).AsignificantlyhigherexpressionofLDHwasobservedinthe1-weekhypoxictissue,248

    inlinewiththeincreasedHPpyruvatetolactateconversionseeninvivo.249

    250

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Discussion251

    Inhypoxia,metabolicchangeshavetooccurinorderforcardiacfunctiontobemaintainedunder252

    theseoxygen-restrictedconditions.Firstlyconsideringtheresponsetoacutehypoxia,theheart253

    mustrapidlyshiftmetabolismtowardsamoreanaerobicphenotype,whichischaracterisedby254

    increased glycolysis, increased lactate efflux34 and decreased oxidative mitochondrial255

    metabolism.Indeed,intheanimalsexposedto30minutesofhypoxia,cardiacpyruvatetolactate256

    conversioninvivowassignificantlyincreased,andPDHfluxsignificantlydecreased.Therapid257

    response that we observed, in line with the expected metabolic signature of anaerobic258

    respiration, is likely mediated by changes in the NAD+/NADH ratio as a direct result of the259

    decreased oxygen availability35. The reduced oxygen results in decreased mitochondrial260

    respiration4, increasing NADH, inhibiting NAD-dependent dehydrogenases such as PDH and261

    promotingNADH-dependentdehydrogenasessuchasLDH.262

    Afteroneweekofhypoxicexposure,weobservedasignificantlyincreasedhaematocritlevel,as263

    theanimalsunderwentadaptationtotheincreasinglevelofhypoxia.Thispotentiallyindicatesa264

    partialadaptationtothehypoxicenvironment,aparticularlyviablesuggestionwhenconsidered265

    alongside the three-weekhaematocritdata,which showsan additional significant increase in266

    haematocrit.Thishypothesisof‘interim’adaptationissupportedbyatrendtoincreasedheart267

    rate as a compensatory mechanism to ensure sufficient systemic oxygen delivery, and a268

    significantlyreducedbodyweight.Similarparametershavebeenobservedinhumansadapting269

    to altitude showing increasedheart rate36 anda lower calorie intake37, the latter of hasbeen270

    suggestedtobeduetoincreasedleptinlevels38.271

    Theincreasedhaematocritleveldemonstratedbyourone-weekandthree-weekhypoxicanimals272

    is a hallmark of systemic adaptation to physiological hypoxia, driven by HIF-2α-stimulated273

    productionof erythropoietin39,40.Glycolytic changeshavebeen reported tobepredominantly274

    HIF-1α-regulated41suchasthatoflactatedehydrogenase42,theenzymeresponsiblefortheHP275

    conversionwemeasured invivo.Glycolyticallyderived lactatewas increased in theone-week276

    hypoxic animals, as assessed by HP pyruvate to lactate conversion, in line with significantly277

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    13

    increasedLDHexpressionincomparisontonormoxicdata.PDHfluxwasnotdecreased,which278

    was supported by our assessment of expression levels of its PDK regulators, perhaps279

    unexpectedlyduetopreviousstudiesdiscussingthehypoxia-induciblenatureofPDK143,44.Our280

    three-weekhypoxicexposurealsoresultedinnometabolicdifferences(intheconversionofHP281

    pyruvatetolactateorbicarbonate)incomparisonwithnormoxicdata,assupportedbymeasures282

    ofPDKandLDHexpression.283

    MuchresearchhashoweverfocussedontheeffectofhypoxiaonPDKexpressionincellculture.284

    Kimetal.43andPapandreouetal.44showedupregulationofPDK1,inmouseembryonicfibroblasts285

    following24-72hin0.5%hypoxia.Geneticover-activationofHIF1αincreasesPDK1and4protein286

    levelsinmuscle45.Ithasgenerallybeenassumedthatthistranslatestotheheart,intheinvivo287

    setting.Equally,measuredchangesintheseregulatorykinaseshavebeenextrapolatedtomeana288

    changeinPDHactivity.However,ourdatasuggeststhatthismaynotenablecommentonlong-289

    terminvivocardiachypoxia.Indeed,astudybyLeMoineetal.demonstratednoelevationofPDK1290

    expressioninskeletalmusclefollowingoneweekofhypoxicexposure46.Previousstudiesfrom291

    our group have shown that this three-week protocol of chronic hypoxia at 11% oxygen is292

    sufficienttometabolicallyreprogramtheheartspecificallytobecomemoreoxygenefficient5in293

    waysnotassessedinthisstudy.Further,studiesinanimalmodelsofhypertrophyhaverevealed294

    unchangedPDHactivity47,48andnodifferences inPDK isoforms,whichappearedatoddswith295

    cellularstudiesonhypoxia.Ourdatacontributestotheseobservationsandmayinfuturehelp296

    explainthesituationindisease.297

    298

    Limitations299

    This study did not measure ex vivo PDH activity, which could contribute to the in vivo HP300

    measures,andcouldbealteredinspiteofunchangedPDKexpression.HowevertheworkbyLe301

    Moine et al. demonstrated that ex vivo skeletal PDH activity inmice exposed to oneweek of302

    hypoxiawasunchangedcomparedtonormoxicanimals49.Concomitantly,workbyAthertonetal.303

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    14

    demonstratedasignificantcorrelationbetweeninvivodataacquiredusingHP[1-13C]pyruvate304

    andPDHactivityassessedfromexvivotissue50,strengtheningthevalidityofourinvivoHPdata.305

    Apulse-acquiresequencewasusedinthisstudy,anddataacquiredusingasurfacecoil.Future306

    work could involve implementing a more elegant acquisition protocol51 to provide more307

    informationonregionalhypoxiawithintheheart.308

    Finally,normoxicanimalswereimagedusing100%oxygen,which,althoughcommonprocedure309

    inpreclinicalanimalstudies,mayexacerbatethedifferenceswehaveseenhere.Futurestudies310

    couldincludeanaesthesiaataloweroxygenpercentage.311

    312

    Conclusion313

    Inconclusion,wehavedemonstratedtheabilityofHP[1-13C]pyruvatetonon-invasivelyassess314

    metabolicchangesinthehealthyheartinresponsetothreelengthsofexposuretohypoxia.This315

    couldthereforebeaviabletechniqueforassessinghypoxiainawiderangeofdiseasesandin316

    responsetotherapy.317

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Funding318

    This study was funded by grants from the British Heart Foundation (FS/10/002/28078,319

    FS/14/17/30634)andDiabetesUK(11/0004175)andequipmentsupportwasprovidedbyGE320

    Healthcare.321

    322

    Acknowledgements323

    TheauthorswouldliketothankDr.LouiseUptonandProf.MarySugdenforthekindprovision324

    ofthepulseoximeterandaprimaryantibodyforPDK4respectively.L.L.Pwouldalsoliketothank325

    RichardandJocelynLePagefortechnicalassistanceinpreparingthemanuscript,andAsst.Prof.326

    MyriamChaumeilforvaluablediscussions.327

    328

    Conflictsofinterest329

    Lydia Le Page was supported in the form of a partial contribution to her D.Phil studies by330

    AstraZenecaPLC,London,UK.331

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • References332

    1. AllenDG,MorrisPG,OrchardtCH,PirolotJS.ANuclearMagneticResonanceStudyof333

    MetabolismintheFerretHeartduringHypoxiaandInhibitionofGlycolysis.Vol361.;1985.334

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1192854/pdf/jphysiol00576-335

    0195.pdf.AccessedOctober16,2018.336

    2. WilliamsonJR.Glycolyticcontrolmechanisms.II.Kineticsofintermediatechangesduring337

    theaerobic-anoxictransitioninperfusedratheart.JBiolChem.1966;241(21):5026-338

    5036.http://www.ncbi.nlm.nih.gov/pubmed/4224561.AccessedOctober16,2018.339

    3. ColeMA,AbdJamilAH,HeatherLC,etal.OnthepivotalroleofPPARαinadaptationof340

    thehearttohypoxiaandwhyfatinthedietincreaseshypoxicinjury.FASEBJ.April2016.341

    doi:10.1096/fj.201500094R.342

    4. HeatherLC,ColeMA,TanJ-JJ,etal.Metabolicadaptationtochronichypoxiaincardiac343

    mitochondria.BasicResCardiol.2012;107(3):268.doi:10.1007/s00395-012-0268-2.344

    5. MansorLS,MehtaK,AksentijevicD,etal.Increasedoxidativemetabolismfollowing345

    hypoxiainthetype2diabeticheart,despitenormalhypoxiasignallingandmetabolic346

    adaptation.JPhysiol.2016;594(2):307-320.doi:10.1113/JP271242.347

    6. StembridgeM,AinsliePN,DonnellyJ,etal.Cardiacstructureandfunctioninadolescent348

    Sherpa;effectofhabitualaltitudeanddevelopmentalstage.AmJPhysiolCircPhysiol.349

    2016;310(6):H740-H746.doi:10.1152/ajpheart.00938.2015.350

    7. deTheijeC,CostesF,LangenRC,PisonC,GoskerHR.Hypoxiaandmusclemaintenance351

    regulation:implicationsforchronicrespiratorydisease.CurrOpinClinNutrMetabCare.352

    2011;14(6):548-553.doi:10.1097/MCO.0b013e32834b6e79.353

    8. GiussaniDA,CammEJ,NiuY,etal.Developmentalprogrammingofcardiovascular354

    dysfunctionbyprenatalhypoxiaandoxidativestress.CalbetJAL,ed.PLoSOne.355

    2012;7(2):e31017.doi:10.1371/journal.pone.0031017.356

    9. GarveyJF,TaylorCT,McNicholasWT.Cardiovasculardiseaseinobstructivesleepapnoea357

    syndrome:theroleofintermittenthypoxiaandinflammation.EurRespirJ.358

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    17

    2009;33(5):1195-1205.doi:10.1183/09031936.00111208.359

    10. WillamC,MaxwellPH,NicholsL,etal.HIFprolylhydroxylasesintherat;organ360

    distributionandchangesinexpressionfollowinghypoxiaandcoronaryarteryligation.J361

    MolCellCardiol.2006;41(1):68-77.doi:10.1016/j.yjmcc.2006.04.009.362

    11. GiordanoFJ.Oxygen,oxidativestress,hypoxia,andheartfailure.JClinInvest.363

    2005;115(3):500-508.doi:10.1172/JCI24408.364

    12. PrabhakarNR,SemenzaGL.Adaptiveandmaladaptivecardiorespiratoryresponsesto365

    continuousandintermittenthypoxiamediatedbyhypoxia-induciblefactors1and2.366

    PhysiolRev.2012;92(3):967-1003.doi:10.1152/physrev.00030.2011.367

    13. MasonRP,ZhaoD,Pacheco-TorresJ,etal.Multimodalityimagingofhypoxiainpreclinical368

    settings.QJNuclMedMolImaging.2010;54(3):259-280.369

    http://www.ncbi.nlm.nih.gov/pubmed/20639813.AccessedNovember6,2018.370

    14. FriedrichMG,KaramitsosTD.Oxygenation-sensitivecardiovascularmagneticresonance.371

    JCardiovascMagnReson.2013;15(1):43.doi:10.1186/1532-429X-15-43.372

    15. StalderAF,SchmidtM,GreiserA,etal.RobustcardiacBOLDMRIusinganfMRI-like373

    approachwithrepeatedstressparadigms.MagnResonMed.2015;73(2):577-585.374

    doi:10.1002/mrm.25164.375

    16. DavidsonCQ,PhenixCP,TaiTC,KhaperN,LeesSJ.SearchingforNovelPETRadiotracers:376

    ImagingCardiacPerfusion,MetabolismandInflammation.Vol8.;2018.377

    www.ajnmmi.us/ISSN:2160-8407/ajnmmi0079469.AccessedNovember6,2018.378

    17. GroplerRJ,SiegelBA,GeltmanEM.Myocardialuptakeofcarbon-11-acetateasanindirect379

    estimateofregionalmyocardialbloodflow.JNuclMed.1991;32(2):245-251.380

    http://www.ncbi.nlm.nih.gov/pubmed/1992027.AccessedNovember6,2018.381

    18. Ardenkjaer-LarsenJH,FridlundB,GramA,etal.Increaseinsignal-to-noiseratioof>382

    10,000timesinliquid-stateNMR.ProcNatlAcadSciUSA.2003;100(18):10158-10163.383

    doi:10.1073/pnas.1733835100.384

    19. SchroederMA,ClarkeK,NeubauerS,TylerDJ.Hyperpolarizedmagneticresonance:a385

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    18

    noveltechniquefortheinvivoassessmentofcardiovasculardisease.Circulation.386

    2011;124(14):1580-1594.doi:10.1161/CIRCULATIONAHA.111.024919.387

    20. LaustsenC,LyckeS,PalmF,etal.Highaltitudemayalteroxygenavailabilityandrenal388

    metabolismindiabeticsasmeasuredbyhyperpolarized[1-(13)C]pyruvatemagnetic389

    resonanceimaging.KidneyInt.2013;86(1):67-74.doi:10.1038/ki.2013.504.390

    21. HanahanD,WeinbergRA.Hallmarksofcancer:thenextgeneration.Cell.391

    2011;144(5):646-674.doi:10.1016/j.cell.2011.02.013.392

    22. HardeeME,DewhirstMW,AgarwalN,SorgBS.NovelImagingProvidesNewInsightsinto393

    MechanismsofOxygenTransportinTumors.394

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841217/pdf/nihms184476.pdf.395

    AccessedOctober16,2018.396

    23. IversenAB,RinggaardS,LaustsenC,etal.Hyperpolarizedmagneticresonance397

    spectroscopyforassessingtumorhypoxia.ActaOncol.September2015:1-6.398

    doi:10.3109/0284186X.2015.1070964.399

    24. BohndiekSE,KettunenMI,HuD,etal.Hyperpolarized[1-13C]-Ascorbicand400

    DehydroascorbicAcid:VitaminCasaProbeforImagingRedoxStatusinVivo.JAmChem401

    Soc.2011;133(30):11795-11801.doi:10.1021/ja2045925.402

    25. KeshariKR,KurhanewiczJ,BokR,LarsonPEZ,VigneronDB,WilsonDM.Hyperpolarized403

    13Cdehydroascorbateasanendogenousredoxsensorforinvivometabolicimaging.404

    ProcNatlAcadSciUSA.2011;108(46):18606-18611.doi:10.1073/pnas.1106920108.405

    26. TimmKN,HuD,WilliamsM,etal.Assessingoxidativestressintumorsbymeasuringthe406

    rateofhyperpolarized[1-13C]dehydroascorbicacidreductionusing13Cmagnetic407

    resonancespectroscopy.JBiolChem.December2016:jbc.M116.761536.408

    doi:10.1074/jbc.M116.761536.409

    27. SchroederM,LaustsenC.Imagingoxygenmetabolismwithhyperpolarizedmagnetic410

    resonance:anovelapproachfortheexaminationofcardiacandrenalfunction.Biosci411

    Rep.2017;37(1):BSR20160186.doi:10.1042/BSR20160186.412

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    19

    28. MarshallJM,ThomasT,TurnerL.Alinkbetweenadenosine,ATP-sensitiveK+channels,413

    potassiumandmusclevasodilatationintheratinsystemichypoxia.JPhysiol.414

    1993;472:1-9.415

    http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1160471&tool=pmcentrez416

    &rendertype=abstract.AccessedJune2,2014.417

    29. SchroederMA,CochlinLE,HeatherLC,ClarkeK,RaddaGK,TylerDJ.Invivoassessment418

    ofpyruvatedehydrogenasefluxintheheartusinghyperpolarizedcarbon-13magnetic419

    resonance.ProcNatlAcadSciUSA.2008;105(33):12051-12056.420

    doi:10.1073/pnas.0805953105.421

    30. BoehmEA,JonesBE,RaddaGK,VeechRL,ClarkeK.Increaseduncouplingproteinsand422

    decreasedefficiencyinpalmitate-perfusedhyperthyroidratheart.AmJPhysiol-Hear423

    CircPhysiol.2000;280(3):977-983.http://www.ncbi.nlm.nih.gov/pubmed/11179038.424

    AccessedMay21,2014.425

    31. NaressiA,CouturierC,DevosJM,etal.Java-basedgraphicaluserinterfaceforMRUI,a426

    softwarepackageforquantitationofinvivo/medicalmagneticresonancespectroscopy427

    signals.ComputBiolMed.2001;31(4):269-286.428

    http://view.ncbi.nlm.nih.gov/pubmed/11390270.429

    32. ZierhutML,YenY-F,ChenAP,etal.Kineticmodelingofhyperpolarized13C1-pyruvate430

    metabolisminnormalratsandTRAMPmice.JMagnReson.2010;202(1):85-92.431

    doi:10.1016/j.jmr.2009.10.003.432

    33. AthertonHJ,SchroederMA,DoddMS,etal.Validationoftheinvivoassessmentof433

    pyruvatedehydrogenaseactivityusinghyperpolarised13CMRS.NMRBiomed.434

    2011;24(2):201-208.doi:10.1002/nbm.1573.435

    34. HeatherLC,PatesKM,AthertonHJ,etal.Differentialtranslocationofthefattyacid436

    transporter,FAT/CD36,andtheglucosetransporter,GLUT4,coordinateschangesin437

    cardiacsubstratemetabolismduringischemiaandreperfusion.CircHeartFail.438

    2013;6(5):1058-1066.doi:10.1161/CIRCHEARTFAILURE.112.000342.439

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    20

    35. KinnulaVL,HassinenI.Metabolicadaptationtohypoxia.Redoxstateofthecellularfree440

    NADpools,phosphorylationstateoftheadenylatesystemandthe(Na+-K+)-stimulated441

    ATP-aseinratliver.ActaPhysiolScand.1978;104(1):109-116.doi:10.1111/j.1748-442

    1716.1978.tb06256.x.443

    36. BärtschP,Simon;J,GibbsR.EffectofAltitudeontheHeartandtheLungsEffectsof444

    ExposuretoHighAltitudeontheNormalCardiovascularSystemCirculation445

    ContemporaryReviewsinCardiovascularMedicine.2007.446

    doi:10.1161/CIRCULATIONAHA.106.650796.447

    37. WesterterpKR.EnergyandWaterBalanceatHighAltitude.Vol16.;2001.448

    www.physiology.org/journal/physiologyonline.AccessedNovember7,2018.449

    38. TschopM,StrasburgerC,HartmannG,BiollazJ,BartschP.RaisedLeptinConcentrationsat450

    HighAltitudeAssociatedwithLossofAppetite.Vol352.;1998.451

    https://www.thelancet.com/action/showPdf?pii=S0140-6736%2805%2979760-9.452

    AccessedNovember7,2018.453

    39. GruberM,HuC-J,JohnsonRS,etal.AcutePostnatalAblationofHif-2ResultsinAnemia.;454

    2007.www.pnas.org/cgi/content/full/.AccessedNovember8,2018.455

    40. KapitsinouPP,LiuQ,UngerTL,etal.HepaticHIF-2regulateserythropoieticresponsesto456

    hypoxiainrenalanemia.Blood.2010;116(16):3039-3048.doi:10.1182/blood-2010-02-457

    270322.458

    41. HuC-J,WangL-Y,ChodoshLA,KeithB,SimonMC.DifferentialRolesofHypoxia-Inducible459

    Factor1(HIF-1)andHIF-2inHypoxicGeneRegulation.MolCellBiol.2003;23(24):9361-460

    9374.doi:10.1128/MCB.23.24.9361-9374.2003.461

    42. FirthJD,EbertBL,RatcliffePJ.HypoxicRegulationofLactateDehydrogenaseA.JBiol462

    Chem.1995;270(36):21021-21027.doi:10.1074/jbc.270.36.21021.463

    43. KimJ,TchernyshyovI,SemenzaGL,etal.HIF-1-mediatedexpressionofpyruvate464

    dehydrogenasekinase:ametabolicswitchrequiredforcellularadaptationtohypoxia.465

    CellMetab.2006;3(3):177-185.doi:10.1016/j.cmet.2006.02.002.466

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    21

    44. PapandreouI,CairnsRA,FontanaL,LimAL,DenkoNC.HIF-1mediatesadaptationto467

    hypoxiabyactivelydownregulatingmitochondrialoxygenconsumption.CellMetab.468

    2006;3(3):187-197.doi:10.1016/j.cmet.2006.01.012.469

    45. AragonesJ,SchneiderM,VanGeyteK,etal.Deficiencyorinhibitionofoxygensensor470

    Phd1induceshypoxiatolerancebyreprogrammingbasalmetabolism.NatGenet.471

    2008;40(2):170-180.doi:10.1038/ng.2007.62.472

    46. LeMoineCMR,MorashAJ,McClellandGB.ChangesinHIF-1αprotein,pyruvate473

    dehydrogenasephosphorylation,andactivitywithexerciseinacuteandchronichypoxia.474

    AmJPhysiolRegulIntegrCompPhysiol.2011;301(4):R1098-104.475

    doi:10.1152/ajpregu.00070.2011.476

    47. LydellCP,ChanA,WamboltRB,etal.Pyruvatedehydrogenaseandtheregulationof477

    glucoseoxidationinhypertrophiedrathearts.CardiovascRes.2002;53(4):841-851.478

    http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2131743&tool=pmcentrez479

    &rendertype=abstract.480

    48. SeymourA-ML,GilesL,BallV,etal.InVivoAssessmentofCardiacMetabolismand481

    FunctionintheAbdominalAorticBandingModelofCompensatedCardiacHypertrophy.482

    CardiovascRes.March2015:cvv101-.doi:10.1093/cvr/cvv101.483

    49. LeMoineCMR,MorashAJ,McClellandGB.ChangesinHIF-1αprotein,pyruvate484

    dehydrogenasephosphorylation,andactivitywithexerciseinacuteandchronichypoxia.485

    AmJPhysiolIntegrCompPhysiol.2011;301(4):R1098-R1104.486

    doi:10.1152/ajpregu.00070.2011.487

    50. AthertonHJ,SchroederMA,DoddMS,etal.Validationoftheinvivoassessmentof488

    pyruvatedehydrogenaseactivityusinghyperpolarised13CMRS.NMRBiomed.489

    2011;24(2):201-208.doi:10.1002/nbm.1573.490

    51. LauAZ,ChenAP,GhugreNR,etal.Rapidmultisliceimagingofhyperpolarized13C491

    pyruvateandbicarbonateintheheart.MagnResonMed.2010;64(5):1323-1331.492

    doi:10.1002/mrm.22525.493

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • .C

    C-B

    Y-N

    C-N

    D 4.0 International license

    available under aw

    as not certified by peer review) is the author/funder, w

    ho has granted bioRxiv a license to display the preprint in perpetuity. It is m

    ade T

    he copyright holder for this preprint (which

    this version posted Decem

    ber 13, 2018. ;

    https://doi.org/10.1101/495069doi:

    bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • .C

    C-B

    Y-N

    C-N

    D 4.0 International license

    available under aw

    as not certified by peer review) is the author/funder, w

    ho has granted bioRxiv a license to display the preprint in perpetuity. It is m

    ade T

    he copyright holder for this preprint (which

    this version posted Decem

    ber 13, 2018. ;

    https://doi.org/10.1101/495069doi:

    bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • .C

    C-B

    Y-N

    C-N

    D 4.0 International license

    available under aw

    as not certified by peer review) is the author/funder, w

    ho has granted bioRxiv a license to display the preprint in perpetuity. It is m

    ade T

    he copyright holder for this preprint (which

    this version posted Decem

    ber 13, 2018. ;

    https://doi.org/10.1101/495069doi:

    bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/