13
ASME Horizontal Vessel Analysis: Stresses for the Left Saddle (per ASME Sec. VIII Div. 2 based on the Zick method.) Horizontal Vessel Stress Calculations : Operating Case Note: There are more than two saddles present in this model. The load on the saddle supports has been taken as the total weight divided by the number of saddles. Insure that this is an appropriate assumption for this vessel model. Note: Wear Pad Bearing angle is less than saddle angle + saddle/12 degrees. The wear plate will be ignored. Minimum Wear Plate Angle [theta1]: = 180.0 degrees Note: Wear Pad Width (0.00) is less than 1.56*sqrt(rm*t) and less than 2a. The wear plate will be ignored. Minimum Wear Plate Width to be considered in analysis [b1]: = min( b + 1.56*sqrt( Rm * t ), 2a ) = min( 500.000 + 1.56*sqrt( 2016.4998 * 27.0000 ), 2 * 1050.800 ) = 864.0035 mm Input and Calculated Values: Vessel Mean Radius Rm 2016.50 mm Stiffened Vessel Length per 4.15.6 L 38080.00 mm Distance from Saddle to Vessel tangent a 1050.80 mm Saddle Width b 500.00 mm Saddle Bearing Angle theta 168.00 degrees Inside Depth of Head h2 2003.00 mm Shell Allowable Stress used in Calculation 137892.00 kPa Head Allowable Stress used in Calculation 137892.00 kPa Circumferential Efficiency in Plane of Saddle 1.00 Circumferential Efficiency at Mid-Span 1.00 Saddle Force Q, Operating Case 2229523.25 N Horizontal Vessel Analysis Results: Actual Allowable ------------------------------------------------------------------- Long. Stress at Top of Midspan 14380.27 137892.00 kPa Long. Stress at Bottom of Midspan 115815.70 137892.00 kPa Long. Stress at Top of Saddles 68182.56 137892.00 kPa Long. Stress at Bottom of Saddles 63276.48 137892.00 kPa Tangential Shear in Shell 23642.34 110313.60 kPa Circ. Stress at Horn of Saddle 52839.96 172365.00 kPa

ASME Horizontal Vessel Analysis

Embed Size (px)

Citation preview

Page 1: ASME Horizontal Vessel Analysis

ASME Horizontal Vessel Analysis: Stresses for the Left Saddle (per ASME Sec. VIII Div. 2 based on the Zick method.) Horizontal Vessel Stress Calculations : Operating Case Note: There are more than two saddles present in this model. The load on the saddle supports has been taken as the total weight divided by the number of saddles. Insure that this is an appropriate assumption for this vessel model. Note: Wear Pad Bearing angle is less than saddle angle + saddle/12 degrees. The wear plate will be ignored. Minimum Wear Plate Angle [theta1]: = 180.0 degrees Note: Wear Pad Width (0.00) is less than 1.56*sqrt(rm*t) and less than 2a. The wear plate will be ignored. Minimum Wear Plate Width to be considered in analysis [b1]: = min( b + 1.56*sqrt( Rm * t ), 2a ) = min( 500.000 + 1.56*sqrt( 2016.4998 * 27.0000 ), 2 * 1050.800 ) = 864.0035 mm Input and Calculated Values: Vessel Mean Radius Rm 2016.50 mm Stiffened Vessel Length per 4.15.6 L 38080.00 mm Distance from Saddle to Vessel tangent a 1050.80 mm Saddle Width b 500.00 mm Saddle Bearing Angle theta 168.00 degrees Inside Depth of Head h2 2003.00 mm Shell Allowable Stress used in Calculation 137892.00 kPa Head Allowable Stress used in Calculation 137892.00 kPa Circumferential Efficiency in Plane of Saddle 1.00 Circumferential Efficiency at Mid-Span 1.00 Saddle Force Q, Operating Case 2229523.25 N Horizontal Vessel Analysis Results: Actual Allowable ------------------------------------------------------------------- Long. Stress at Top of Midspan 14380.27 137892.00 kPa Long. Stress at Bottom of Midspan 115815.70 137892.00 kPa Long. Stress at Top of Saddles 68182.56 137892.00 kPa Long. Stress at Bottom of Saddles 63276.48 137892.00 kPa Tangential Shear in Shell 23642.34 110313.60 kPa Circ. Stress at Horn of Saddle 52839.96 172365.00 kPa Circ. Compressive Stress in Shell 6120.25 137892.00 kPa Intermediate Results: Saddle Reaction Q due to Wind or Seismic Saddle Reaction Force due to Wind Ft [Fwt]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E = 3.00 * ( 76489.2/4 + 0 ) * 3000.0000/4010.9062 = 42908.2 N Saddle Reaction Force due to Wind Fl or Friction [Fwl]: = Max( Fl, Friction Load, Sum of X Forces) * B / Ls = Max( 7801.58 , 0.00 , 0 ) * 3000.0000/7616.0000 = 3073.1 N Saddle Reaction Force due to Earthquake Fl or Friction [Fsl]:

Page 2: ASME Horizontal Vessel Analysis

= Max( Fl, Friction Force, Sum of X Forces ) * B / Ls = Max( 1333399 , 0.00 , 0 ) * 3000.0000/7616.0000 = 525236.2 N Saddle Reaction Force due to Earthquake Ft [Fst]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E = 3.00 * ( 1333399/4 + 0 ) * 3000.0000/4010.9062 = 747997.8 N Load Combination Results for Q + Wind or Seismic [Q]: = Saddle Load + Max( Fwl, Fwt, Fsl, Fst ) = 1481525 + Max( 3073 , 42908 , 525236 , 747997 ) = 2229523.2 N Summary of Loads at the base of this Saddle: Vertical Load (including saddle weight) 2268613.25 N Transverse Shear Load Saddle 333349.91 N Longitudinal Shear Load Saddle 1333399.62 N Formulas and Substitutions for Horizontal Vessel Analysis: Note: Wear Plate is Welded to the Shell, k = 0.1 The Computed K values from Table 4.15.1: K1 = 0.1997 K2 = 0.6539 K3 = 0.3357 K4 = 0.2452 K5 = 0.6404 K6 = 0.0224 K7 = 0.0063 K8 = 0.2720 K9 = 0.1759 K10 = 0.0221 K1* = 0.3382 Note: Dimension a is greater than or equal to Rm / 2. Moment per Equation 4.15.3 [M1]: = -Q*a [1 - (1- a/L + (R²-h2²)/(2a*L))/(1+(4h2)/3L)] = -2229523*1050.80[1-(1-1050.80/38080.00+(2016.500²-2002.997²)/ (2*1050.80*38080.00))/(1+(4*2003.00)/(3*38080.00))] = -212550.9 N-m Moment per Equation 4.15.4 [M2]: = Q*L/4(1+2(R²-h2²)/(L²))/(1+(4h2)/( 3L))-4a/L = 2229523*38080/4(1+2(2016²-2002²)/(38080²))/(1+(4*2002)/ (3*38080))-4*1050/38080 = 17499836.0 N-m Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]: = P * Rm/(2t) - M2/(pi*Rm²t) = 252.84 * 2016.500/(2*27.000 ) - 17499836/(pi*2016.5²*27.000 ) = 14380.27 kPa Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]: = P * Rm/(2t) + M2/(pi * Rm² * t) = 252.84 * 2016.500/(2 * 27.000 ) + 17499836/(pi * 2016.5² * 27.000 ) = 115815.70 kPa Longitudinal Stress at Top of Shell at Support (4.15.10) [Sigma*3]: = P * Rm/(2t) - M1/(K1*pi*Rm²t) = 252.84*2016.500/(2*27.000)--212550.9/(0.1997*pi*2016.5²*27.000) = 68182.56 kPa Longitudinal Stress at Bottom of Shell at Support (4.15.11) [Sigma*4]: = P * Rm/(2t) + M1/(K1* * pi * Rm² * t) = 252.84*2016.500/(2*27.000)+-212550.9/(0.3382*pi*2016.5²*27.000) = 63276.48 kPa Maximum Shear Force in the Saddle (4.15.5) [T]: = Q(L-2a)/(L+(4*h2/3)) = 2229523 ( 38080.00 - 2 * 1050.80 )/(38080.00 + ( 4 * 2003.00/3)) = 1968426.4 N

Page 3: ASME Horizontal Vessel Analysis

Shear Stress in the shell no rings, not stiffened (4.15.14) [tau2]: = K2 * T / ( Rm * t ) = 0.6539 * 1968426/( 2016.4998 * 27.0000 ) = 23642.34 kPa Decay Length (4.15.22) [x1,x2]: = 0.78 * sqrt( Rm * t ) = 0.78 * sqrt( 2016.500 * 27.000 ) = 182.002 mm Circumferential Stress in shell, no rings (4.15.23) [sigma6]: = -K5 * Q * k / ( t * ( b + X1 + X2 ) ) = -0.6404 * 2229523 * 0.1/( 27.000 * ( 500.00 + 182.00 + 182.00 ) ) = -6120.25 kPa Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.24) [sigma7]: = -Q/(4*t*(b+X1+X2)) - 3*K7*Q/(2*t²) = -2229523/(4*27.000 *(500.000 +182.002 +182.002 )) - 3*0.0063 *2229523/(2*27.000²) = -52839.96 kPa Effective reinforcing plate width (4.15.1) [B1]: = min( b + 1.56 * sqrt( Rm * t ), 2a ) = min( 500.00 + 1.56 * sqrt( 2016.500 * 27.000 ), 2 * 1050.800 ) = 864.00 mm Results for Vessel Ribs, Web and Base: Baseplate Length Bplen 4100.0000 mm Baseplate Thickness Bpthk 46.0000 mm Baseplate Width Bpwid 650.0000 mm Number of Ribs ( inc. outside ribs ) Nribs 7 Rib Thickness Ribtk 22.0000 mm Web Thickness Webtk 22.0000 mm Web Location Webloc Center Moment of Inertia of Saddle - Lateral Direction Y A AY Io Shell 13. 27345. 369159. 6644862. Wearplate 37. 13000. 481000. 18230316. Web 476. 18854. 8965076. 5416830464. BasePlate 927. 29900. 27717298.25699184640. Totals 1453. 89099. 37532536.31140890624. Value C1 = Sumof(Ay)/Sumof(A) = 421. mm Value I = Sumof(Io) - C1*Sumof(Ay) = 15330524160. mm**4 Value As = Sumof(A) - Ashell = 61754. mm² K1 = (1+Cos(beta)-.5*Sin(beta)² )/(pi-beta+Sin(beta)*Cos(beta)) = 0.2943 Fh = K1 * Q = 0.2943 * 2229523 = 656250 N Tension Stress, St = ( Fh/As ) = 10627.1455 kPa Allowed Stress, Sa = 0.6 * Yield Str = 148923.5938 kPa d = B - R*Sin(theta) / theta = 1594.2529 mm Bending Moment, M = Fh * d = 1046654.2500 N-m Bending Stress, Sb = ( M * C1 / I ) = 28748.5488 kPa Allowed Stress, Sa = 2/3 * Yield Str = 165470.6719 kPa Minimum Thickness of Baseplate per Moss : = ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 4 * BasePlateLength * AllStress ))½ = ( 3 * (2229523 + 39089 ) * 650.00/( 4 * 4100.000 * 165470.672 ))½ = 40.376 mm

Page 4: ASME Horizontal Vessel Analysis

Calculation of Axial Load, Intermediate Values and Compressive Stress Effective Baseplate Length [e]: = ( Bplen - Clearance ) / ( Nribs - 1) = ( 4100.0000 - 25.4 )/( 7 - 1 ) = 679.1000 mm Baseplate Pressure Area [Ap]: = e * Bpwid / 2 = 679.1000 * 650.0000/2 = 0.2E+06 mm² Axial Load [P]: = Ap * Bp = 220707.5 * 0.84 = 184642.6 N Area of the Rib and Web [Ar]: = ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk = ( 650.000 - 25.4 - 22.000 ) * 22.000 + 679.1000/2 * 22.000 = 20727.301 mm² Compressive Stress [Sc]: = P/Ar = 184642.6/20727.3008 = 8908.4248 kPa Check of Outside Ribs: Inertia of Saddle, Outer Ribs - Longitudinal Direction Y A AY Ay² Io Rib 250.0 11886.6 2971649.8 0.0 325945632.0 Web 250.0 7470.1 1867524.9 0.0 602587.4 Values 250.0 19356.7 4839175.0 0.0 326548224.0 Bending Moment [Rm]: = Fl /( 2 * Bplen ) * e * rl / 2 = 1333399/( 2 * 4100.00 ) * 679.100 * 2740.81/2 = 151392.625 N-m KL/R < Cc ( 21.8361 < 126.0991 ) per AISC E2-1 Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³) Sca = ( 1-( 21.84 )²/(2 * 126.10² )) * 248206/ ( 5/3+3*(21.84 )/(8* 126.10 )-( 21.84³)/(8*126.10³) Sca = 141242.58 kPa AISC Unity Check on Outside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba Check = 8908.42/141242.58 + (151392.62/871725 )/165470.67 Check = 1.11 [Failed] Check of Inside Ribs Inertia of Saddle, Inner Ribs - Axial Direction Y A AY Ay² Io Rib 312.3 13257.2 4140223.5 0.0 446731872.0 Web 312.3 14940.2 4665824.0 0.0 602587.4 Values 312.3 28197.4 8806048.0 0.0 447334464.0 KL/R < Cc ( 11.2540 < 126.0991 ) per AISC E2-1 Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³) Sca = ( 1-( 11.25 )²/(2 * 126.10² )) * 248206/ ( 5/3+3*(11.25 )/(8* 126.10 )-( 11.25³)/(8*126.10³) Sca = 145418.17 kPa AISC Unity Check on Inside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba Check = 13096.78/145418.17 + ( 156594.34/1432387 )/165470.67 Check = 0.75

Page 5: ASME Horizontal Vessel Analysis

Input Data for Base Plate Bolting Calculations: Total Number of Bolts per BasePlate Nbolts 8 Total Number of Bolts in Tension/Baseplate Nbt 8 Bolt Material Specification SA-193 B7 Bolt Allowable Stress Stba 172365.00 kPa Bolt Corrosion Allowance Bca 0.0000 mm Distance from Bolts to Edge Edgedis 50.8000 mm Nominal Bolt Diameter Bnd 50.8000 mm Thread Series Series TEMA BasePlate Allowable Stress S 114449.67 kPa Area Available in a Single Bolt BltArea 1710.9642 mm² Saddle Load QO (Weight) QO 1520615.4 N Saddle Load QL (Wind/Seismic contribution) QL 525236.2 N Maximum Transverse Force Ft 333349.9 N Maximum Longitudinal Force Fl 1333399.6 N Saddle Bolted to Steel Foundation Yes Bolt Area Calculation per Dennis R. Moss Bolt Area Requirement Due to Longitudinal Load [Bltarearl]: = 0.0 (QO > QL --> No Uplift in Longitudinal direction) Bolt Area due to Shear Load [Bltarears]: = Fl / (Stba * Nbolts) = 1333399/(172365.00 * 8.00 ) = 967.0145 mm² Bolt Area due to Transverse Load Moment on Baseplate Due to Transverse Load [Rmom]: = B * Ft + Sum of X Moments = 3000.00 * 333349.91 + 0.00 = 1000455.12 N-m Eccentricity (e): = Rmom / QO = 1000455/1520615 = 657.66 mm < Bplen/6 --> No Uplift in Transverse direction Bolt Area due to Transverse Load [Bltareart]: = 0 (No Uplift) Required of a Single Bolt [Bltarear] = max[Bltarearl, Bltarears, Bltareart] = max[0.0000 , 967.0145 , 0.0000 ] = 967.0145 mm² ASME Horizontal Vessel Analysis: Stresses for the Right Saddle (per ASME Sec. VIII Div. 2 based on the Zick method.) Note: Wear Pad Bearing angle is less than saddle angle + saddle/12 degrees. The wear plate will be ignored. Minimum Wear Plate Angle [theta1]: = 180.0 degrees Note: Wear Pad Width (0.00) is less than 1.56*sqrt(rm*t) and less than 2a. The wear plate will be ignored. Minimum Wear Plate Width to be considered in analysis [b1]: = min( b + 1.56*sqrt( Rm * t ), 2a ) = min( 500.000 + 1.56*sqrt( 2016.4998 * 27.0000 ), 2 * 1050.800 ) = 864.0035 mm

Page 6: ASME Horizontal Vessel Analysis

Input and Calculated Values: Vessel Mean Radius Rm 2016.50 mm Stiffened Vessel Length per 4.15.6 L 38080.00 mm Distance from Saddle to Vessel tangent a 1050.80 mm Saddle Width b 500.00 mm Saddle Bearing Angle theta 168.00 degrees Inside Depth of Head h2 2003.00 mm Shell Allowable Stress used in Calculation 137892.00 kPa Head Allowable Stress used in Calculation 137892.00 kPa Circumferential Efficiency in Plane of Saddle 1.00 Circumferential Efficiency at Mid-Span 1.00 Saddle Force Q, Operating Case 2179656.75 N Horizontal Vessel Analysis Results: Actual Allowable ------------------------------------------------------------------- Long. Stress at Top of Midspan 15514.64 137892.00 kPa Long. Stress at Bottom of Midspan 114681.33 137892.00 kPa Long. Stress at Top of Saddles 68113.57 137892.00 kPa Long. Stress at Bottom of Saddles 63317.21 137892.00 kPa Tangential Shear in Shell 23113.54 110313.60 kPa Circ. Stress at Horn of Saddle 51658.12 172365.00 kPa Circ. Compressive Stress in Shell 5983.37 137892.00 kPa Intermediate Results: Saddle Reaction Q due to Wind or Seismic Saddle Reaction Force due to Wind Ft [Fwt]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E = 3.00 * ( 76489.2/4 + 0 ) * 2800.0000/4010.9062 = 40047.6 N Saddle Reaction Force due to Wind Fl or Friction [Fwl]: = Max( Fl, Friction Load, Sum of X Forces) * B / Ls = Max( 7801.58 , 0.00 , 0 ) * 2800.0000/7616.0000 = 2868.2 N Saddle Reaction Force due to Earthquake Fl or Friction [Fsl]: = Max( Fl, Friction Force, Sum of X Forces ) * B / Ls = Max( 1333399 , 0.00 , 0 ) * 2800.0000/7616.0000 = 490220.4 N Saddle Reaction Force due to Earthquake Ft [Fst]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E = 3.00 * ( 1333399/4 + 0 ) * 2800.0000/4010.9062 = 698131.3 N Load Combination Results for Q + Wind or Seismic [Q]: = Saddle Load + Max( Fwl, Fwt, Fsl, Fst ) = 1481525 + Max( 2868 , 40047 , 490220 , 698131 ) = 2179656.8 N Summary of Loads at the base of this Saddle: Vertical Load (including saddle weight) 2219151.75 N Transverse Shear Load Saddle 333349.91 N Longitudinal Shear Load Saddle 1333399.62 N Formulas and Substitutions for Horizontal Vessel Analysis: Note: Wear Plate is Welded to the Shell, k = 0.1

Page 7: ASME Horizontal Vessel Analysis

The Computed K values from Table 4.15.1: K1 = 0.1997 K2 = 0.6539 K3 = 0.3357 K4 = 0.2452 K5 = 0.6404 K6 = 0.0224 K7 = 0.0063 K8 = 0.2720 K9 = 0.1759 K10 = 0.0221 K1* = 0.3382 Note: Dimension a is greater than or equal to Rm / 2. Moment per Equation 4.15.3 [M1]: = -Q*a [1 - (1- a/L + (R²-h2²)/(2a*L))/(1+(4h2)/3L)] = -2179656*1050.80[1-(1-1050.80/38080.00+(2016.500²-2002.997²)/ (2*1050.80*38080.00))/(1+(4*2003.00)/(3*38080.00))] = -207796.8 N-m Moment per Equation 4.15.4 [M2]: = Q*L/4(1+2(R²-h2²)/(L²))/(1+(4h2)/( 3L))-4a/L = 2179656*38080/4(1+2(2016²-2002²)/(38080²))/(1+(4*2002)/ (3*38080))-4*1050/38080 = 17108426.0 N-m Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]: = P * Rm/(2t) - M2/(pi*Rm²t) = 252.84 * 2016.500/(2*27.000 ) - 17108426/(pi*2016.5²*27.000 ) = 15514.64 kPa Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]: = P * Rm/(2t) + M2/(pi * Rm² * t) = 252.84 * 2016.500/(2 * 27.000 ) + 17108426/(pi * 2016.5² * 27.000 ) = 114681.33 kPa Longitudinal Stress at Top of Shell at Support (4.15.10) [Sigma*3]: = P * Rm/(2t) - M1/(K1*pi*Rm²t) = 252.84*2016.500/(2*27.000)--207796.8/(0.1997*pi*2016.5²*27.000) = 68113.57 kPa Longitudinal Stress at Bottom of Shell at Support (4.15.11) [Sigma*4]: = P * Rm/(2t) + M1/(K1* * pi * Rm² * t) = 252.84*2016.500/(2*27.000)+-207796.8/(0.3382*pi*2016.5²*27.000) = 63317.21 kPa Maximum Shear Force in the Saddle (4.15.5) [T]: = Q(L-2a)/(L+(4*h2/3)) = 2179656 ( 38080.00 - 2 * 1050.80 )/(38080.00 + ( 4 * 2003.00/3)) = 1924399.6 N Shear Stress in the shell no rings, not stiffened (4.15.14) [tau2]: = K2 * T / ( Rm * t ) = 0.6539 * 1924399/( 2016.4998 * 27.0000 ) = 23113.54 kPa Decay Length (4.15.22) [x1,x2]: = 0.78 * sqrt( Rm * t ) = 0.78 * sqrt( 2016.500 * 27.000 ) = 182.002 mm Circumferential Stress in shell, no rings (4.15.23) [sigma6]: = -K5 * Q * k / ( t * ( b + X1 + X2 ) ) = -0.6404 * 2179656 * 0.1/( 27.000 * ( 500.00 + 182.00 + 182.00 ) ) = -5983.37 kPa Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.24) [sigma7]: = -Q/(4*t*(b+X1+X2)) - 3*K7*Q/(2*t²) = -2179656/(4*27.000 *(500.000 +182.002 +182.002 )) - 3*0.0063 *2179656/(2*27.000²) = -51658.12 kPa Effective reinforcing plate width (4.15.1) [B1]:

Page 8: ASME Horizontal Vessel Analysis

= min( b + 1.56 * sqrt( Rm * t ), 2a ) = min( 500.00 + 1.56 * sqrt( 2016.500 * 27.000 ), 2 * 1050.800 ) = 864.00 mm Results for Vessel Ribs, Web and Base Baseplate Length Bplen 4100.0000 mm Baseplate Thickness Bpthk 48.0000 mm Baseplate Width Bpwid 650.0000 mm Number of Ribs ( inc. outside ribs ) Nribs 7 Rib Thickness Ribtk 22.0000 mm Web Thickness Webtk 22.0000 mm Web Location Webloc Center Moment of Inertia of Saddle - Lateral Direction Y A AY Io Shell 13. 27345. 369159. 6644862. Wearplate 37. 13000. 481000. 18230316. Web 474. 18810. 8925345. 5380953088. BasePlate 926. 31200. 28891202.26759219200. Totals 1451. 90355. 38666708.32165046272. Value C1 = Sumof(Ay)/Sumof(A) = 428. mm Value I = Sumof(Io) - C1*Sumof(Ay) = 15617979392. mm**4 Value As = Sumof(A) - Ashell = 63010. mm² K1 = (1+Cos(beta)-.5*Sin(beta)² )/(pi-beta+Sin(beta)*Cos(beta)) = 0.2943 Fh = K1 * Q = 0.2943 * 2179656 = 641572 N Tension Stress, St = ( Fh/As ) = 10182.3564 kPa Allowed Stress, Sa = 0.6 * Yield Str = 148923.5938 kPa d = B - R*Sin(theta) / theta = 1594.2529 mm Bending Moment, M = Fh * d = 1023244.1250 N-m Bending Stress, Sb = ( M * C1 / I ) = 28026.8340 kPa Allowed Stress, Sa = 2/3 * Yield Str = 165470.6719 kPa Minimum Thickness of Baseplate per Moss : = ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 4 * BasePlateLength * AllStress ))½ = ( 3 * (2179656 + 39495 ) * 650.00/( 4 * 4100.000 * 165470.672 ))½ = 39.933 mm Calculation of Axial Load, Intermediate Values and Compressive Stress Effective Baseplate Length [e]: = ( Bplen - Clearance ) / ( Nribs - 1) = ( 4100.0000 - 25.4 )/( 7 - 1 ) = 679.1000 mm Baseplate Pressure Area [Ap]: = e * Bpwid / 2 = 679.1000 * 650.0000/2 = 0.2E+06 mm² Axial Load [P]: = Ap * Bp = 220707.5 * 0.82 = 180512.8 N Area of the Rib and Web [Ar]: = ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk = ( 650.000 - 25.4 - 22.000 ) * 22.000 + 679.1000/2 * 22.000 = 20727.301 mm² Compressive Stress [Sc]:

Page 9: ASME Horizontal Vessel Analysis

= P/Ar = 180512.8/20727.3008 = 8709.1738 kPa Check of Outside Ribs: Inertia of Saddle, Outer Ribs - Longitudinal Direction Y A AY Ay² Io Rib 250.0 11886.6 2971649.8 0.0 325945632.0 Web 250.0 7470.1 1867524.9 0.0 602587.4 Values 250.0 19356.7 4839175.0 0.0 326548224.0 Bending Moment [Rm]: = Fl /( 2 * Bplen ) * e * rl / 2 = 1333399/( 2 * 4100.00 ) * 679.100 * 2740.81/2 = 151392.625 N-m KL/R < Cc ( 21.8361 < 126.0991 ) per AISC E2-1 Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³) Sca = ( 1-( 21.84 )²/(2 * 126.10² )) * 248206/ ( 5/3+3*(21.84 )/(8* 126.10 )-( 21.84³)/(8*126.10³) Sca = 141242.58 kPa AISC Unity Check on Outside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba Check = 8709.17/141242.58 + (151392.62/871725 )/165470.67 Check = 1.11 [Failed] Check of Inside Ribs Inertia of Saddle, Inner Ribs - Axial Direction Y A AY Ay² Io Rib 312.3 13257.2 4140223.5 0.0 446731872.0 Web 312.3 14940.2 4665824.0 0.0 602587.4 Values 312.3 28197.4 8806048.0 0.0 447334464.0 KL/R < Cc ( 11.2540 < 126.0991 ) per AISC E2-1 Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³) Sca = ( 1-( 11.25 )²/(2 * 126.10² )) * 248206/ ( 5/3+3*(11.25 )/(8* 126.10 )-( 11.25³)/(8*126.10³) Sca = 145418.17 kPa AISC Unity Check on Inside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba Check = 12803.85/145418.17 + ( 156594.34/1432387 )/165470.67 Check = 0.75 Input Data for Base Plate Bolting Calculations: Total Number of Bolts per BasePlate Nbolts 8 Total Number of Bolts in Tension/Baseplate Nbt 4 Bolt Material Specification SA-193 B7 Bolt Allowable Stress Stba 172365.00 kPa Bolt Corrosion Allowance Bca 0.0000 mm Distance from Bolts to Edge Edgedis 50.8000 mm Nominal Bolt Diameter Bnd 50.8000 mm Thread Series Series TEMA BasePlate Allowable Stress S 114449.67 kPa Area Available in a Single Bolt BltArea 1710.9642 mm² Saddle Load QO (Weight) QO 1521020.5 N Saddle Load QL (Wind/Seismic contribution) QL 490220.4 N Maximum Transverse Force Ft 333349.9 N Maximum Longitudinal Force Fl 1333399.6 N Saddle Bolted to Steel Foundation Yes Bolt Area Calculation per Dennis R. Moss

Page 10: ASME Horizontal Vessel Analysis

Bolt Area Requirement Due to Longitudinal Load [Bltarearl]: = 0.0 (QO > QL --> No Uplift in Longitudinal direction) Bolt Area due to Shear Load [Bltarears]: = Fl / (Stba * Nbolts) = 1333399/(172365.00 * 8.00 ) = 967.0145 mm² Bolt Area due to Transverse Load Moment on Baseplate Due to Transverse Load [Rmom]: = B * Ft + Sum of X Moments = 2800.00 * 333349.91 + 0.00 = 933758.12 N-m Eccentricity (e): = Rmom / QO = 933758/1521020 = 613.65 mm < Bplen/6 --> No Uplift in Transverse direction Bolt Area due to Transverse Load [Bltareart]: = 0 (No Uplift) Required of a Single Bolt [Bltarear] = max[Bltarearl, Bltarears, Bltareart] = max[0.0000 , 967.0145 , 0.0000 ] = 967.0145 mm² PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012