49

ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination
Page 2: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

247

7.0 REFERENCES

[1] L. Håkanson and R. H. Peters, Predictive limnology: methods for predictive modelling. SPB Academic, 1995, pp. 1–464.

[2] M. Eriksson, E. Holm, P. Roos, and H. Dahlgaard, “Plutonium in temperate and Arctic lakes,” in Plutonium in the Environment Proceedings of the Second International Symposium, vol. Volume 1, A. K. B. T.-R. in the Environment, Ed. Elsevier, 2001, pp. 293–303.

[3] E. Ilus and R. Saxén, “Accumulation of Chernobyl-derived 137Cs in bottom sediments of some Finnish lakes,” J. Environ. Radioact., vol. 82, no. 2, pp. 199–221, 2005.

[4] S. Erenturk, S. Yusan, D. A. Turkozu, Z. Camtakan, M. K. Olgen, M. a. a. Aslani, S. Aytas, and M. A. Isik, “Spatial distribution and risk assessment of radioactivity and heavy metal levels of sediment, surface water and fish samples from Lake Van, Turkey,” J. Radioanal. Nucl. Chem., vol. 300, no. 3, pp. 919–931, Mar. 2014.

[5] H. Papaefthymiou, G. Papatheodorou, A. Moustakli, D. Christodoulou, and M. Geraga, “Natural radionuclides and 137Cs distributions and their relationship with sedimentological processes in Patras Harbour, Greece,” J. Environ. Radioact., vol. 94, no. 2, pp. 55–74, May 2007.

[6] A. T. Ramli, Nursama Heru Apriantoro, and H. Wagiran, “Assessment of Radiation Dose Rates in the High Terrestrial Gamma Radiation Area of Selama District , Perak , Malaysia,” Appl. Phys. Res., vol. 1, no. 2, pp. 45–52, 2009.

[7] United Nations Scientific Committee on the Effects of Atomic Radiation, Sources, Effects And Risks Of Ionizing Radiation Unscear, vol. II. 2013, pp. 1–284.

Page 3: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

248

[8] W. Scharf, “Development of the fish stock and its manageability in the deep, stratifying Wupper Reservoir,” Limnol. - Ecol. Manag. Inl. Waters, vol. 38, no. 3–4, pp. 248–257, Oct. 2008.

[9] G. Friedl and A. Wüest, “Disrupting biogeochemical cycles – Consequences of damming,” Aquat. Sci., vol. 64, pp. 55–65, 2002.

[10] Y. Dou, J. Li, J. Zhao, B. Hu, and S. Yang, “Distribution, enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea.,” Mar. Pollut. Bull., vol. 67, no. 1–2, pp. 137–45, Feb. 2013.

[11] L. Zhang and H. Shao, “Heavy Metal Pollution in Sediments from Aquatic Ecosystems in China,” CLEAN - Soil, Air, Water, vol. 41, no. 9, pp. 878–882, Sep. 2013.

[12] L. Kalender and S. Çiçek Uçar, “Assessment of metal contamination in sediments in the tributaries of the Euphrates River, using pollution indices and the determination of the pollution source, Turkey,” J. Geochemical Explor., Aug. 2013.

[13] S. C. Asa, P. Rath, U. C. Panda, P. K. Parhi, and S. Bramha, “Application of sequential leaching, risk indices and multivariate statistics to evaluate heavy metal contamination of estuarine sediments: Dhamara Estuary, East Coast of India.,” Environ. Monit. Assess., vol. 185, no. 8, pp. 6719–37, Aug. 2013.

[14] P. M. Kessarkar, R. Shynu, V. P. Rao, F. Chong, T. Narvekar, and J. Zhang, “Geochemistry of the suspended sediment in the estuaries of the Mandovi and Zuari rivers, central west coast of India.,” Environ. Monit. Assess., vol. 185, no. 5, pp. 4461–80, May 2013.

[15] T. Karak, P. Bhattacharyya, R. K. Paul, T. Das, and S. K. Saha, “Evaluation of Composts from Agricultural Wastes with Fish Pond Sediment as Bulking Agent to Improve Compost Quality,” CLEAN - Soil, Air, Water, vol. 41, no. 7, pp. 711–723, Jul. 2013.

[16] F. Jahn, M. Cook, and M. Graham, “Reservoir Description,” in Hydrocarbon Exploration & Production, vol. Volume 55, M. C. and M. G. B. T.-D. in P. S. Frank Jahn, Ed. Elsevier, 2008, pp. 95–171.

[17] A. R. Karbassi, F. Torabi, F. Ghazban, and M. Ardestani, “Association of trace metals with various sedimentary phases in dam reservoirs,” Int. J. Environ. Sci. Technol., vol. 8, no. 4, pp. 841–852, Sep. 2011.

Page 4: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

249

[18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination in Surface Sediments of Jiaozhou Bay, Qingdao, China,” CLEAN – Soil, Air, Water, vol. 35, no. 1, pp. 62–70, Feb. 2007.

[19] E. P. Nobi, E. Dilipan, T. Thangaradjou, K. Sivakumar, and L. Kannan, “Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India,” Estuar. Coast. Shelf Sci., vol. 87, no. 2, pp. 253–264, Apr. 2010.

[20] R. Vinodhini and M. Narayanan, “Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp),” Int. J. Environ. Sci. Technol., vol. 5, no. 2, pp. 179–182, Mar. 2008.

[21] A. Biati, A. R. Karbassi, A. H. Hassani, S. M. Monavari, and F. Moattar, “Role of metal species in flocculation rate during estuarine mixing,” Int. J. Environ. Sci. Technol., vol. 7, no. 2, pp. 327–336, Mar. 2010.

[22] S. Comero, S. Vaccaro, G. Locoro, L. De Capitani, and B. M. Gawlik, “Characterization of the Danube River sediments using the PMF multivariate approach.,” Chemosphere, Oct. 2013.

[23] W. J. Barreto, D. N. Ishikawa, I. Spacino Scarminio, J. de Souza Costa, P. dos Santos Nora, M. de Fatima Soares, R. Mansano Nicolau, A. C. Esteves Gonçalves, and S. R. Giancoli Barreto, “Fe, Mn, P and S Speciation in Sediments from the Capivara Hydroelectric Dam Lake (Brazil) as an Indicator of Anthropogenic Influences,” CLEAN – Soil, Air, Water, vol. 36, no. 4, pp. 353–359, Apr. 2008.

[24] A. Z. Garizi, V. Sheikh, and A. Sadoddin, “Assessment of seasonal variations of chemical characteristics in surface water using multivariate statistical methods,” Int. J. Environ. Sci. Technol., vol. 8, no. 3, pp. 581–592, Jun. 2011.

[25] D. A. Apeti, Larry Robinson, and Elijah Johnson, “Relationships between Heavy Metal Concentrations in the American Oyster ( C rassostrea virginica ) and Metal Levels in the Water Column and Sediment in Apalachicola Bay , Florida,” Am. J. Environ. Sci., vol. 1, no. 3, pp. 179–186, 2005.

[26] A. Bleise, P. R. Danesi, and W. Burkart, “Properties, use and health effects of depleted uranium (DU): a general overview,” J. Environ. Radioact., vol. 64, no. 2–3, pp. 93–112, 2003.

Page 5: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

250

[27] M. Kalin, W. N. Wheeler, and G. Meinrath, “The removal of uranium from mining waste water using algal/microbial biomass,” J. Environ. Radioact., vol. 78, no. 2, pp. 151–177, Oct. 2004.

[28] A. V. Ivanov, E. I. Demonterova, S. V. Rasskazov, and T. a. Yasnygina, “Low-Ti melts from the southeastern Siberian Traps Large Igneous Province: Evidence for a water-rich mantle source?,” J. Earth Syst. Sci., vol. 117, no. 1, pp. 1–21, Apr. 2008.

[29] J. O. Nriagu, “A History of Global Metal Pollution,” Sci. , vol. 272 , no. 5259 , p. 223, Apr. 1996.

[30] P. Sharma, D. V Borole, and M. D. Zingde, “210Pb based trace element fluxes in the nearshore and estuarine sediments off Bombay, India,” Mar. Chem., vol. 47, no. 3–4, pp. 227–241, Nov. 1994.

[31] S. E. Jørgensen, “Description of aquatic ecosystem’s development by eco-exergy and exergy destruction,” Ecol. Modell., vol. 204, no. 1–2, pp. 22–28, May 2007.

[32] A G. S. Reddy, D. V Reddy, P. N. Rao, and K. M. Prasad, “Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India.,” Environ. Monit. Assess., vol. 171, no. 1–4, pp. 561–77, Dec. 2010.

[33] D. V Reddy, P. Nagabhushanam, B. S. Sukhija, A. G. S. Reddy, and P. L. Smedley, “Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalgonda District, India,” Chem. Geol., vol. 269, no. 3–4, pp. 278–289, Jan. 2010.

[34] R. V Singh, R. M. Sinha, B. S. Bisht, and D. C. Banerjee, “Hydrogeochemical exploration for unconformity-related uranium mineralization: example from Palnadu sub-basin, Cuddapah Basin, Andhra Pradesh, India,” J. Geochemical Explor., vol. 76, no. 2, pp. 71–92, Sep. 2002.

[35] K. Brindha, R. Rajesh, R. Murugan, and L. Elango, “Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India,” Environ. Monit. Assess., vol. 172, no. 1–4, pp. 481–492, 2011.

[36] K. Brindha and L. Elango, “Study on bromide in groundwater in parts of Nalgonda district, Andhra Pradesh,” Earth Sci. India, vol. 3, no. 1, pp. 73–80, 2010.

Page 6: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

251

[37] F. Additives, “Evaluation of certain food additives and contaminants. Thirty-fifth report of the Joint FAO/WHO Expert Committee on Food Additives.,” World Health Organ. Tech. Rep. Ser., vol. 828, pp. 1–53, 1987.

[38] S. N. Luoma, P. S. Rainbow, and S. Luoma, Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, 2008.

[39] S. J. Markich, P. L. Brown, and R. A. Jeffree, “Divalent metal accumulation in freshwater bivalves: an inverse relationship with metal phosphate solubility,” Sci. Total Environ., vol. 275, no. 1–3, pp. 27–41, Jul. 2001.

[40] S. J. Markich and J. R. Twining, “Radioecology of Tropical Freshwater Ecosystems: Mechanisms and Kinetics of Bioaccumulation and the Importance of Water Chemistry,” in Tropical Radioecology, vol. Volume 18, J. R. T. B. T.-R. in the Environment, Ed. Elsevier, 2012, pp. 231–280.

[41] L. Hkanson and L. Monte, “Chapter 6 Radioactivity in lakes and rivers,” in Modelling Radioactivity in the Environment, vol. Volume 4, E. M. S. B. T.-R. in the Environment, Ed. Elsevier, 2003, pp. 147–200.

[42] I. H. Harms, M. J. Karcher, and H. Burchard, “Chapter 3 Modelling radioactivity in the marine environment: The application of hydrodynamic circulation models for simulating oceanic dispersion of radioactivity,” in Modelling Radioactivity in the Environment, vol. Volume 4, E. M. S. B. T.-R. in the Environment, Ed. Elsevier, 2003, pp. 55–85.

[43] R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The properties of gases and liquids. McGraw-Hill, 1977.

[44] P. Linsalata, “Uranium and Thorium Decay Series Radionuclides in Human and Animal Foodchains—A Review,” J. Environ. Qual., vol. 23, no. 4, pp. 633–642, 1994.

[45] K. Vinay Kumar Reddy, B. Sreenivasa Reddy, M. Sreenath Reddy, C. Gopal Reddy, P. Yadagiri Reddy, and K. Rama Reddy, “Baseline studies of radon/thoron concentration levels in and around the Lambapur and Peddagattu areas in Nalgonda district, Andhra Pradesh, India,” Radiat. Meas., vol. 36, no. 1–6, pp. 419–423, Jun. 2003.

[46] S. J. Sartandel, S. K. Jha, S. V Bara, R. M. Tripathi, and V. D. Puranik, “Spatial distribution of uranium and thorium in the surface soil around proposed uranium mining site at Lambapur and its vertical profile in the

Page 7: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

252

Nagarjuna Sagar Dam.,” J. Environ. Radioact., vol. 100, no. 10, pp. 831–4, Oct. 2009.

[47] S. K. Jha, G. P. Verma, S. S. Gothankar, and V. D. Puranik, “Transport of pollutants from nearby catchments to the Nagarjuna Sagar Dam,” Radioprotection, vol. 46, no. 6, pp. S323–S329, Jan. 2012.

[48] M. S. Baxter, “Personal perspectives on radioactivity in the environment,” Sci. Total Environ., vol. 100, no. 0, pp. 29–42, Mar. 1991.

[49] A. Navas, J. Soto, and J. Machı́n, “238U, 226Ra, 210Pb, 232Th and 40K activities in soil profiles of the Flysch sector (Central Spanish Pyrenees),” Appl. Radiat. Isot., vol. 57, no. 4, pp. 579–589, Oct. 2002.

[50] Alina Kabata-Pendias, “Trace Elements in Plants,” in Trace Elements in Soils and Plants, Fourth Edition, CRC Press, 2010, pp. 93–121.

[51] A. Navas, D. E. Walling, T. Quine, J. Machín, J. Soto, S. Domenech, and M. López-Vicente, “Variability in 137Cs inventories and potential climatic and lithological controls in the central Ebro valley, Spain,” J. Radioanal. Nucl. Chem., vol. 274, no. 2, pp. 331–339, 2007.

[52] K. P. Jordan, C., Cruickshank, J.G., Higgins, A.J. and Hamill, The Soil Geochemical Atlas of Northern Ireland. Department of Agriculture for Northern Ireland, Belfast. UK. 1997.

[53] E. de Jong, D. F. Acton, and L. M. Kozak, “Naturally occurring gamma-emitting isotopes, radon release and properties of parent materials of Saskatchewan soils,” Can. J. Soil Sci., vol. 74, no. 1, pp. 47–53, Feb. 1994.

[54] A. Navas, J. Machín, and J. Soto, “Mobility Of Natural Radionuclides And Selected Major And Trace Elements Along A Soil Toposequence In The Central Spanish Pyrenees,” Soil Sci., vol. 170, no. 9, 2005.

[55] R. Fujiyoshi and S. Sawamura, “Mesoscale variability of vertical profiles of environmental radionuclides (40K, 226Ra, 210Pb and 137Cs) in temperate forest soils in Germany,” Sci. Total Environ., vol. 320, no. 2–3, pp. 177–188, Mar. 2004.

[56] A. Navas, J. MacHín, S. Beguería, M. López-Vicente, and L. Gaspar, “Soil properties and physiographic factors controlling the natural vegetation re-growth in a disturbed catchment of the Central Spanish Pyrenees,” Agrofor. Syst., vol. 72, no. 3, pp. 173–185, 2008.

Page 8: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

253

[57] J. B. Cowart and W. C. Burnett, “The distribution of uranium and thorium decay-series radionuclides in the environment - A review,” J. Environ. Qual., vol. 23, no. 4, pp. 651–662, 1994.

[58] A. Navas, J. Soto, and J. Machín, “Edaphic and physiographic factors affecting the distribution of natural gamma-emitting radionuclides in the soils of the Arnás catchment in the Central Spanish Pyrenees,” Eur. J. Soil Sci., vol. 53, no. 4, pp. 629–638, Dec. 2002.

[59] A. J. VandenBygaart and R. Protz, “Gamma radioactivity on a chronosequence, Pinery Provincial Park, Ontario,” Can. J. Soil Sci., vol. 75, no. 1, pp. 73–84, Feb. 1995.

[60] F. P. Carvalho, “210Po in Marine Organisms: A Wide Range of Natural Radiation Dose Domains,” Radiat. Prot. Dosim. , vol. 24 , no. 1–4 , pp. 113–117, Aug. 1988.

[61] A. Aarkrog, M. S. Baxter, A. O. Bettencourt, R. Bojanowski, A. Bologa, S. Charmasson, I. Cunha, R. Delfanti, E. Duran, E. Holm, R. Jeffree, H. D. Livingston, S. Mahapanyawong, H. Nies, I. Osvath, L. Pingyu, P. P. Povinec, A. Sanchez, J. N. Smith, and D. Swift, “A comparison of doses from 137Cs and 210Po in marine food: A major international study,” J. Environ. Radioact., vol. 34, no. 1, pp. 69–90, 1997.

[62] F. Carvalho and S. Fowler, “A double-tracer technique to determine the relative importance of water and food as sources of polonium-210 to marine prawns and fish,” Mar. Ecol. Prog. Ser., vol. 103, pp. 251–264, 1994.

[63] P. Stepnowski and B. Skwarzec, “Tissue and subcellular distributions of 210Po in the crustacean Saduria entomon inhabiting the southern Baltic Sea,” J. Environ. Radioact., vol. 49, no. 2, pp. 195–199, Jun. 2000.

[64] F. P. Carvalho and S. W. Fowler, “An experimental study on the bioaccumulation and turnover of polonium-210 and lead-210 in marine shrimp,” Mar. Ecol. Prog. Ser., vol. 103, no. 9, pp. 125–133, 1988.

[65] L. Macklin Rani, R. K. Jeevanram, V. Kannan, and M. Govindaraju, “Estimation of Polonium-210 activity in marine and terrestrial samples and computation of ingestion dose to the public in and around Kanyakumari coast, India,” J. Radiat. Res. Appl. Sci., vol. 7, no. 2, pp. 207–213, Apr. 2014.

Page 9: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

254

[66] IAEA, Analytical Methodology for the Determination of Radium Isotopes in Environmental Samples. Analytical Quality in Nuclear Applications No. IAEA/AQ/19, 2010.

[67] S. M. Swanson, “Food-chain Transfer of U-series Radionuclides in A Northern Saskatchewan Aquatic System.,” Health Phys., vol. 49, no. 5, 1985.

[68] M.-B. L. Watson AP, Etnier EL, “Radium-226 in drinking water and terrestrial food chains: Transfer parameters and normal exposure and dose.,” Nucl. Saf., vol. 25, pp. 815–829, 1984.

[69] EPA, National primary drinking water regulations. Environmental Protection Agency, EPA, USA, 2002.

[70] FNA, Regulation of Natural Mineral, Well and Table Water. FNA Nr. 2125-40-33, 2006.

[71] I. A. E. A. (IAEA), “Evaluating the Reliability of Predictions Made Using Environmental Transfer Models Safety Series no. 100, IAEA, Vienna,” 1989.

[72] K. M. Thiessen, M. C. Thorne, P. R. Maul, G. Pröhl, and H. S. Wheater, “Modelling radionuclide distribution and transport in the environment,” Environ. Pollut., vol. 100, no. 1–3, pp. 151–177, 1999.

[73] F. W. Whicker, G. Shaw, G. Voigt, and E. Holm, “Radioactive contamination: state of the science and its application to predictive models,” Environ. Pollut., vol. 100, no. 1–3, pp. 133–149, 1999.

[74] N. A. Beresford, T. L. Yankovich, M. D. Wood, S. Fesenko, P. Andersson, M. Muikku, and N. J. Willey, “A new approach to predicting environmental transfer of radionuclides to wildlife: A demonstration for freshwater fish and caesium,” Sci. Total Environ., vol. 463–464, no. 0, pp. 284–292, Oct. 2013.

[75] L. Kumblad, U. Kautsky, and B. Næslund, “Transport and fate of radionuclides in aquatic environments – the use of ecosystem modelling for exposure assessments of nuclear facilities,” J. Environ. Radioact., vol. 87, no. 1, pp. 107–129, 2006.

[76] European Commission, Methodology for Assessing the Radiological Consequences of Routine Releases of Radionuclides to the Environment. Radiation Protection 72, Report no. EUR 15760, European Communities, Luxembourg. 1995, p. 351.

Page 10: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

255

[77] F. W. Whicker and T. B. Kirchner, “Pathway: A Dynamic Food-chain Model to Predict Radionuclide Ingestion After Fallout Deposition.,” Health Phys., vol. 52, no. 6, 1987.

[78] I. A. E. A. (IAEA), “Generic Models and Parameters for Assessing the Environmental Transfer of Radionuclides from Routine Releases. Safety Series no. 57, IAEA,” 1982.

[79] J. Garnier-Laplace, F. Vray, and J. P. Baudin, “A dynamic model for radionuclide transfer from water to freshwater fish,” Water. Air. Soil Pollut., vol. 98, no. 1–2, pp. 141–166, 1997.

[80] I. A. E. A. (IAEA), Modelling of the Transfer of Radiocaesium from Deposition to Lake Ecosystems, IAEA - TECDOC - 1143, IAEA, Vienna,. 2000, p. 343.

[81] D. J. Swift and R. J. Pentreath, “The accumulation of plutonium by the edible winkle (Littorina littorea L.),” J. Environ. Radioact., vol. 7, no. 1, pp. 29–48, 1988.

[82] D. R. P. L. and G. J. Hunt, “A study of fish and shellfish consumers near Sellafield: assessment of the critical groups including consideration of children,” J. Soc. Radiol. Prot., vol. 5, no. 3, p. 129, 1985.

[83] ICRP, “Age-dependent Doses to Members of the Public from intake of Radionuclides: Part 5 Compilation of Ingestion and Inhalation Dose Coefficients (ICRP Publication 72),” Phys. Med. Biol., vol. 41, no. 12, p. 2807, 1996.

[84] L. Håkanson, “A new general dynamic model predicting radionuclide concentrations and fluxes in coastal areas from readily accessible driving variables,” J. Environ. Radioact., vol. 78, no. 2, pp. 217–245, Oct. 2004.

[85] M. Varol, “Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques,” J. Hazard. Mater., vol. 195, no. 0, pp. 355–364, Nov. 2011.

[86] K. Loska and D. Wiechuła, “Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir,” Chemosphere, vol. 51, no. 8, pp. 723–733, Jun. 2003.

Page 11: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

256

[87] B. Bocca, A. Alimonti, F. Petrucci, N. Violante, G. Sancesario, G. Forte, and O. Senofonte, “Quantification of trace elements by sector field inductively coupled plasma mass spectrometry in urine, serum, blood and cerebrospinal fluid of patients with Parkinson’s disease,” Spectrochim. Acta Part B At. Spectrosc., vol. 59, no. 4, pp. 559–566, Apr. 2004.

[88] V. Gaur, S. Gupta, S. D. Pandey, K. Gopal, and V. Misra, “Distribution of heavy metals in sediment and water of river Gomti,” Environ. Monit. Assess., vol. 102, no. 1–3, pp. 419–433, 2005.

[89] S. McCready, G. F. Birch, and E. R. Long, “Metallic and organic contaminants in sediments of Sydney Harbour, Australia and vicinity — A chemical dataset for evaluating sediment quality guidelines,” Environ. Int., vol. 32, no. 4, pp. 455–465, May 2006.

[90] O. S. Fatoki and S. Mathabatha, “An assessment of heavy metal pollution in the East London and Port Elizabeth harbours,” Water SA, vol. 27, no. 2, pp. 233–240, 2001.

[91] S. Ünlü, S. Topçuoğlu, B. Alpar, Ç. Kırbaşoğlu, and Y. Yılmaz, “Heavy metal pollution in surface sediment and mussel samples in the Gulf of Gemlik,” Environ. Monit. Assess., vol. 144, no. 1–3, pp. 169–178, 2008.

[92] A. Binelli, S. K. Sarkar, M. Chatterjee, C. Riva, M. Parolini, B. deb Bhattacharya, A. K. Bhattacharya, and K. K. Satpathy, “A comparison of sediment quality guidelines for toxicity assessment in the Sunderban wetlands (Bay of Bengal, India),” Chemosphere, vol. 73, no. 7, pp. 1129–1137, Oct. 2008.

[93] S. Kamala-Kannan, B. Prabhu Dass Batvari, K. J. Lee, N. Kannan, R. Krishnamoorthy, K. Shanthi, and M. Jayaprakash, “Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India.,” Chemosphere, vol. 71, no. 7, pp. 1233–40, Apr. 2008.

[94] K. T. Ho, R. M. Burgess, M. C. Pelletier, J. R. Serbst, S. A. Ryba, M. G. Cantwell, A. Kuhn, and P. Raczelowski, “An overview of toxicant identification in sediments and dredged materials,” Mar. Pollut. Bull., vol. 44, no. 4, pp. 286–293, Apr. 2002.

[95] I. Bertini and G. Cavallaro, “Metals in the ‘omics’ world: copper homeostasis and cytochrome c oxidase assembly in a new light,” JBIC J. Biol. Inorg. Chem., vol. 13, no. 1, pp. 3–14, 2008.

Page 12: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

257

[96] N. Nelson, “Metal ion transporters and homeostasis,” EMBO J., vol. 18, no. 16, pp. 4361–4371, Aug. 1999.

[97] O. I. Aruoma, M. Grootveld, and T. Bahorun, “Free radicals in biology and medicine: from inflammation to biotechnology.,” Biofactors, vol. 27, no. 1–4, pp. 1–3, Jan. 2006.

[98] A. Bush and C. Curtain, “Twenty years of metallo-neurobiology: where to now?,” Eur. Biophys. J., vol. 37, no. 3, pp. 241–245, 2008.

[99] M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chem. Biol. Interact., vol. 160, no. 1, pp. 1–40, Mar. 2006.

[100] G. I. Evan and K. H. Vousden, “Proliferation, cell cycle and apoptosis in cancer.,” Nature, vol. 411, pp. 342–348, 2001.

[101] J. Matés, J. Segura, F. Alonso, and J. Márquez, “Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis,” Arch. Toxicol., vol. 82, no. 5, pp. 273–299, 2008.

[102] M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” Int. J. Biochem. Cell Biol., vol. 39, no. 1, pp. 44–84, 2007.

[103] M. Sinicropi, D. Amantea, A. Caruso, and C. Saturnino, “Chemical and biological properties of toxic metals and use of chelating agents for the pharmacological treatment of metal poisoning,” Arch. Toxicol., vol. 84, no. 7, pp. 501–520, 2010.

[104] R. W. Leggett and T. C. Pellmar, “The biokinetics of uranium migrating from embedded DU fragments,” J. Environ. Radioact., vol. 64, no. 2–3, pp. 205–225, 2003.

[105] J. Emsley, The Elements. Clarendon Press: Oxford, UK, 1989, p. 169.

[106] H.-W. Neghabian, R.A.; Becker, H.J.; Baran, A.; Binzel, Verwendung von wiederaufgearbeitetem Uran und von abgreichertem Uran; NUKEM: Alzenau, Germany, 1991.

[107] J. . Gindler, The Radiochemistry of Uranium. National Academy of Sciences, National Research Council: Washington, DC, USA, 1962.

Page 13: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

258

[108] J. Roberts, R.A.; Choppin, G.R.; Wild, The Radiochemistry of Uranium, Neptunium and Plutonium. National Academy of Sciences, National Research Council: Washington, DC, USA,, 1986.

[109] S. F. Grenthe, I.; Droźdźyński, J.; Fujino, T.; Buck, E.C.; Albrecht-Schmitt, T.E.; Wolf, Uranium, in The Chemistry of the Actinide and Transactinide Elements. Springer: Dordrect, the Netherlands, 2011.

[110] K. E. Gutowski, V. A. Cocalia, S. T. Griffin, N. J. Bridges, D. A. Dixon, and R. D. Rogers, “Interactions of 1-Methylimidazole with UO2(CH3CO2)2 and UO2(NO3)2:  Structural, Spectroscopic, and Theoretical Evidence for Imidazole Binding to the Uranyl Ion,” J. Am. Chem. Soc., vol. 129, no. 3, pp. 526–536, Dec. 2006.

[111] M. R. VanEngelen, R. K. Szilagyi, R. Gerlach, B. D. Lee, W. A. Apel, and B. M. Peyton, “Uranium Exerts Acute Toxicity by Binding to Pyrroloquinoline Quinone Cofactor,” Environ. Sci. Technol., vol. 45, no. 3, pp. 937–942, Dec. 2010.

[112] S. Chinni, C. R. Anderson, K.-U. Ulrich, D. E. Giammar, and B. M. Tebo, “Indirect UO2 Oxidation by Mn(II)-oxidizing Spores of Bacillus sp. Strain SG-1 and the Effect of U and Mn Concentrations,” Environ. Sci. Technol., vol. 42, no. 23, pp. 8709–8714, Oct. 2008.

[113] O. Pible, C. Vidaud, S. Plantevin, J.-L. Pellequer, and E. Quéméneur, “Predicting the disruption by UO22+ of a protein-ligand interaction,” Protein Sci., vol. 19, no. 11, pp. 2219–2230, Nov. 2010.

[114] I. P. Roof, M. D. Smith, and H.-C. zur Loye, “Crystal growth of uranium-containing complex oxides: Ba2Na0.83U1.17O6, BaK4U3O12 and Na3Ca1.5UO6,” Solid State Sci., vol. 12, no. 12, pp. 1941–1947, Dec. 2010.

[115] NCRP. National Council on Radiation Protection and Measurements., Radiological assessment: Predicting the transport, bioaccumulation and uptake by man of radionuclides released to the environment. NCRP Report No. 76., 1984.

[116] J. Bigu and P. DuPort, “CHARACTERIZATION OF LONG-LIVED RADIOACTIVE DUST IN URANIUM MILL OPERATIONS,” Am. Ind. Hyg. Assoc. J., vol. 53, no. 9, pp. 588–595, Sep. 1992.

[117] G. J. Brunskill and P. Wilkinson, “Annual Supply of 238U, 234U, 230Th, 226Ra, 210Pb, 210Po, and 232Th to Lake 239 (Experimental Lakes Area,

Page 14: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

259

Ontario) from Terrestrial and Atmospheric Sources,” Can. J. Fish. Aquat. Sci., vol. 44, no. S1, pp. s215–s230, Dec. 1987.

[118] A. L. Herczeg, H. James Simpson, R. F. Anderson, R. M. Trier, G. G. Mathieu, and B. L. Deck, “Uranium and radium mobility in groundwaters and brines within the delaware basin, Southeastern New Mexico, U.S.A.,” Chem. Geol. Isot. Geosci. Sect., vol. 72, no. 2, pp. 181–196, Mar. 1988.

[119] B. Allard, U. Olofsson, B. Torstenfelt, H. Kipatsi, and K. Andersson, “Sorption of Actinides in Well-Defined Oxidation States on Geologic Media,” MRS Online Proc. Libr., vol. 11, p. null–null, 1981.

[120] C. E. Barnes and J. K. Cochran, “Uranium geochemistry in estuarine sediments: Controls on removal and release processes,” Geochim. Cosmochim. Acta, vol. 57, no. 3, pp. 555–569, Feb. 1993.

[121] P. Crançon, E. Pili, and L. Charlet, “Uranium facilitated transport by water-dispersible colloids in field and soil columns,” Sci. Total Environ., vol. 408, no. 9, pp. 2118–2128, Apr. 2010.

[122] Ticknor Κ V, “Uranium Sorption on Geological Materials,” Radiochimca Acta, vol. 64. p. 229, 1994.

[123] E. T. Premuzic, A. J. Francis, M. Lin, and J. Schubert, “Induced formation of chelating agents byPseudomonas aeruginosa grown in presence of thorium and uranium,” Arch. Environ. Contam. Toxicol., vol. 14, no. 6, pp. 759–768, 1985.

[124] D. C. Mahon, “Uptake and translocation of naturally-occurring radionuclides of the uranium series,” Bull. Environ. Contam. Toxicol., vol. 29, no. 6, pp. 697–703, 1982.

[125] T. Sakaguchi, A. Nakajima, and T. Horikoshi, “Studies on the accumulation of heavy metal elements in biological systems,” Eur. J. Appl. Microbiol. Biotechnol., vol. 12, no. 2, pp. 84–89, 1981.

[126] M. Ahsanullah and A. R. Williams, “Kinetics of uranium uptake by the crab Pachygrapsus laevimanus and the zebra winkle Austrocochlea constricta,” Mar. Biol., vol. 101, no. 3, pp. 323–327, 1989.

[127] W. D. Bostick, W. H. McCulla, and P. W. Pickrell, “Sampling, characterization, and remote sensing of aerosols formed in the atmospheric hydrolysis of uranium hexafluoride,” J. Environ. Sci. Heal. . Part A Environ. Sci. Eng., vol. 20, no. 3, pp. 369–393, Apr. 1985.

Page 15: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

260

[128] R. Boniforti, “Lanthanides, uranium, and thorium as possible simulators of the behavior of transuranics in the aquatic environment,” Sci. Total Environ., vol. 64, no. 1–2, pp. 181–189, Jun. 1987.

[129] M. Gavrilescu, L. V. Pavel, and I. Cretescu, “Characterization and remediation of soils contaminated with uranium,” J. Hazard. Mater., vol. 163, no. 2–3, pp. 475–510, Apr. 2009.

[130] A. Miller, C. Bonait-Pellie, R. Merlot, J. Michel, M. Stewart, and P. Lison, “Leukemic transformation of hematopoietic cells in mice internally exposed to depleted uranium,” Mol. Cell. Biochem., vol. 279, no. 1–2, pp. 97–104, 2005.

[131] M. A. McDiarmid, S. Engelhardt, M. Oliver, P. Gucer, P. D. Wilson, R. Kane, M. Kabat, B. Kaup, L. Anderson, D. Hoover, L. Brown, B. Handwerger, R. J. Albertini, D. Jacobson-Kram, C. D. Thorne, and K. S. Squibb, “Health Effects of Depleted Uranium on Exposed Gulf War Veterans: A 10-Year Follow-Up,” J. Toxicol. Environ. Heal. Part A, vol. 67, no. 4, pp. 277–296, Feb. 2004.

[132] D. Muller, P. Houpert, J. Cambar, and M.-H. Hengé-Napoli, “Role of the sodium-dependent phosphate co-transporters and of the phosphate complexes of uranyl in the cytotoxicity of uranium in LLC-PK1 cells,” Toxicol. Appl. Pharmacol., vol. 214, no. 2, pp. 166–177, Jul. 2006.

[133] ATSDR, Toxicological Profile for Uranium. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Division of Toxicology and Human Health Sciences, Environmental Toxicology Branch: Atlanta, GA, USA, 2013.

[134] A. C. Miller, M. Stewart, K. Brooks, L. Shi, and N. Page, “Depleted uranium-catalyzed oxidative DNA damage: absence of significant alpha particle decay,” J. Inorg. Biochem., vol. 91, no. 1, pp. 246–252, Jul. 2002.

[135] D. R. Tasat, N. S. Orona, and C. Bozal, Intracellular Metabolism of Uranium and the Effects of Bisphosphonates on Its Toxicity, In Cell Me. Bubulya, P., Ed.; Tech Publishers: Rijeka, Yugoslavia, 2012.

[136] S. K. Sahoo, M. Matsumoto, K. Shiraishi, K. Fujimoto, O. Cuknic, and Z. S. Zunic, “Dose effect for South Serbians due to 238U in natural drinking water,” Radiat. Prot. Dosim. , vol. 127 , no. 1–4 , pp. 407–410, Nov. 2007.

[137] United States Environmental Protection Agency, Depleted Uranium, Technical Brief. Office of Radiation and Indoor Air Radiation Protection: Washington, DC, USA, 2006.

Page 16: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

261

[138] M. McDiarmid, S. Engelhardt, M. Oliver, P. Gucer, P. D. Wilson, R. Kane, M. Kabat, B. Kaup, L. Anderson, D. Hoover, L. Brown, R. Albertini, R. Gudi, D. Jacobson-Kram, C. Thorne, and K. Squibb, “Biological monitoring and surveillance results of Gulf War I veterans exposed to depleted uranium,” Int. Arch. Occup. Environ. Health, vol. 79, no. 1, pp. 11–21, 2006.

[139] W. Briner, “The toxicity of depleted uranium.,” Int. J. Environ. Res. Public Health, vol. 7, no. 1, pp. 303–13, Jan. 2010.

[140] A. Durakovic, P. Horan, L. A. Dietz, and I. Zimmerman, “Estimate of the time zero lung burden of depleted uranium in Persian Gulf war veterans by the 24-hour urinary excretion and exponential decay analysis,” Mil. Med., vol. 168, no. 8, pp. 600–605, 2003.

[141] Z. Karpas, A. Lorber, H. Sela, O. Paz-Tal, Y. Hagag, P. Kurttio, and L. Salonen, “Measurement of the 234U/238U ratio by MC-ICPMS in drinking water, hair, nails, and urine as an indicator of uranium exposure source,” Health Phys., vol. 89, no. 4, 2005.

[142] P. Kurttio, A. Harmoinen, H. Saha, L. Salonen, Z. Karpas, H. Komulainen, and A. Auvinen, “Kidney Toxicity of Ingested Uranium From Drinking Water,” Am. J. Kidney Dis., vol. 47, no. 6, pp. 972–982, Jun. 2006.

[143] O. C. Lind, B. Salbu, L. Skipperud, K. Janssens, J. Jaroszewicz, and W. De Nolf, “Solid state speciation and potential bioavailability of depleted uranium particles from Kosovo and Kuwait,” J. Environ. Radioact., vol. 100, no. 4, pp. 301–307, Apr. 2009.

[144] D. E. McClain, K. A. Benson, T. K. Dalton, J. Ejnik, C. A. Emond, S. J. Hodge, J. F. Kalinich, M. A. Landauer, A. C. Miller, T. C. Pellmar, M. D. Stewart, V. Villa, and J. Xu, “Biological effects of embedded depleted uranium (DU): summary of Armed Forces Radiobiology Research Institute research,” Sci. Total Environ., vol. 274, no. 1–3, pp. 115–118, Jul. 2001.

[145] R. W. Leggett, “Basis for the ICRP’s Age-specific Biokinetic Model for Uranium.,” Health Phys., vol. 67, no. 6, 1994.

[146] ICRP, “Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection.,” Ann. ICRP, vol. 24, no. 1–3, pp. 1–8, 1994.

Page 17: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

262

[147] ICRP, “Age-dependent doses to members of the public from intake of radionuclides: Part 4 Inhalation dose coefficients,” Ann. ICRP, vol. 25, no. 3–4, pp. i–405, 1995.

[148] R. W. Leggett and J. D. Harrison, “Fractional Absorption of Ingested Uranium in Humans.,” Health Phys., vol. 68, no. 4, 1995.

[149] R. W. Leggett, “The Behavior and Chemical Toxicity of U in the Kidney: A Reassessment.,” Health Phys., vol. 57, no. 3, 1989.

[150] A. C. Miller, J. Xu, M. Stewart, K. Brooks, S. Hodge, L. Shi, M. Page, and D. McClain, “Observation of Radiation-specific Damage in Human Cells Exposed to Depleted Uranium: Dicentric Frequency and Neoplastic Transformation as Endpoints,” Radiat. Prot. Dosim. , vol. 99 , no. 1–4 , pp. 275–278, Jun. 2002.

[151] E. S. G. Barron, “Regulatory mechanisms of cellular respiration; The role of cell membranes; Uranium inhibition of cellular respiration.,” J. Gen. Physiol., vol. 32, no. 2, pp. 163–178, Nov. 1948.

[152] M. S. McQueney and G. D. Markham, “Investigation of Monovalent Cation Activation of S-Adenosylmethionine Synthetase Using Mutagenesis and Uranyl Inhibition ,” J. Biol. Chem. , vol. 270 , no. 31 , pp. 18277–18284, Aug. 1995.

[153] S. Renault, H. Faiz, R. Gadet, B. Ferrier, G. Martin, G. Baverel, and A. Conjard-Duplany, “Uranyl nitrate inhibits lactate gluconeogenesis in isolated human and mouse renal proximal tubules: A 13C-NMR study,” Toxicol. Appl. Pharmacol., vol. 242, no. 1, pp. 9–17, Jan. 2010.

[154] Y. Gueguen, C. Rouas, A. Monin, L. Manens, J. Stefani, O. Delissen, S. Grison, and I. Dublineau, “Molecular, cellular, and tissue impact of depleted uranium on xenobiotic-metabolizing enzymes.,” Arch. Toxicol., vol. 88, no. 2, pp. 227–39, Feb. 2014.

[155] F. Petitot, P. Lestaevel, E. Tourlonias, C. Mazzucco, S. Jacquinot, B. Dhieux, O. Delissen, B. B. Tournier, F. Gensdarmes, P. Beaunier, and I. Dublineau, “Inhalation of uranium nanoparticles: Respiratory tract deposition and translocation to secondary target organs in rats,” Toxicol. Lett., vol. 217, no. 3, pp. 217–225, Mar. 2013.

Page 18: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

263

[156] M. Tirmarche, M.; Baysson, H.; Telle-Amberton, “Uranium exposure and cancer risk: A review of epidemiological studies,” J. Epidiomology Public Heal., vol. 52, pp. 81–90, 2004.

[157] A. Periyakaruppan, F. Kumar, S. Sarkar, C. Sharma, and G. Ramesh, “Uranium induces oxidative stress in lung epithelial cells,” Arch. Toxicol., vol. 81, no. 6, pp. 389–395, 2007.

[158] H. Xie, C. LaCerte, W. D. Thompson, and J. P. Wise, “Depleted Uranium Induces Neoplastic Transformation in Human Lung Epithelial Cells,” Chem. Res. Toxicol., vol. 23, no. 2, pp. 373–378, Dec. 2009.

[159] N. S. Orona and D. R. Tasat, “Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF α mediators,” Toxicol. Appl. Pharmacol., vol. 261, no. 3, pp. 309–316, Jun. 2012.

[160] T. Nicholas and D. Bingham, “Assessment of Uranium Exposure From Total Activity and 234U:238U Activity Ratios In Urine,” Radiat. Prot. Dosimetry, Oct. 2010.

[161] X. Arzuaga, S. H. Rieth, A. Bathija, and G. S. Cooper, “Renal Effects of Exposure to Natural and Depleted Uranium: A Review of the Epidemiologic and Experimental Data,” J. Toxicol. Environ. Heal. Part B, vol. 13, no. 7–8, pp. 527–545, Dec. 2010.

[162] K. S. Squibb, R. W. Leggett, and M. A. McDiarmid, “Prediction of renal concentrations of depleted uranium and rdaiayion dose in Gulf War veterans with embedded shrapnel,” Health Phys., vol. 89, no. 3, 2005.

[163] G. Zhu, X. Xiang, X. Chen, L. Wang, H. Hu, and S. Weng, “Renal dysfunction induced by long-term exposure to depleted uranium in rats,” Arch. Toxicol., vol. 83, no. 1, pp. 37–46, 2009.

[164] G. ZHU, M. TAN, Y. LI, X. XIANG, H. HU, and S. ZHAO, “Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments,” J. Radiat. Res., vol. 50, no. 3, pp. 183–192, 2009.

[165] F. Shaki, M.-J. Hosseini, M. Ghazi-Khansari, and J. Pourahmad, “Toxicity of depleted uranium on isolated rat kidney mitochondria,” Biochim. Biophys. Acta - Gen. Subj., vol. 1820, no. 12, pp. 1940–1950, Dec. 2012.

Page 19: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

264

[166] F. Shaki and J. Pourahmad, “Mitochondrial toxicity of depleted uranium: protection by Beta-glucan.,” Iran. J. Pharm. Res. IJPR, vol. 12, no. 1, pp. 131–40, Jan. 2013.

[167] L. E. Roszell, F. F. Hahn, R. B. Lee, and M. A. Parkhurst, “Assessing the renal toxicity of capstone depleted uranium oxides and other uranium compounds,” Health Phys., vol. 96, no. 3, 2009.

[168] P. Lestaevel, E. Romero, B. Dhieux, H. Ben Soussan, H. Berradi, I. Dublineau, P. Voisin, and P. Gourmelon, “Different pattern of brain pro-/anti-oxidant activity between depleted and enriched uranium in chronically exposed rats,” Toxicology, vol. 258, no. 1, pp. 1–9, Apr. 2009.

[169] G.-T. Jiang and M. Aschiner, “Neurotoxicity of depleted uranium,” Biol. Trace Elem. Res., vol. 110, no. 1, pp. 1–17, 2006.

[170] G. C.-T. Jiang, K. Tidwell, B. A. McLaughlin, J. Cai, R. C. Gupta, D. Milatovic, R. Nass, and M. Aschner, “Neurotoxic Potential of Depleted Uranium—Effects in Primary Cortical Neuron Cultures and in Caenorhabditis elegans,” Toxicol. Sci. , vol. 99 , no. 2 , pp. 553–565, Oct. 2007.

[171] P. Houpert, P. Lestaevel, C. Bussy, F. Paquet, and P. Gourmelon, “Enriched But Not Depleted Uranium Affects Central Nervous System In Long-Term Exposed Rat,” Neurotoxicology, vol. 26, no. 6, pp. 1015–1020, Dec. 2005.

[172] P. Lestaevel, F. Airault, R. Racine, H. Bensoussan, B. Dhieux, O. Delissen, L. Manens, J. Aigueperse, P. Voisin, and M. Souidi, “Influence of Environmental Enrichment and Depleted Uranium on Behaviour, Cholesterol and Acetylcholine in Apolipoprotein E-Deficient Mice,” J. Mol. Neurosci., pp. 1–11, 2013.

[173] D. P. Arfsten, M. Bekkedal, E. R. Wilfong, J. Rossi III, K. A. Grasman, L. B. Healey, J. M. Rutkiewicz, E. W. Johnson, A. R. Thitoff, A. E. Jung, S. R. Lohrke, D. J. Schaeffer, and K. R. Still, “Study of the Reproductive Effects in Rats Surgically Implanted With Depleted Uranium for Up to 90 Days,” J. Toxicol. Environ. Heal. Part A, vol. 68, no. 11–12, pp. 967–997, Jun. 2005.

[174] D. P. Arfsten, K. R. Still, E. R. Wilfong, E. W. Johnson, S. M. McInturf, J. S. Eggers, D. J. Schaeffer, and M. Y.-V. Bekkedal, “Two-Generation Reproductive Toxicity Study of Implanted Depleted Uranium (DU) in CD Rats,” J. Toxicol. Environ. Heal. Part A, vol. 72, no. 6, pp. 410–427, Feb. 2009.

Page 20: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

265

[175] A. C. Miller, M. Stewart, and R. Rivas, “Perconceptional parental exposure to depleted uranium: Transmission of genetic damage of offspring.,” Health Phys., vol. 99, no. 3, 2010.

[176] G. J. Macfarlane, A.-M. Biggs, N. Maconochie, M. Hotopf, P. Doyle, and M. Lunt, “Incidence of cancer among UK Gulf war veterans: cohort study,” BMJ, vol. 327, Dec. 2003.

[177] H. H. Storm, H. O. Jørgensen, A. M. T. Kejs, and G. Engholm, “Depleted uranium and cancer in Danish Balkan veterans deployed 1992–2001,” Eur. J. Cancer, vol. 42, no. 14, pp. 2355–2358, Sep. 2006.

[178] L. Legorio, S.; Grande, E.; Martina, “Review of epidemiological studies of cancer risk among Gulf War and Balkans veterans,” Epidemiol. Prev., vol. 32, pp. 145–155, 2008.

[179] R. P. Bogers, F. E. van Leeuwen, L. Grievink, L. J. Schouten, L. A. L. M. Kiemeney, and D. Schram-Bijkerk, “Cancer incidence in Dutch Balkan veterans,” Cancer Epidemiol., vol. 37, no. 5, pp. 550–555, Oct. 2013.

[180] S. Katz, “The Chemistry and Toxicology of Depleted Uranium,” Toxics, vol. 2, no. 1, pp. 50–78, Mar. 2014.

[181] M. B. Verma, P. S. Dandele, G. N. Babu, K. U. Magheswar, and P. B. Maithani, “Hydrouranium Anomalies as an Effective Tool in Exploration of Concealed Unconformity Related U-deposit in Srisailam Sub- basin , Andhra Pradesh – Case Study from Chitrial Area,” J. Geol. Soc. INDIA, vol. 78, pp. 468–476, 2011.

[182] K. Brindha, L. Elango, and R. N. Nair, “Spatial and temporal variation of uranium in a shallow weathered rock aquifer in southern India,” J. Earth Syst. Sci., vol. 120, no. 5, pp. 911–920, Nov. 2011.

[183] T. Raghavendra, K. Srilatha, C. Mahender, M. Elander, T. Vijayalakshmi, D. Datta, J. Arunachalam, V. Prasad, H. P. Unit, N. F. Complex, and A. Pradesh, “Distribution of uranium concentration in ground water samples from the Peddagattu / Nambapur and seripally regions using laser Fluorimetry,” Radiat. Prot. Dosimetry, pp. 1–6, 2013.

[184] K. D. Arunachalam, S. K. Annamalai, K. V. Baskaran, S. Rajaram, S. K. Jha, and Sreedevi, “Spatial and Multivariate Analysis of Trace Elements in the Surface Water and Deep Sediments of Fresh Water Aquatic Ecosystem,” Am. J. Environ. Sci., vol. 10, no. 1, 2014.

Page 21: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

266

[185] APHA, Standard methods for the examination of water and waste water. Washington DC: American Public Health Association, 2005.

[186] J.-Z. Zhang, G. Berberian, and R. Wanninkhof, “Long-term storage of natural water samples for dissolved oxygen determination,” Water Res., vol. 36, no. 16, pp. 4165–4168, Sep. 2002.

[187] J. M. Diamond, E. L. Winchester, D. G. Mackler, W. J. Rasnake, J. K. Fanelli, and D. Gruber, “Toxicity of cobalt to freshwater indicator species as a function of water hardness,” Aquat. Toxicol., vol. 22, no. 3, pp. 163–179, May 1992.

[188] S. K. Jha, S. Gothankar, P. S. Iongwai, B. Kharbuli, S. a War, and V. D. Puranik, “Intake of 238U and 232Th through the consumption of foodstuffs by tribal populations practicing slash and burn agriculture in an extremely high rainfall area.,” J. Environ. Radioact., vol. 103, no. 1, pp. 1–6, Jan. 2012.

[189] P. Lenka, S. K. Jha, S. Gothankar, R. M. Tripathi, and V. D. Puranik, “Suitable gamma energy for gamma-spectrometric determination of (238)U in surface soil samples of a high rainfall area in India.,” J. Environ. Radioact., vol. 100, no. 6, pp. 509–14, Jun. 2009.

[190] S. A War, P. Nongkynrih, D. T. Khathing, P. S. Iongwai, and S. K. Jha, “Spatial distribution of natural radioactivity levels in topsoil around the high-uranium mineralization zone of Kylleng-Pyndensohiong (Mawthabah) areas, West Khasi Hills District, Meghalaya, India.,” J. Environ. Radioact., vol. 99, no. 10, pp. 1665–70, Oct. 2008.

[191] S. A. Kumar, N. S. Shenoy, S. Pandey, S. Sounderajan, and G. Venkateswaran, “Direct determination of uranium in seawater by laser fluorimetry,” Talanta, vol. 77, no. 1, pp. 422–426, Oct. 2008.

[192] S. Shawky, N. Ibrahiem, A. Farouk, and A. Ghods, “Laser fluorimetric determination of uranium in environmental samples from Nile Delta and adjacent regions,” Appl. Radiat. Isot., vol. 45, no. 11, pp. 1079–1084, Nov. 1994.

[193] G. Van Britsom, B. Slowikowski, and M. Bickel, “A rapid method for the detection of uranium in surface water,” Sci. Total Environ., vol. 173–174, no. 0, pp. 83–89, Dec. 1995.

Page 22: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

267

[194] K. M. Matthews, C.-K. Kim, and P. Martin, “Determination of 210Po in environmental materials: A review of analytical methodology,” Appl. Radiat. Isot., vol. 65, no. 3, pp. 267–279, Mar. 2007.

[195] P. Vreček, L. Benedik, and B. Pihlar, “Determination of 210Pb and 210Po in sediment and soil leachates and in biological materials using a Sr-resin column and evaluation of column reuse,” Appl. Radiat. Isot., vol. 60, no. 5, pp. 717–723, May 2004.

[196] M. Štrok and B. Smodiš, “Levels of 210Po and 210Pb in fish and molluscs in Slovenia and the related dose assessment to the population,” Chemosphere, vol. 82, no. 7, pp. 970–976, Feb. 2011.

[197] N. S. Magesh, N. Chandrasekar, and D. Vetha Roy, “Spatial analysis of trace element contamination in sediments of Tamiraparani estuary, southeast coast of India,” Estuar. Coast. Shelf Sci., vol. 92, no. 4, pp. 618–628, May 2011.

[198] S. E. Mathes and T. C. Rasmussen, “Combining multivariate statistical analysis with geographic information systems mapping: a tool for delineating groundwater contamination,” Hydrogeol. J., vol. 14, no. 8, pp. 1493–1507, Jun. 2006.

[199] A. Lima, B. De Vivo, D. Cicchella, M. Cortini, and S. Albanese, “Multifractal IDW interpolation and fractal filtering method in environmental studies: an application on regional stream sediments of (Italy), Campania region,” Appl. Geochemistry, vol. 18, no. 12, pp. 1853–1865, Dec. 2003.

[200] F. Li, J. Huang, G. Zeng, X. Yuan, X. Li, J. Liang, X. Wang, X. Tang, and B. Bai, “Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China,” J. Geochemical Explor., vol. 132, pp. 75–83, Sep. 2013.

[201] J. A. Acosta, Faz, S. Martínez-Martínez, R. Zornoza, D. M. Carmona, and S. Kabas, “Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation,” J. Geochemical Explor., vol. 109, no. 1–3, pp. 8–17, Apr. 2011.

[202] M. He, Z. Wang, and H. Tang, “Spatial and temporal patterns of acidity and heavy metals in predicting the potential for ecological impact on the Le An river polluted by acid mine drainage.,” Sci. Total Environ., vol. 206, no. 1, pp. 67–77, Oct. 1997.

Page 23: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

268

[203] J. Delgado, J. M. Nieto, and T. Boski, “Analysis of the spatial variation of heavy metals in the Guadiana Estuary sediments (SW Iberian Peninsula) based on GIS-mapping techniques,” Estuar. Coast. Shelf Sci., vol. 88, no. 1, pp. 71–83, Jun. 2010.

[204] R. Zamani-Ahmadmahmoodi, A. Esmaili-Sari, J. Mohammadi, A. R. Bakhtiari, and M. Savabieasfahani, “Spatial distribution of cadmium and lead in the sediments of the western Anzali wetlands on the coast of the Caspian Sea (Iran).,” Mar. Pollut. Bull., vol. 74, no. 1, pp. 464–70, Sep. 2013.

[205] K. D. Arunachalam, K. V. Baskaran, D. D. Rao, S. P. Sreejith, S. K. Annamalai, J. K. Kuruva, and S. Hari, “Ingestion of Polonium (210Po) via dietary sources in high background radiation areas of south India,” Int. J. Radiat. Biol., vol. 90, no. 9, pp. 1–10, 2014.

[206] C. Harzdorf, G. Janser, D. Rinne, and M. Rogge, “Application of microwave digestion to trace organoelement determination in water samples,” Anal. Chim. Acta, vol. 374, no. 2–3, pp. 209–214, Nov. 1998.

[207] J. M. Muratli, J. McManus, A. Mix, and Z. Chase, “Dissolution of fluoride complexes following microwave-assisted hydrofluoric acid digestion of marine sediments.,” Talanta, vol. 89, pp. 195–200, Jan. 2012.

[208] T.-Y. Ho, C.-T. Chien, B.-N. Wang, and A. Siriraks, “Determination of trace metals in seawater by an automated flow injection ion chromatograph pretreatment system with ICPMS,” Talanta, vol. 82, no. 4, pp. 1478–1484, Sep. 2010.

[209] E. Oyoo-Okoth, W. Admiraal, O. Osano, V. Ngure, M. H. S. Kraak, and E. S. Omutange, “Monitoring exposure to heavy metals among children in Lake Victoria, Kenya: Environmental and fish matrix,” Ecotoxicol. Environ. Saf., vol. 73, no. 7, pp. 1797–1803, Oct. 2010.

[210] H. M. Zakir, N. Shikazona, and Ka. Otomo, “Geochemical Distribution of Trace Metals and Assessment of Anthropogenic Pollution in Sediments of Old Nakagawa River , Tokyo , Japan Laboratory of Geochemistry , School of Science for Open and Environmental Systems , Faculty of Science and Technology , K,” Am. J. Environ. Sci., vol. 4, no. 6, pp. 654–665, 2008.

[211] A. B. Hasan, S. Kabir, a. H. M. Selim Reza, M. Nazim Zaman, A. Ahsan, and M. Rashid, “Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary–Kumira),

Page 24: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

269

Chittagong, Bangladesh,” J. Geochemical Explor., vol. 125, pp. 130–137, Feb. 2013.

[212] R. Martins, M. R. Azevedo, R. Mamede, B. Sousa, R. Freitas, F. Rocha, V. Quintino, and a. M. Rodrigues, “Sedimentary and geochemical characterization and provenance of the Portuguese continental shelf soft-bottom sediments,” J. Mar. Syst., vol. 91, no. 1, pp. 41–52, Mar. 2012.

[213] A Muñoz-Barbosa, E. a Gutiérrez-Galindo, L. W. Daesslé, M. V Orozco-Borbón, and J. a Segovia-Zavala, “Relationship between metal enrichments and a biological adverse effects index in sediments from Todos Santos Bay, northwest coast of Baja California, México.,” Mar. Pollut. Bull., vol. 64, no. 2, pp. 405–9, Mar. 2012.

[214] S. R. Taylor, “Abundance of chemical elements in the continental crust: a new table,” Geochim. Cosmochim. Acta, vol. 28, no. 8, pp. 1273–1285, Aug. 1964.

[215] G. Müller, Schwermetallen in den Redimen des rheins, vol. 79. 1981, pp. 778–783.

[216] A. Zahra, M. Z. Hashmi, R. N. Malik, and Z. Ahmed, “Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-Feeding tributary of the Rawal Lake Reservoir, Pakistan.,” Sci. Total Environ., vol. 470–471, pp. 925–33, Feb. 2014.

[217] D. Hou, J. He, C. Lü, L. Ren, Q. Fan, J. Wang, and Z. Xie, “Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China.,” Ecotoxicol. Environ. Saf., vol. 93, pp. 135–44, Jul. 2013.

[218] A. S. Jumbe and N. N, “Heavy Metals Analysis and Sediment Quality Values in Urban Lakes,” Am. J. Environ. Sci., vol. 5, no. 6, pp. 678–687, 2009.

[219] K. K. TUREKIAN and K. H. WEDEPOHL, “Distribution of the Elements in Some Major Units of the Earth’s Crust,” Geological Society of America Bulletin, vol. 72. p. 175, 1961.

[220] P. Stoffers, G. P. Glasby, C. J. Wilson, K. R. Davis, and P. Walter, “Heavy metal pollution in Wellington Harbour,” New Zeal. J. Mar. Freshw. Res., vol. 20, no. 3, pp. 495–512, Sep. 1986.

[221] M. Chatterjee, E. V Silva Filho, S. K. Sarkar, S. M. Sella, a Bhattacharya, K. K. Satpathy, M. V. R. Prasad, S. Chakraborty, and B. D. Bhattacharya,

Page 25: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

270

“Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance.,” Environ. Int., vol. 33, no. 3, pp. 346–56, Apr. 2007.

[222] R. Yu, X. Yuan, Y. Zhao, G. Hu, and X. Tu, “Heavy metal pollution in intertidal sediments from Quanzhou Bay, China.,” J. Environ. Sci. (China), vol. 20, no. 6, pp. 664–9, Jan. 2008.

[223] D. Ali, N. S. Nagpure, S. Kumar, R. Kumar, B. Kushwaha, and W. S. Lakra, “Assessment of genotoxic and mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis.,” Food Chem. Toxicol., vol. 47, no. 3, pp. 650–6, Mar. 2009.

[224] P. P. Hernández, V. Moreno, F. a Olivari, and M. L. Allende, “Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio).,” Hear. Res., vol. 213, no. 1–2, pp. 1–10, Mar. 2006.

[225] R. Company, A. Serafim, R. P. Cosson, A. Fiala-Médioni, L. Camus, R. Serrão-Santos, M. João Bebianno, A. Fiala-me, M. Jo, and R. Serr, “Sub-lethal effects of cadmium on the antioxidant defence system of the hydrothermal vent mussel Bathymodiolus azoricus.,” Ecotoxicol. Environ. Saf., vol. 73, no. 5, pp. 788–95, Jul. 2010.

[226] M. Eyckmans, N. Celis, N. Horemans, R. Blust, and G. De Boeck, “Exposure to waterborne copper reveals differences in oxidative stress response in three freshwater fish species.,” Aquat. Toxicol., vol. 103, no. 1–2, pp. 112–20, May 2011.

[227] Dede and E. B. Kaglo, “Aqua-toxicological Effects of Water Soluble Fractions (WSF) Of Diesel Fuel On,” J. Appl. Sci. Environ. Mgt., vol. 5, no. 1, pp. 93–96, 2001.

[228] D. J. Finney, Probit Analysis, Third Edit. United Kingdom: Cambridge University Press, 1971.

[229] J. Y. M. Alkassasbeh, L. Y. Heng, S. Surif, and U. K. M. Bangi, “Toxicity Testing and the Effect of Landfill Leachate in Malaysia on Behavior of Common Carp ( Cyprinus carpio L ., 1758 ; Pisces , Cyprinidae ) School of Environmental and Natural Resource Sciences , School of Chemical Sciences and Food Technology , Facul,” Am. J. Environ. Sci., vol. 5, no. 3, pp. 209–217, 2009.

Page 26: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

271

[230] B. Quinn, F. Gagné, C. Blaise, M. J. Costello, J. G. Wilson, and C. Mothersill, “Evaluation of the lethal and sub-lethal toxicity and potential endocrine disrupting effect of nonylphenol on the zebra mussel (Dreissena polymorpha).,” Comp. Biochem. Physiol. C. Toxicol. Pharmacol., vol. 142, no. 1–2, pp. 118–27, 2006.

[231] K. K. Yadav and S. P. Trivedi, “Sublethal exposure of heavy metals induces micronuclei in fish, Channa punctata.,” Chemosphere, vol. 77, no. 11, pp. 1495–1500, Dec. 2009.

[232] a. Bücker, M. S. Carvalho, M. B. Conceição, and J. a. Alves-Gomes, “Micronucleus test and comet assay in erythrocytes of the Amazonian electric fish Apteronotus bonapartii exposed to benzene,” J. Brazilian Soc. Ecotoxicol., vol. 7, no. 1, pp. 65–73, May 2012.

[233] V. D. Heuser, J. da Silva, H.-J. Moriske, J. F. Dias, M. L. Yoneama, and T. R. O. de Freitas, “Genotoxicity biomonitoring in regions exposed to vehicle emissions using the comet assay and the micronucleus test in native rodent Ctenomys minutus.,” Environ. Mol. Mutagen., vol. 40, no. 4, pp. 227–35, Jan. 2002.

[234] N. F. Schenone, E. Avigliano, W. Goessler, and A. Fernández Cirelli, “Toxic metals, trace and major elements determined by ICPMS in tissues of Parapimelodus valenciennis and Prochilodus lineatus from Chascomus Lake, Argentina,” Microchem. J., vol. 112, no. 0, pp. 127–131, Jan. 2014.

[235] R. V Thomann, “Equilibrium Model of Fate of Microcontaminants in Diverse Aquatic Food Chains,” Can. J. Fish. Aquat. Sci., vol. 38, no. 3, pp. 280–296, Mar. 1981.

[236] W.-X. Wang and N. Fisher, “Modeling Metal Bioavailability for Marine Mussels,” in Reviews of Environmental Contamination and Toxicology SE - 2, vol. 151, G. Ware, Ed. Springer New York, 1997, pp. 39–65.

[237] Y. Xu and W. Wang, “Exposure and potential food chain transfer factor of Cd, Se and Zn in marine fish Lutjanus argentimaculatus,” Mar. Ecol. Prog. Ser., vol. 238, pp. 173–186, 2002.

[238] Y. Sun, H. Yu, J. Zhang, Y. Yin, H. Shen, H. Liu, and X. Wang, “Bioaccumulation and antioxidant responses in goldfish Carassius auratus under HC Orange No. 1 exposure,” Ecotoxicol. Environ. Saf., vol. 63, no. 3, pp. 430–437, Mar. 2006.

Page 27: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

272

[239] E. Oyoo-okoth, W. Admiraal, O. Osano, M. H. S. Kraak, P. J. A. Were-kogogo, J. Gichuki, V. Ngure, J. Makwali, and C. Ogwai, “Author ’ s personal copy Dynamics of metal uptake and depuration in a parasitized cyprinid fish Author ' s personal copy,” vol. 125, pp. 34–40, 2012.

[240] Z. S. Talas and M. F. Gulhan, “Effects of various propolis concentrations on biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss).,” Ecotoxicol. Environ. Saf., vol. 72, no. 7, pp. 1994–8, Oct. 2009.

[241] E. Y. Min and J.-C. Kang, “Effect of waterborne benomyl on the hematological and antioxidant parameters of the Nile tilapia, Oreochromis niloticus,” Pestic. Biochem. Physiol., vol. 92, no. 3, pp. 138–143, Nov. 2008.

[242] M. Uchiyama and M. Mihara, “Determination of malonaldehyde precursor in tissues by thiobarbituric acid test,” Anal. Biochem., vol. 86, no. 1, pp. 271–278, May 1978.

[243] M. Kaur, F. Atif, R. a Ansari, F. Ahmad, and S. Raisuddin, “The interactive effect of elevated temperature on deltamethrin-induced biochemical stress responses in Channa punctata Bloch.,” Chem. Biol. Interact., vol. 193, no. 3, pp. 216–24, Sep. 2011.

[244] A. K. Sinha, “Colorimetric assay of catalase,” Anal. Biochem., vol. 47, no. 2, pp. 389–394, Jun. 1972.

[245] I. Sayeed, S. Parvez, S. Pandey, B. Bin-Hafeez, R. Haque, and S. Raisuddin, “Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch,” Ecotoxicol. Environ. Saf., vol. 56, no. 2, pp. 295–301, Oct. 2003.

[246] Y. Sun, H. Yu, J. Zhang, Y. Yin, H. Shen, H. Liu, and X. Wang, “Bioaccumulation and antioxidant responses in goldfish Carassius auratus under HC Orange No. 1 exposure.,” Ecotoxicol. Environ. Saf., vol. 63, no. 3, pp. 430–7, Mar. 2006.

[247] V. Velma and P. B. Tchounwou, “Chromium-induced biochemical, genotoxic and histopathologic effects in liver and kidney of goldfish, carassius auratus.,” Mutat. Res., vol. 698, no. 1–2, pp. 43–51, Apr. 2010.

[248] Z. Djuric, M. A. KuKuruga, C. K. Everett-Bauer, and A. N. Nakeff, “Flow Cytometric Analysis of DNA Damage in Nucleoids from Cultured Human Breast Epithelial Cells Treated With Hydrogen Peroxide,” Free Radic. Biol. Med., vol. 24, no. 2, pp. 326–331, Jan. 1998.

Page 28: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

273

[249] L. S. George, C. E. Dallas, I. L. Brisbin Jr., and D. L. Evans, “Flow cytometric DNA analysis of ducks accumulating 137Cs on a reactor reservoir,” Ecotoxicol. Environ. Saf., vol. 21, no. 3, pp. 337–347, Jun. 1991.

[250] M. Tavecchio, M. Simone, S. Bernasconi, G. Tognon, G. Mazzini, and E. Erba, “Multi-parametric flow cytometric cell cycle analysis using TO-PRO-3 iodide (TP3): Detailed protocols,” Acta Histochem., vol. 110, no. 3, pp. 232–244, May 2008.

[251] K. D. Arunachalam, S. K. Annamalai, and J. K. Kuruva, “In-vivo evaluation of hexavalent Chromium induced dna damage by alkaline comet assay and oxidative stress in Catla catla,” Am. J. Environ. Sci., vol. 9, no. 6, pp. 470–482, 2014.

[252] E. Rojas, M. C. Lopez, and M. Valverde, “Single cell gel electrophoresis assay: methodology and applications.,” J. Chromatogr. B. Biomed. Sci. Appl., vol. 722, no. 1–2, pp. 225–54, Feb. 1999.

[253] R. R. Tice, E. Agurell, D. Anderson, B. Burlinson, A. Hartmann, H. Kobayashi, Y. Miyamae, E. Rojas, J. Ryu, and Y. F. Sasaki, “Single Cell Gel / Comet Assay : Guidelines for In Vitro and In Vivo Genetic Toxicology Testing,” Environ. Mol. Mutagen., vol. 221, pp. 206–221, 2000.

[254] N. Avishai, C. Rabinowitz, and B. Rinkevich, “Use of the comet assay for studying environmental genotoxicity: comparisons between visual and image analyses.,” Environ. Mol. Mutagen., vol. 42, no. 3, pp. 155–65, Jan. 2003.

[255] D. Cavallo, C. L. Ursini, B. Rondinone, and S. Iavicoli, “Evaluation of a Suitable DNA Damage Biomarker for Human Biomonitoring of Exposed Workers,” Environ. Andmolecularmutagenes., vol. 50, no. April, pp. 781–790, 2009.

[256] B.-S. Kim, J. J. Park, L. Edler, D. Von Fournier, W. Haase, M.-L. Sautter-Bihl, F. Gotzes, and H. W. Thielmann, “New measure of DNA repair in the single-cell gel electrophoresis (comet) assay.,” Environ. Mol. Mutagen., vol. 40, no. 1, pp. 50–6, Jan. 2002.

[257] B. Anitha, N. Chandra, P. M. Gopinath, and G. Durairaj, “Genotoxicity evaluation of heat shock in gold fish (Carassius auratus).,” Mutat. Res., vol. 469, no. 1, pp. 1–8, Aug. 2000.

Page 29: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

274

[258] C. Emmanouil, D. J. Smart, N. J. Hodges, and J. K. Chipman, “Oxidative damage produced by Cr(VI) and repair in mussel (Mytilus edulis L.) gill.,” Mar. Environ. Res., vol. 62 Suppl, pp. S292–6, Jul. 2006.

[259] C. Bolognesi and M. Hayashi, “Micronucleus assay in aquatic animals.,” Mutagenesis, vol. 26, no. 1, pp. 205–13, Jan. 2011.

[260] K. al-Sabti and C. D. Metcalfe, “Fish micronuclei for assessing genotoxicity in water.,” Mutat. Res., vol. 343, no. 2–3, pp. 121–35, Jun. 1995.

[261] F. Ayllon and E. Garcia-Vazquez, “Induction of micronuclei and other nuclear abnormalities in European minnow Phoxinus phoxinus and mollie Poecilia latipinna: an assessment of the fish micronucleus test.,” Mutat. Res., vol. 467, no. 2, pp. 177–86, May 2000.

[262] L.-N. Wang, W.-B. Liu, K.-L. Lu, W.-N. Xu, D.-S. Cai, C.-N. Zhang, and Y. Qian, “Effects of dietary carbohydrate/lipid ratios on non-specific immune responses, oxidative status and liver histology of juvenile yellow catfish Pelteobagrus fulvidraco,” Aquaculture, vol. 426–427, no. 0, pp. 41–48, Apr. 2014.

[263] G. A. Ayoko, K. Singh, S. Balerea, and S. Kokot, “Exploratory multivariate modeling and prediction of the physico-chemical properties of surface water and groundwater,” J. Hydrol., vol. 336, no. 1–2, pp. 115–124, Mar. 2007.

[264] H. Chang, “Spatial analysis of water quality trends in the Han River basin, South Korea.,” Water Res., vol. 42, no. 13, pp. 3285–304, Jul. 2008.

[265] D. Karamanis, K. Stamoulis, K. Ioannides, and D. Patiris, “Spatial and seasonal trends of natural radioactivity and heavy metals in river waters of Epirus, Macedonia and Thessalia,” Desalination, vol. 224, no. 1–3, pp. 250–260, Apr. 2008.

[266] R. K. Garg, R. J. Rao, D. Uchchariya, G. Shukla, and D. N. Saksena, “Seasonal variations in water quality and major threats to Ramsagar reservoir , India,” African J. Environ. Sci. Technol., vol. 4, no. 2, pp. 61–76, 2010.

[267] K. P. Singh, A. Malik, and S. Sinha, “Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—a case study,” Anal. Chim. Acta, vol. 538, no. 1–2, pp. 355–374, May 2005.

Page 30: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

275

[268] V. Nisha and H. Achyuthan, “Physico-chemical parameters of the SW and post NE monsoon (2009) seawater along the continental slope, Tamil Nadu, east coast of India, Bay of Bengal,” Cont. Shelf Res., vol. 72, pp. 99–106, Jan. 2014.

[269] M. Barret, N. Gagnon, E. Topp, L. Masse, D. I. Massé, and G. Talbot, “Physico-chemical characteristics and methanogen communities in swine and dairy manure storage tanks: spatio-temporal variations and impact on methanogenic activity.,” Water Res., vol. 47, no. 2, pp. 737–46, Feb. 2013.

[270] M. D. M. Sánchez-Montoya, M. I. Arce, M. R. Vidal-Abarca, M. L. Suárez, N. Prat, and R. Gómez, “Establishing physico-chemical reference conditions in Mediterranean streams according to the European Water Framework Directive.,” Water Res., vol. 46, no. 7, pp. 2257–69, May 2012.

[271] S. Fdez-Ortiz de Vallejuelo, A. Gredilla, A. de Diego, G. Arana, and J. M. Madariaga, “Methodology to assess the mobility of trace elements between water and contaminated estuarine sediments as a function of the site physico-chemical characteristics.,” Sci. Total Environ., vol. 473–474, pp. 359–71, Mar. 2014.

[272] P. U. Singare, R. Lokhabde, and P. Pathak, “Soil Pollution along Kalwa Bridge at Thane Creek of Maharashtra, India,” J. Environ. Prot. (Irvine,. Calif)., vol. 01, no. 02, pp. 121–128, 2010.

[273] J. P. Bolívar, R. García-Tenorio, J. L. Mas, and F. Vaca, “Radioactive impact in sediments from an estuarine system affected by industrial wastes releases.,” Environ. Int., vol. 27, no. 8, pp. 639–45, Mar. 2002.

[274] A. Ramdani, H. M. Djellouli, N. A. Yala, S. Taleb, A. Benghalem, C. Mahi, and A. Khadraoui, “Physico-Chemical Water Quality in Some Regions of Southern Algeria and Pretreatment Prediction,” Procedia Eng., vol. 33, pp. 335–339, Jan. 2012.

[275] S. Das, S. C. Patnaik, H. K. Sahu, a. Chakraborty, M. Sudarshan, and H. N. Thatoi, “Heavy metal contamination, physico-chemical and microbial evaluation of water samples collected from chromite mine environment of Sukinda, India,” Trans. Nonferrous Met. Soc. China, vol. 23, no. 2, pp. 484–493, Feb. 2013.

[276] S. B. Jonnalagadda and G. Mhere, “Water quality of the odzi river in the Eastern Highlands of Zimbabwe.,” Water Res., vol. 35, no. 10, pp. 2371–6, Jul. 2001.

Page 31: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

276

[277] V. R. Kumari and I. M. Rao, “Estuarine characteristics of lower Krishna river,” Indian J. Mar. Sci., vol. 38, no. June, pp. 215–223, 2009.

[278] N. R. Prasad and J. M. Patil, “A Study of Physico-Chemical Parameters Of Krishna River Water Particularly In Western Maharashtra,” Rasayan J. Chem., vol. 1, no. 4, pp. 943–958, 2008.

[279] S. Chandra, A. Singh, P. K. Tomar, and A. Kumar, “Evaluation of Physicochemical Characteristics of Various River Water in India,” E-Journal Chem., vol. 8, no. 4, pp. 1546–1555, 2011.

[280] M. Varol, B. Gökot, A. Bekleyen, and B. Şen, “Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey,” Catena, vol. 92, pp. 11–21, May 2012.

[281] E. D. Dikio, “Water Quality Evaluation of Vaal River , Sharpeville and Bedworth Lakes in the Vaal Region of South Africa,” Res. J. Appl. Sci. Eng. Technol., vol. 2, no. 6, pp. 574–579, 2010.

[282] R. C. G. Chidya, S. M. I. Sajidu, J. F. Mwatseteza, and W. R. L. Masamba, “Evaluation and assessment of water quality in Likangala River and its catchment area,” Phys. Chem. Earth, Parts A/B/C, vol. 36, no. 14–15, pp. 865–871, Jan. 2011.

[283] M. Muniyan. and G. Ambedkar, “Seasonal Variations in Physicochemical Parameters of Water Collected from Kedilam River, at Visoor Cuddalore District, Tamil Nadu, India,” Int. J. Environ. Biol., vol. 1, no. 2, pp. 15–18, 2011.

[284] M. Thirupathaiah, C. Samatha, and C. Sammaiah, “Analysis of water quality using physico-chemical parameters in lower manair reservoir of Karimnagar district , Andhra Pradesh,” Int. J. Environ. Sci., vol. 3, no. 1, pp. 172–180, 2012.

[285] X. Yuan, L. Zhang, J. Li, C. Wang, and J. Ji, “Sediment properties and heavy metal pollution assessment in the river, estuary and lake environments of a fluvial plain, China,” Catena, vol. 119, pp. 52–60, Aug. 2014.

[286] C. C. M. Ip, X.-D. Li, G. Zhang, O. W. H. Wai, and Y.-S. Li, “Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China.,” Environ. Pollut., vol. 147, no. 2, pp. 311–23, May 2007.

Page 32: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

277

[287] P. Palma, L. Ledo, S. Soares, I. R. Barbosa, and P. Alvarenga, “Spatial and temporal variability of the water and sediments quality in the Alqueva reservoir (Guadiana Basin; southern Portugal).,” Sci. Total Environ., vol. 470–471, no. 2014, pp. 780–90, Feb. 2014.

[288] J. Dinakaran and N. S. R. Krishnayya, “Variations in total organic carbon and grain size distribution in ephemeral river sediments in western India,” Int. J. Sediment Res., vol. 26, no. 2, pp. 239–246, Jun. 2011.

[289] J. Bouchez, V. Galy, R. G. Hilton, J. Gaillardet, P. Moreira-Turcq, M. A. Pérez, C. France-Lanord, and L. Maurice, “Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles,” Geochim. Cosmochim. Acta, vol. 133, pp. 280–298, May 2014.

[290] S. J. C. Csiki and B. L. Rhoads, “Influence of four run-of-river dams on channel morphology and sediment characteristics in Illinois, USA,” Geomorphology, vol. 206, no. 0, pp. 215–229, Feb. 2014.

[291] K. M. Matthews, C.-K. Kim, and P. Martin, “Determination of 210Po in environmental materials: a review of analytical methodology.,” Appl. Radiat. Isot., vol. 65, no. 3, pp. 267–79, Mar. 2007.

[292] P. Germain, G. Leclerc, and S. Simonb, “Transfer of polonium-210 into Mytilus edulis (L.) and fucus vesiculosus (L.) from the baie de Seine ( Channel coast of France ),” Sci. Total Environ. 164, vol. 164, pp. 109–123, 1995.

[293] M. S. Al-Masri, M. E. Byrakdar, S. Mamish, and M. a. Al-Haleem, “Determination of natural radioactivity in Euphrates river,” J. Radioanal. Nucl. Chem., vol. 261, no. 2, pp. 349–355, 2004.

[294] K. Shaheed, S. S. N. Somasundaram, P. Shahul Hameed, and M. A. R. Iyengar, “A Study of Polonium-210 Distribution Aspects In The Riverine Ecosystem Of Kaveri , Tiruchirappalli, India,” Environ. Pollut., vol. 95, no. 3, pp. 371–377, 1997.

[295] P. Shahul Hameed, K. Shaheed, and S. S. N. Somasundaram, “A study on distribution of natural radionuclide polonium-210 in a pond ecosystem,” J. Biosci., vol. 22, no. 5, pp. 627–634, 1997.

[296] S. Suriyanarayanan, G. M. Brahmanandhan, K. Samivel, S. Ravikumar, and P. S. Hameed, “Assessment of (210)Po and (210)Pb in marine biota of the

Page 33: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

278

Mallipattinam ecosystem of Tamil Nadu, India.,” J. Environ. Radioact., vol. 101, no. 11, pp. 1007–1010, Nov. 2010.

[297] D. G. Marbaniang, R. K. Poddar, P. Nongkynrih, and D. T. Khathing, “210-Polonium studies in some environmental and biological matrices of Domiasiat uranium deposit area, West Khasi Hills, Meghalaya, India.,” Environ. Monit. Assess., vol. 162, no. 1–4, pp. 347–53, Mar. 2010.

[298] G. Jia and J. Jia, “Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology.,” J. Environ. Radioact., vol. 106, pp. 98–119, Apr. 2012.

[299] F. V Clulow, N. K. Davé, T. P. Lim, and R. Avadhanula, “Radium-226 in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada.,” Environ. Pollut., vol. 99, no. 1, pp. 13–28, Jan. 1998.

[300] WHO, Guidelines for Drinking-Water Quality. World Health Organization, 2011, p. 546.

[301] A. Bollhöfer, J. Brazier, C. Humphrey, B. Ryan, and A. Esparon, “A study of radium bioaccumulation in freshwater mussels, Velesunio angasi, in the Magela Creek catchment, Northern Territory, Australia.,” J. Environ. Radioact., vol. 102, no. 10, pp. 964–74, Oct. 2011.

[302] E. Tabar, M. N. Kumru, M. M. Saç, M. İçhedef, M. Bolca, and F. Özen, “Radiological and chemical monitoring of Dikili geothermal waters, Western Turkey,” Radiat. Phys. Chem., vol. 91, pp. 89–97, Oct. 2013.

[303] Dominic To, “Radlochemical Determination of Low-Level Lead-21 0 in Environmental Water Samples,” Analtical Chem., vol. 65, no. 19, pp. 2701–2703, 1993.

[304] R. T. Saito, R. C. L. Figueira, M. G. Tessler, and C. Island, “210Pb and 210po levels in sediments , water , and bioindicators in the Cananeia-Iguape estuary - Sao Paulo - Brazil,” Czechoslov. J. Phys., vol. 53, pp. 75–81, 2003.

[305] S. Suriyanarayanan, G. M. Brahmanandhan, J. Malathi, S. Ravi Kumar, V. Masilamani, P. Shahul Hameed, and S. Selvasekarapandian, “Studies on the distribution of 210Po and 210Pb in the ecosystem of Point Calimere Coast (Palk Strait), India.,” J. Environ. Radioact., vol. 99, no. 4, pp. 766–71, Apr. 2008.

Page 34: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

279

[306] P. Shahul Hameed, S. S. N. Somasundaram, and Μ. A. R. Iyengar, “Radium-226 levels in the Cauvery river ecosystem , India,” J. Biosci., vol. 22, no. 2, pp. 225–231, 1997.

[307] USEPA, National Primary Drinking Water Regulations, Radionuclides, Final Rule (40 CFR Parts 9, 141 and 142). 2003.

[308] J. Singh, H. Singh, S. Singh, and B. S. Bajwa, “Estimation of uranium and radon concentration in some drinking water samples,” Radiat. Meas., vol. 43, pp. S523–S526, Aug. 2008.

[309] K. Brindha, L. Elango, and R. N. Nair, “Spatial and temporal variation of uranium in a shallow weathered rock aquifer in southern India,” J. Earth Syst. Sci., vol. 120, no. 5, pp. 911–920, Nov. 2011.

[310] Iyengar M A R, “Studies on the distribution of natural radioactivity in marine organisms,” 1983.

[311] M. S. Musthafa and R. Krishnamoorthy, “Estimation of 2100Po and 210Pb and its dose to human beings due to consumption of marine species of Ennore Creek, South India.,” Environ. Monit. Assess., vol. 184, no. 10, pp. 6253–60, Oct. 2012.

[312] S.-A. Mihai, G. Shaw, and I. Georgescu, “Polonium concentration distribution in bed load sediment samples along the Romanian sector of the Danube river and the Black Sea coast,” J. Radioanal. Nucl. Chem., vol. 213, no. 1, pp. 1–8, 1996.

[313] M. Dowdall and A. Lepland, “Elevated levels of radium-226 and radium-228 in marine sediments of the Norwegian Trench (‘Norskrenna’) and Skagerrak.,” Mar. Pollut. Bull., vol. 64, no. 10, pp. 2069–76, Oct. 2012.

[314] A. Lepland, O. Sæther, and T. Thorsnes, “Accumulation of barium in recent Skagerrak sediments: sources and distribution controls,” Mar. Geol., vol. 163, no. 1–4, pp. 13–26, Feb. 2000.

[315] T. L. Theng, Z. Ahmad, C. Abd, and R. Mohamed, “Estimation of sedimentation rates using 210 Pb and 210 Po at the coastal water of Sabah , Malaysia,” J. Radioanal. Nucl. Chem., vol. 256, no. 1, pp. 115–120, 2003.

[316] S. Aközcan, “Levels of 210Po and 210Pb in mussel and sediments in Candarlı Gulf and the related dose assessment to the coastal population.,” Mar. Pollut. Bull., vol. 73, no. 1, pp. 11–5, Aug. 2013.

Page 35: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

280

[317] F. V Clulow, N. K. Dav, T. P. Lim, and R. Avadhanula, “Radionuclides (lead-210, polonium-210, thorium-230, and -232) and thorium and uranium in water, sediments, and fish from lakes near the city of Elliot Lake, Ontario, Canada.,” Environ. Pollut., vol. 99, pp. 199–213, 1998.

[318] M. F. Khan and S. G. Wesley, “Radionuclides in resident and migratory fishes of a wedge bank region: Estimation of dose to human beings, South India.,” Mar. Pollut. Bull., vol. 64, no. 10, pp. 2224–32, Oct. 2012.

[319] L. D. Kraemer and D. Evans, “Uranium bioaccumulation in a freshwater ecosystem: impact of feeding ecology.,” Aquat. Toxicol., vol. 124–125, pp. 163–70, Nov. 2012.

[320] G. G. Pyle and F. V. Clulow, “Radionuclide equilibria between the aquatic environment and fish tissues,” J. Environ. Radioact., vol. 40, no. 1, pp. 59–74, Jul. 1998.

[321] H. Cooley and J. Klaverkamp, “Accumulation and distribution of dietary uranium in lake whitefish (Coregonus clupeaformis).,” Aquat. Toxicol., vol. 48, no. 4, pp. 477–494, Apr. 2000.

[322] W. F. Yang, Y. P. Huang, M. Chen, Y. S. Qiu, H. B. Li, and L. Zhang, “A large excess of 210Po in the overlying water of the Zhubi Coral Reef flat, in the South China Sea.,” Mar. Pollut. Bull., vol. 62, no. 5, pp. 912–7, May 2011.

[323] C.-L. Wei, P.-R. Chen, S.-Y. Lin, D. D. Sheu, L.-S. Wen, and W.-C. Chou, “Distributions of 210Pb and 210Po in surface water surrounding Taiwan: A synoptic observation,” Deep Sea Res. Part II Top. Stud. Oceanogr., May 2014.

[324] E. M. Çatal, A. Uğur, B. Ozden, and I. Filizok, “210Po and 210Pb variations in fish species from the Aegean Sea and the contribution of 210Po to the radiation dose.,” Mar. Pollut. Bull., vol. 64, no. 4, pp. 801–6, Apr. 2012.

[325] S. Giri, V. N. Jha, G. Singh, and R. M. Tripathi, “Dose estimates for the local inhabitants from 210Po ingestion via dietary sources at a proposed uranium mining site in India.,” Int. J. Radiat. Biol., vol. 88, no. 7, pp. 540–6, Jul. 2012.

[326] S. Giri, G. Singh, V. N. Jha, and R. M. Tripathi, “Natural radionuclides in fish species from surface water of Bagjata and Banduhurang uranium mining areas, East Singhbhum, Jharkhand, India.,” Int. J. Radiat. Biol., vol. 86, no. 11, pp. 946–56, Nov. 2010.

Page 36: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

281

[327] EPA, “Cancer Risk Coefficients for Environmental Exposure to Radionuclides -Federal Guidance Report No. 13, EPA 402-R,” 1999.

[328] S. Mishra, S. Bhalke, G. G. Pandit, and V. D. Puranik, “Estimation of 210Po and its risk to human beings due to consumption of marine species at Mumbai, India.,” Chemosphere, vol. 76, no. 3, pp. 402–6, Jul. 2009.

[329] M. Rožmarić, M. Rogić, L. Benedik, D. Barišić, and P. Planinšek, “Radiological characterization of tap waters in Croatia and the age dependent dose assessment,” Chemosphere, vol. 111, pp. 272–277, Sep. 2014.

[330] P. Lenka, S. K. Sahoo, S. Mohapatra, A. C. Patra, J. S. Dubey, D. Vidyasagar, and D. Puranik, “Ingestion dose from 238 u , 232 Th , 226 Ra , 40 k and 137 Cs in cereals , pulses and drinking water to adult population in a high background radiation area ,odisha, India,” Radiat. Prot. Dosimetry, vol. 153, no. 3, pp. 328–333, 2013.

[331] A. C. Patra, S. Mohapatra, S. K. Sahoo, P. Lenka, J. S. Dubey, R. M. Tripathi, and D. Puranik, “Age-Dependent Dose And Health Risk Due To Intake Of Uranium In Drinking Water From Jaduguda , India,” Radiat. Prot. Dosimetry, vol. 155, no. 2, pp. 210–216, 2013.

[332] M. F. Khan and S. Godwin Wesley, “Assessment of health safety from ingestion of natural radionuclides in seafoods from a tropical coast, India.,” Mar. Pollut. Bull., vol. 62, no. 2, pp. 399–404, Feb. 2011.

[333] Bangera and Rudran, “Internal radiation dose to the public from polonium- 210 due to consumption of seafood from Bombay Harbour Bay.,” Bull. Radiat. Prot., vol. 18, no. 1–2, pp. 192–197, 1999.

[334] V. Kannan, M. A. R. Iyengar, and R. Ramesh, “Dose estimates to the public from 210Po ingestion via dietary sources at Kalpakkam (India),” Appl. Radiat. Isot., vol. 54, no. 4, pp. 663–674, Feb. 2001.

[335] M. Feroz Khan and S. Godwin Wesley, “Bioaccumulation OF 210Po AND 210Pb In Cephalopods Collected From Kudankulam (Southeastern Coast Of Gulf Of Mannar, India) And Assessment Of Dose In Human Beings,” Radiat. Prot. Dosimetry, vol. 158, no. 457–466, Dec. 2010.

[336] A. P. Radhakrishna, H. M. Somashekarappa, Y. Narayana, and K. Siddappa, “Distribution of some natural and artificial radionuclides in Mangalore environment of South India,” J. Environ. Radioact., vol. 30, no. 1, pp. 31–54, Jan. 1996.

Page 37: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

282

[337] G. Jia, M. Belli, U. Sansone, S. Rosamilia, and M. Blasi, “and 210 Po concentrations in the Venice lagoon ecosystem ( Italy ) and the potential radiological impact to the local public and environment 210 Pb,” J. Radioanal. Nucl. Chem., vol. 256, no. 3, pp. 513–528, 2003.

[338] Ö. Kılıç, M. Belivermiş, Y. Cotuk, and S. Topçuoğlu, “Radioactivity concentrations in mussel (Mytilus galloprovincialis) of Turkish Sea coast and contribution of 210Po to the radiation dose.,” Mar. Pollut. Bull., vol. 80, no. 1–2, pp. 325–9, Mar. 2014.

[339] M. U. Khandaker, N. B. Wahib, Y. M. Amin, and D. a. Bradley, “Committed effective dose from naturally occuring radionuclides in shellfish,” Radiat. Phys. Chem., vol. 88, pp. 1–6, Jul. 2013.

[340] W. Quan, Z. Hongda, F. Tiqiang, and L. Qingfen, “Re-estimation of internal dose from natural radionuclides for Chinese adult men.,” Radiat. Prot. Dosimetry, vol. 130, no. 4, pp. 434–41, Jan. 2008.

[341] W. R. Kaye, Z. S. Beauvais, and K. J. Kearfott, “Method of estimating lifetime cancer risk due to chronic radionuclide intake.,” Health Phys., vol. 100, no. 2, pp. 167–75, Feb. 2011.

[342] S. Giri, G. Singh, V. N. Jha, and R. M. Tripathi, “Risk assessment due to ingestion of natural radionuclides and heavy metals in the milk samples: a case study from a proposed uranium mining area, Jharkhand.,” Environ. Monit. Assess., vol. 175, no. 1–4, pp. 157–66, Apr. 2011.

[343] V. F. Jacomino, S. a. Bellintani, J. Oliveira, B. P. Mazzilli, D. E. Fields, M. H. Sampa, and B. Silva, “Estimates of cancer mortality due to the ingestion of mineral spring waters from a highly natural radioactive region of Brazil,” J. Environ. Radioact., vol. 33, no. 3, pp. 319–329, Jan. 1996.

[344] M. M. Finkelstein and N. Kreiger, “Radium in drinking water and risk of bone cancer in Ontario youths: a second study and combined analysis,” Occup. Environ. Med., vol. 53, no. December, pp. 305–312, 1996.

[345] E. Galunin, J. Ferreti, I. Zapelini, I. Vieira, C. Ricardo Teixeira Tarley, T. Abrão, and M. J. Santos, “Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: environmental risk assessment.,” J. Hazard. Mater., vol. 265, pp. 280–7, Jan. 2014.

[346] Bureau of Indian Standards, “Indian standards specifications for drinking water. Indian standards-10500, New Delhi (second revision).,” 2012.

Page 38: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

283

[347] M. Mohamed, M. Osman, T. Potter, and R. Levin, “Lead and cadmium in Nile River water and finished drinking water in Greater Cairo, Egypt,” Environ. Int., vol. 24, no. 7, pp. 767–772, Oct. 1998.

[348] A. Kaushik, A. Kansal, Santosh, Meena, S. Kumari, and C. P. Kaushik, “Heavy metal contamination of river Yamuna, Haryana, India: Assessment by Metal Enrichment Factor of the Sediments.,” J. Hazard. Mater., vol. 164, no. 1, pp. 265–70, May 2009.

[349] S. K. Sundaray, B. B. Nayak, T. K. Kanungo, and D. Bhatta, “Dynamics and quantification of dissolved heavy metals in the Mahanadi River estuarine system, India.,” Environ. Monit. Assess., vol. 184, no. 2, pp. 1157–79, Jan. 2012.

[350] M. V Balarama Krishna, K. Chandrasekaran, S. V Rao, D. Karunasagar, and J. Arunachalam, “Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS.,” Talanta, vol. 65, no. 1, pp. 135–43, Jan. 2005.

[351] D. Fantoni, G. Brozzo, M. Canepa, F. Cipolli, L. Marini, G. Ottonello, and M. Zuccolini, “Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks,” Environ. Geol., vol. 42, no. 8, pp. 871–882, Nov. 2002.

[352] B. Singh, V. Jain, and A. Mohan, “Monitoring of groundwater chemistry in terms of physical and chemical parameters of Gajraula, a semi-urbanized town of North India,” Phys. Chem. Earth, vol. 58–60, pp. 34–41, Jan. 2013.

[353] C. L. Dryden, A. S. Gordon, and J. R. Donat, “Seasonal survey of copper-complexing ligands and thiol compounds in a heavily utilized, urban estuary: Elizabeth River, Virginia,” Mar. Chem., vol. 103, no. 3–4, pp. 276–288, Jan. 2007.

[354] H. Bengtsson, G. Alvenäs, S. I. Nilsson, B. Hultman, and I. Öborn, “Cadmium, copper and zinc leaching and surface run-off losses at the Öjebyn farm in Northern Sweden—Temporal and spatial variation,” Agric. Ecosyst. Environ., vol. 113, no. 1–4, pp. 120–138, Apr. 2006.

[355] H. Takata, T. Aono, K. Tagami, and S. Uchida, “Processes controlling cobalt distribution in two temperate estuaries, Sagami Bay and Wakasa Bay, Japan,” Estuar. Coast. Shelf Sci., vol. 89, no. 4, pp. 294–305, Nov. 2010.

Page 39: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

284

[356] S. Lunvongsa, M. Oshima, and S. Motomizu, “Determination of total and dissolved amount of iron in water samples using catalytic spectrophotometric flow injection analysis.,” Talanta, vol. 68, no. 3, pp. 969–73, Jan. 2006.

[357] M. J. B. Alam, M. R. Islam, Z. Muyen, M. Mamun, and S. Islam, “Water quality parameters along rivers,” Int. J. Environ. Sci. Technol., vol. 4, no. 1, pp. 159–167, Jan. 2007.

[358] M. Varol, “Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques.,” J. Hazard. Mater., vol. 195, pp. 355–64, Nov. 2011.

[359] S. Nazeer, M. Z. Hashmi, and R. N. Malik, “Heavy metals distribution, risk assessment and water quality characterization by water quality index of the River Soan, Pakistan,” Ecol. Indic., vol. 43, pp. 262–270, Aug. 2014.

[360] M. Tuzen, M. Soylak, and K. Parlar, “Cadmium and lead contamination in tap water samples from Tokat, Turkey.,” Bull. Environ. Contam. Toxicol., vol. 75, no. 2, pp. 284–9, Aug. 2005.

[361] S. Triantafyllidou, C. K. Nguyen, Y. Zhang, and M. a Edwards, “Lead (Pb) quantification in potable water samples: implications for regulatory compliance and assessment of human exposure.,” Environ. Monit. Assess., vol. 185, no. 2, pp. 1355–65, Feb. 2013.

[362] T. M. Mutia, M. Z. Virani, W. N. Moturi, B. Muyela, W. J. Mavura, and J. O. Lalah, “Copper, lead and cadmium concentrations in surface water, sediment and fish, C. Carpio, samples from Lake Naivasha: effect of recent anthropogenic activities,” Environ. Earth Sci., vol. 67, no. 4, pp. 1121–1130, Feb. 2012.

[363] P. C. Bennett, a. M. El Shishtawy, J. M. Sharp, and M. G. Atwia, “Source and migration of dissolved manganese in the Central Nile Delta Aquifer, Egypt,” J. African Earth Sci., vol. 96, pp. 8–20, Aug. 2014.

[364] N. Barlas, N. Akbulut, and M. Aydoğan, “Assessment of Heavy Metal Residues in the Sediment and Water Samples of Uluabat Lake, Turkey,” Bull. Environ. Contam. Toxicol., vol. 74, no. 2, pp. 286–293, Feb. 2005.

[365] K. Manoj, P. K. Padhy, and S. Chaudhury, “Study of Heavy Metal Contamination of the River Water through Index Analysis Approach and Environmetrics,” Bull. Environ. Pharmacol. Life Sci., vol. 1, no. September, pp. 7–15, 2012.

Page 40: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

285

[366] S.-R. Lim and J. M. Schoenung, “Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays.,” J. Hazard. Mater., vol. 177, no. 1–3, pp. 251–9, May 2010.

[367] K. M. Mohiuddin, Y. Ogawa, H. M. Zakir, K. Otomo, and N. Shikazono, “Heavy metals contamination in water and sediments of an urban river in a developing country,” Int. J. Environ. Sci. Technol., vol. 8, no. 4, pp. 723–736, Sep. 2011.

[368] G. Suresh, P. Sutharsan, V. Ramasamy, and R. Venkatachalapathy, “Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India.,” Ecotoxicol. Environ. Saf., vol. 84, pp. 117–24, Oct. 2012.

[369] C.-W. Chen, C.-F. Chen, and C.-D. Dong, “Distribution and Enrichment Evaluation of Cadmium in the Sediments of Canon River Mouth, Taiwan,” Energy Procedia, vol. 16, no. Cd, pp. 895–900, Jan. 2012.

[370] K. Loska and D. Wiechuła, “Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir.,” Chemosphere, vol. 51, no. 8, pp. 723–33, Jun. 2003.

[371] R. Ramesh, V. Subramanian, N. Delhi, and R. V. A. N. Grieken, “Heavy Metal Distribution in Sediments of Krishna River Basin, India,” Environ. Geol. Water Sci., vol. 15, no. 3, pp. 207–216, 1990.

[372] C. Wang, S. Liu, Q. Zhao, L. Deng, and S. Dong, “Spatial variation and contamination assessment of heavy metals in sediments in the Manwan Reservoir, Lancang River.,” Ecotoxicol. Environ. Saf., vol. 82, pp. 32–9, Aug. 2012.

[373] H. Ghrefat and N. Yusuf, “Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan.,” Chemosphere, vol. 65, no. 11, pp. 2114–21, Dec. 2006.

[374] H. Karadede and E. Unlu, “Concentrations of some heavy metals in water , sediment and rk Dam Lake ( Euphrates ), Turkey,” Chemosphere, vol. 41, pp. 1371–1376, 2000.

[375] A Das and S. Krishnaswami, “Elemental geochemistry of river sediments from the Deccan Traps, India: Implications to sources of elements and their

Page 41: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

286

mobility during basalt–water interaction,” Chem. Geol., vol. 242, no. 1–2, pp. 232–254, Jul. 2007.

[376] U. Förstner, “Metal Pollution Assessment from Sediment Analysis,” in Metal Pollution in the Aquatic Environment SE - 4, Springer Berlin Heidelberg, 1981, pp. 110–196.

[377] K. Pan and W.-X. Wang, “Trace metal contamination in estuarine and coastal environments in China.,” Sci. Total Environ., vol. 421–422, pp. 3–16, Apr. 2012.

[378] F. Viana, R. Huertas, and E. Danulat, “Heavy metal levels in fish from coastal waters of Uruguay.,” Arch. Environ. Contam. Toxicol., vol. 48, no. 4, pp. 530–7, May 2005.

[379] A Ikem and S. Adisa, “Runoff effect on eutrophic lake water quality and heavy metal distribution in recent littoral sediment.,” Chemosphere, vol. 82, no. 2, pp. 259–67, Jan. 2011.

[380] L. Wang, Y. Wang, W. Zhang, C. Xu, and Z. An, “Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China,” Environ. Earth Sci., vol. 71, no. 3, pp. 1183–1193, May 2013.

[381] W. Zhiyuan, W. Dengfeng, Z. Huiping, and Q. Zhiping, “Assessment of Soil Heavy Metal Pollution with Principal Component Analysis and Geoaccumulation Index,” Procedia Environ. Sci., vol. 10, pp. 1946–1952, Jan. 2011.

[382] M. L. Benhaddya and M. Hadjel, “Spatial distribution and contamination assessment of heavy metals in surface soils of Hassi Messaoud, Algeria,” Environ. Earth Sci., vol. 71, no. 3, pp. 1473–1486, May 2013.

[383] W. Tang, Y. Zhao, C. Wang, B. Shan, and J. Cui, “Heavy metal contamination of overlying waters and bed sediments of Haihe Basin in China.,” Ecotoxicol. Environ. Saf., vol. 98, pp. 317–23, Dec. 2013.

[384] A. Jamshidi-Zanjani and M. Saeedi, “Metal pollution assessment and multivariate analysis in sediment of Anzali international wetland,” Environ. Earth Sci., vol. 70, no. 4, pp. 1791–1808, Feb. 2013.

[385] K. M. Mohiuddin, H. M. Zakir, K. Otomo, S. Sharmin, and N. Shikazono, “Geochemical distribution of trace metal pollutants in water and sediments of

Page 42: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

287

downstream of an urban river,” Int. J. Environ. Sci. Technol., vol. 7, no. 1, pp. 17–28, Dec. 2009.

[386] A. S. Ellis, T. M. Johnson, and T. D. Bullen, “Chromium isotopes and the fate of hexavalent chromium in the environment.,” Science, vol. 295, no. 5562, pp. 2060–2062, Mar. 2002.

[387] B. Cui, Q. Zhang, K. Zhang, X. Liu, and H. Zhang, “Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China.,” Environ. Pollut., vol. 159, no. 5, pp. 1297–306, May 2011.

[388] F. Cevik, M. Z. L. Göksu, O. B. Derici, and O. Findik, “An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses.,” Environ. Monit. Assess., vol. 152, no. 1–4, pp. 309–17, May 2009.

[389] M. Chabukdhara and A. K. Nema, “Assessment of heavy metal contamination in Hindon River sediments: a chemometric and geochemical approach.,” Chemosphere, vol. 87, no. 8, pp. 945–53, May 2012.

[390] R. Moore and W. Lodwick, “Interval analysis and fuzzy set theory,” Fuzzy Sets Syst., vol. 135, no. 1, pp. 5–9, Apr. 2003.

[391] E. P. A. Maual, “Risk assessment guidance for superfund. Volume I Human health evaluation manual.,” 2010.

[392] R. M. Maxwell and W. E. Kastenberg, “Stochastic environmental risk analysis: an integrated methodology for predicting cancer risk from contaminated groundwater,” Stoch. Environ. Res. Risk Assess., vol. 13, no. 1–2, pp. 27–47, Apr. 1999.

[393] A. Mofarrah and T. Husain, “Fuzzy Based Health Risk Assessment of Heavy Metals Introduced into the Marine Environment,” Water Qual. Expo. Heal., vol. 3, no. 1, pp. 25–36, Mar. 2011.

[394] A. K. Mishra and B. Mohanty, “Acute toxicity impacts of hexavalent chromium on behavior and histopathology of gill, kidney and liver of the freshwater fish, Channa punctatus (Bloch).,” Environ. Toxicol. Pharmacol., vol. 26, no. 2, pp. 136–41, Sep. 2008.

Page 43: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

288

[395] S. O. Asagba, G. E. Eriyamremu, and M. E. Igberaese, “Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish (Clarias gariepinus),” Fish Physiol. Biochem., vol. 34, no. 1, pp. 61–69, 2008.

[396] J. C. McGeer, C. Szebedinszky, D. Gordon McDonald, and C. M. Wood, “Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout 2: Tissue specific metal accumulation,” Aquat. Toxicol., vol. 50, no. 3, pp. 245–256, 2000.

[397] W. F. Neuman, M. W. Neuman, E. R. Main, and B. J. Mulryan, “The deposition of uranium in bone: v. Ion exchange studies ,” J. Biol. Chem. , vol. 179 , no. 1 , pp. 335–340, May 1949.

[398] P. R. Palaniappan and S. Karthikeyan, “Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel,” J. Environ. Sci., vol. 21, no. 2, pp. 229–236, Jan. 2009.

[399] L. M. Correa, D. Kochhann, A. G. Becker, M. A. Pavanato, S. F. Llesuy, V. L. Loro, A. Raabe, M. F. Mesko, E. M. M. Flores, V. L. Dressler, and B. Baldisserotto, “Biochemistry, cytogenetics and bioaccumulation in silver catfish (Rhamdia quelen) exposed to different thorium concentrations,” Aquat. Toxicol., vol. 88, no. 4, pp. 250–256, 2008.

[400] T. M. Poston, “Observations on the bioaccumulation potential of thorium and uranium in rainbow trout (Salmo gairdneri),” Bull. Environ. Contam. Toxicol., vol. 28, no. 6, pp. 682–690, 1982.

[401] P. B. Lobel, H. P. Longerich, S. E. Jackson, and S. P. Belkhode, “A major factor contributing to the high degree of unexplained variability of some elements concentrations in biological tissue: 27 elements in 5 organs of the mussel Mytilus as a model,” Arch. Environ. Contam. Toxicol., vol. 21, no. 1, pp. 118–125, 1991.

[402] J. R. Reinfelder and N. S. Fisher, “Retention of elements absorbed by juvenile fish,” Limnol. Oceanogr., vol. 39, no. 8, pp. 1783–1789, 1994.

[403] B. C. Suedel, J. A. Boraczek, R. K. Peddicord, P. A. Clifford, and T. M. Dillon, “Trophic Transfer and Biomagnification Potential of Contaminants in Aquatic Ecosystems,” in Reviews of Environmental Contamination and Toxicology SE - 2, vol. 136, G. Ware, Ed. Springer New York, 1994, pp. 21–89.

Page 44: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

289

[404] J. R. Reinfelder, N. S. Fisher, S. N. Luoma, J. W. Nichols, and W.-X. Wang, “Trace element trophic transfer in aquatic organisms: A critique of the kinetic model approach,” Sci. Total Environ., vol. 219, no. 2–3, pp. 117–135, Aug. 1998.

[405] C. Y. Chen, R. S. Stemberger, B. Klaue, J. D. Blum, P. C. Pickhardt, and C. L. Folt, “Accumulation of heavy metals in food web components across a gradient of lakes,” Limnol. Oceanogr., vol. 45, no. 7, pp. 1525–1536, 2000.

[406] R. Dallinger and H. Kautzky, “The importance of contaminated food for the uptake of heavy metals by rainbow trout (Salmo gairdneri): a field study,” Oecologia, vol. 67, no. 1, pp. 82–89, 1985.

[407] R. M. G. Wells, J. Baldwin, R. S. Seymour, K. Christian, and T. Brittain, “Red blood cell function and haematology in two tropical freshwater fishes from Australia.,” Comp. Biochem. Physiol. A. Mol. Integr. Physiol., vol. 141, no. 1, pp. 87–93, May 2005.

[408] T. W. Lohner, R. J. Reash, V. E. Willet, and L. a Rose, “Assessment of tolerant sunfish populations (Lepomis sp.) inhabiting selenium-laden coal ash effluents. 1. Hematological and population level assessment.,” Ecotoxicol. Environ. Saf., vol. 50, no. 3, pp. 203–16, Nov. 2001.

[409] Z.-H. Li, J. Velisek, R. Grabic, P. Li, J. Kolarova, and T. Randak, “Use of hematological and plasma biochemical parameters to assess the chronic effects of a fungicide propiconazole on a freshwater teleost.,” Chemosphere, vol. 83, no. 4, pp. 572–8, Apr. 2011.

[410] G. Nussey, J. H. J. Van Vuren, and H. H. Preez, “Effect of copper on the haematology and osmoregulation of the Mozambique tilapia , Oreochromis mossambicus ( Cichlidae ),” vol. 11, no. 3, pp. 369–380, 2006.

[411] G. Rey Vázquez and G. a Guerrero, “Characterization of blood cells and hematological parameters in Cichlasoma dimerus (Teleostei, Perciformes).,” Tissue Cell, vol. 39, no. 3, pp. 151–60, Jun. 2007.

[412] C. Kavitha, A. Malarvizhi, S. Senthil Kumaran, and M. Ramesh, “Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla.,” Food Chem. Toxicol., vol. 48, no. 10, pp. 2848–54, Oct. 2010.

[413] B. N. Kotsanis, J. I. Georgudaki, and K. K. Zoumbos, “Changes in selected haematological parameters at early stages of the rainbow trout \ Oncorhynchus

Page 45: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

290

mykiss \ subjected to metal toxicants ] arsenic \ cadmium and mercury,” J. Appl. Ichthyol., vol. 16, pp. 276–278, 1999.

[414] M. J. Chowdhury, D. G. McDonald, and C. M. Wood, “Gastrointestinal uptake and fate of cadmium in rainbow trout acclimated to sublethal dietary cadmium.,” Aquat. Toxicol., vol. 69, no. 2, pp. 149–63, Aug. 2004.

[415] A. Gül, a Ç. K. Benli, A. Ayhan, B. K. Memmi, M. Selvi, A. Sepici-Dinçel, G. Ç. Cakiroğullari, and F. Erkoç, “Sublethal propoxur toxicity to juvenile common carp (Cyprinus carpio L., 1758): biochemical, hematological, histopathological, and genotoxicity effects.,” Environ. Toxicol. Chem., vol. 31, no. 9, pp. 2085–92, Sep. 2012.

[416] A. S. Al-Akel, H. F. A. Al-Balawi, F. Al-Misned, S. Mahboob, Z. Ahmad, and E. M. Suliman, “Effects of dietary copper exposure on accumulation, growth, and hematological parameters in Cyprinus carpio,” Toxicol. Environ. Chem., vol. 92, no. 10, pp. 1865–1878, Nov. 2010.

[417] M. Oner, G. Atli, and M. Canli, “Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures.,” Environ. Toxicol. Chem., vol. 27, no. 2, pp. 360–6, Feb. 2008.

[418] I. R. Falconer, M. D. Burch, D. A. Steffensen, M. Choice, and O. R. Coverdale, “Toxicity of the blue-green alga (cyanobacterium) Microcystis aeruginosa in drinking water to growing pigs, as an animal model for human injury and risk assessment,” Environ. Toxicol. Water Qual., vol. 9, no. 2, pp. 131–139, 1994.

[419] D.-H. Lee, M.-H. Ha, K.-Y. Kim, D.-G. Jin, and D. R. Jacobs, “Gamma-glutamyltransferase: an effect modifier in the association between age and hypertension in a 4-year follow-up study.,” J. Hum. Hypertens., vol. 18, no. 11, pp. 803–7, Nov. 2004.

[420] X.-Y. Li, I.-K. Chung, J.-I. Kim, and J.-A. Lee, “Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to Microcystis under laboratory conditions.,” Toxicon, vol. 44, no. 8, pp. 821–7, Dec. 2004.

[421] M. T. Mazorra, J. a Rubio, and J. Blasco, “Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals.,” Comp. Biochem. Physiol. B. Biochem. Mol. Biol., vol. 131, no. 2, pp. 241–9, Feb. 2002.

Page 46: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

291

[422] S. Wen, M. Cheng, H. Wang, J. Yue, H. Wang, G. Li, L. Zheng, Z. Zhong, and F. Peng, “Serum uric acid levels and the clinical characteristics of depression.,” Clin. Biochem., vol. 45, no. 1–2, pp. 49–53, Jan. 2012.

[423] S. Agrahari, K. C. Pandey, and K. Gopal, “Biochemical alteration induced by monocrotophos in the blood plasma of fish, Channa punctatus (Bloch),” Pestic. Biochem. Physiol., vol. 88, no. 3, pp. 268–272, Jul. 2007.

[424] B. Lal and T. P. Singh, “Impact of pesticides on lipid metabolism in the freshwater catfish, Clarias batrachus, during the vitellogenic phase of its annual reproductive cycle,” Ecotoxicol. Environ. Saf., vol. 13, no. 1, pp. 13–23, Feb. 1987.

[425] D. Kochhann, M. a Pavanato, S. F. Llesuy, L. M. Correa, A. P. Konzen Riffel, V. L. Loro, M. F. Mesko, E. M. M. Flores, V. L. Dressler, and B. Baldisserotto, “Bioaccumulation and oxidative stress parameters in silver catfish (Rhamdia quelen) exposed to different thorium concentrations.,” Chemosphere, vol. 77, no. 3, pp. 384–91, Oct. 2009.

[426] L. Cao, W. Huang, J. Liu, X. Yin, and S. Dou, “Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure.,” Comp. Biochem. Physiol. C. Toxicol. Pharmacol., vol. 151, no. 3, pp. 386–92, Apr. 2010.

[427] T. V Bagnyukova, O. I. Chahrak, and V. I. Lushchak, “Coordinated response of goldfish antioxidant defenses to environmental stress.,” Aquat. Toxicol., vol. 78, no. 4, pp. 325–31, Jul. 2006.

[428] A. Stara, J. Machova, and J. Velisek, “Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.).,” Environ. Toxicol. Pharmacol., vol. 33, no. 2, pp. 334–43, Mar. 2012.

[429] B. Shao, L. Zhu, M. Dong, J. Wang, J. Wang, H. Xie, Q. Zhang, Z. Du, and S. Zhu, “DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio).,” Ecotoxicology, vol. 21, no. 5, pp. 1533–40, Jul. 2012.

[430] D. Ferreira, A. C. da Motta, L. C. Kreutz, C. Toni, V. L. Loro, and L. J. G. Barcellos, “Assessment of oxidative stress in Rhamdia quelen exposed to agrichemicals.,” Chemosphere, vol. 79, no. 9, pp. 914–21, May 2010.

[431] M. Oliva, J. José Vicente, C. Gravato, L. Guilhermino, and M. Dolores Galindo-Riaño, “Oxidative stress biomarkers in Senegal sole, Solea

Page 47: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

292

senegalensis, to assess the impact of heavy metal pollution in a Huelva estuary (SW Spain): seasonal and spatial variation.,” Ecotoxicol. Environ. Saf., vol. 75, no. 1, pp. 151–62, Jan. 2012.

[432] A Vaglio and C. Landriscina, “Changes in liver enzyme activity in the teleost Sparus aurata in response to cadmium intoxication.,” Ecotoxicol. Environ. Saf., vol. 43, no. 1, pp. 111–6, May 1999.

[433] A C. Elia, a J. M. Dörr, and R. Galarini, “Comparison of organochlorine pesticides, PCBs, and heavy metal contamination and of detoxifying response in tissues of Ameiurus melas from Corbara, Alviano, and Trasimeno Lakes, Italy.,” Bull. Environ. Contam. Toxicol., vol. 78, no. 6, pp. 463–8, Jun. 2007.

[434] A. Hirao, Y.-Y. Kong, S. Matsuoka, A. Wakeham, J. Ruland, H. Yoshida, D. Liu, S. J. Elledge, and T. W. Mak, “DNA Damage-Induced Activation of p53 by the Checkpoint Kinase Chk2,” Sci. , vol. 287 , no. 5459 , pp. 1824–1827, Mar. 2000.

[435] C. E. Dallas, S. F. Lingenfelser, J. T. Lingenfelser, K. Holloman, C. H. Jagoe, J. A. Kind, R. K. Chesser, and M. H. Smith, “Flow Cytometric Analysis of Erythrocyte and Leukocyte DNA in Fish from Chernobyl-Contaminated ponds in the Ukraine,” Ecotoxicology, vol. 7, no. 4, pp. 211–219, 1998.

[436] A. J. Potter, K. A. Gollahon, B. J. A. Palanca, M. J. Harbert, Y. M. Choi, A. H. Moskovitz, J. D. Potter, and P. S. Rabinovitch, “Flow cytometric analysis of the cell cycle phase specificity of DNA damage induced by radiation , hydrogen peroxide and doxorubicin unwinding assay to increase the sensitivity in detecting low damage within each cell cycle compartment . The lowest γ each,” Carcinogenesis, vol. 23, no. 3, pp. 389–401, 2002.

[437] T. Cavaş and S. Könen, “In vivo genotoxicity testing of the amnesic shellfish poison (domoic acid) in piscine erythrocytes using the micronucleus test and the comet assay.,” Aquat. Toxicol., vol. 90, no. 2, pp. 154–9, Nov. 2008.

[438] K. Aoyama, K. Iwahori, and N. Miyata, “Application of Euglena gracilis cells to comet assay: evaluation of DNA damage and repair,” Mutat. Res. Toxicol. Environ. Mutagen., vol. 538, no. 1–2, pp. 155–162, Jul. 2003.

[439] G. Quievryn, E. Peterson, J. Messer, and A. Zhitkovich, “Genotoxicity and mutagenicity of chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells.,” Biochemistry, vol. 42, no. 4, pp. 1062–70, Feb. 2003.

Page 48: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

293

[440] K. P. Nickens, S. R. Patierno, and S. Ceryak, “Chromium genotoxicity: A double-edged sword.,” Chem. Biol. Interact., vol. 188, no. 2, pp. 276–88, Nov. 2010.

[441] G. I. V Klobučar, O. Malev, M. Šrut, A. Štambuk, S. Lorenzon, Ž. Cvetković, E. a Ferrero, and I. Maguire, “Genotoxicity monitoring of freshwater environments using caged crayfish (Astacus leptodactylus).,” Chemosphere, vol. 87, no. 1, pp. 62–7, Mar. 2012.

[442] A Sadiq Bukhari, H. E. Syed Mohamed, K. V Broos, a Stalin, R. K. Singhal, and P. Venubabu, “Histological variations in liver of freshwater fish Oreochromis mossambicus exposed to 60Co gamma irradiation.,” J. Environ. Radioact., vol. 113, pp. 57–62, Nov. 2012.

[443] S. M. Marques, S. C. Antunes, H. Pissarra, M. L. Pereira, F. Gonçalves, and R. Pereira, “Histopathological changes and erythrocytic nuclear abnormalities in Iberian green frogs (Rana perezi Seoane) from a uranium mine pond.,” Aquat. Toxicol., vol. 91, no. 2, pp. 187–95, Jan. 2009.

[444] V. K. Patil and M. David, “Oxidative stress in freshwater fish, Labeo rohita as a biomarker of malathion exposure.,” Environ. Monit. Assess., vol. 185, no. 12, pp. 10191–9, Dec. 2013.

[445] H. Kroupova, J. Machova, V. Piackova, J. Blahova, R. Dobsikova, L. Novotny, and Z. Svobodova, “Effects of subchronic nitrite exposure on rainbow trout (Oncorhynchus mykiss).,” Ecotoxicol. Environ. Saf., vol. 71, no. 3, pp. 813–20, Nov. 2008.

[446] S. Barillet, V. Larno, M. Floriani, A. Devaux, and C. Adam-Guillermin, “Ultrastructural effects on gill, muscle, and gonadal tissues induced in zebrafish (Danio rerio) by a waterborne uranium exposure,” Aquat. Toxicol., vol. 100, no. 3, pp. 295–302, Nov. 2010.

[447] A. Lerebours, C. Adam-Guillermin, D. Brèthes, S. Frelon, M. Floriani, V. Camilleri, J. Garnier-Laplace, and J.-P. Bourdineaud, “Mitochondrial energetic metabolism perturbations in skeletal muscles and brain of zebrafish (Danio rerio) exposed to low concentrations of waterborne uranium,” Aquat. Toxicol., vol. 100, no. 1, pp. 66–74, Oct. 2010.

[448] H. Bensoussan, L. Grancolas, B. Dhieux-Lestaevel, O. Delissen, C.-M. Vacher, I. Dublineau, P. Voisin, P. Gourmelon, M. Taouis, and P. Lestaevel, “Heavy metal uranium affects the brain cholinergic system in rat following

Page 49: ASK Full Thesis - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/62388/14/references.pdf · 249 [18] X.-C. Wang, H. Feng, and H.-Q. Ma, “Assessment of Metal Contamination

294

sub-chronic and chronic exposure,” Toxicology, vol. 261, no. 1–2, pp. 59–67, Jun. 2009.

[449] V. Linares, D. J. Sánchez, M. Bellés, L. Albina, M. Gómez, and J. L. Domingo, “Pro-oxidant effects in the brain of rats concurrently exposed to uranium and stress,” Toxicology, vol. 236, no. 1–2, pp. 82–91, Jul. 2007.

[450] P. Lestaevel, P. Houpert, C. Bussy, B. Dhieux, P. Gourmelon, and F. Paquet, “The brain is a target organ after acute exposure to depleted uranium,” Toxicology, vol. 212, no. 2–3, pp. 219–226, Sep. 2005.

[451] A. M. Woods, J. M. Lloyd, Y. Zong, and C. R. Brodie, “Spatial mapping of Pearl River Estuary surface sediment geochemistry: Influence of data analysis on environmental interpretation,” Estuar. Coast. Shelf Sci., vol. 115, pp. 218–233, Dec. 2012.