44
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Molecular Modeling and Simulation in Process Engineering Hans Hasse 1 , Jadran Vrabec 2 ASIM Workshop on Fundamentals of Modeling and Simulation 1 Lehrstuhl für Thermodynamik, TU Kaiserslautern 2 Lehrstuhl für Thermodynamik und Energietechnik, Universität Paderborn

ASIM Workshop on Fundamentals of Modeling and Simulation ... · Molecular Modeling and Simulation ... (UNIFAC) Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Force-Field Methods

  • Upload
    vokhue

  • View
    230

  • Download
    0

Embed Size (px)

Citation preview

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Molecular Modeling and Simulation in Process Engineering

Hans Hasse1, Jadran Vrabec2

ASIM Workshop on Fundamentals of Modeling and Simulation

1Lehrstuhl für Thermodynamik, TU Kaiserslautern2Lehrstuhl für Thermodynamik und Energietechnik, Universität Paderborn

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Technology Vision 2020: The U.S. Chemical Industry

Chemical & Engineering Science

Manufacturing & Operations

Supply Chain Management

Information Systems

Engineering Computational Technologies

ComputationalMolecular Science

=> Link between Engineering and Chemistry=> New processes, products, materials

Process Modeling & Simulation

Operations Simulation & Optimization

ComputationalFluidDynamics

Fields of Major New Developments

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

(fs) 10-15

(ps) 10-12

(ns) 10-9

(μs) 10-6

(ms) 10-3

100

10-10 10-9 10-8 10-7 10-6 10-5 10-4

(nm) (μm)

Time / s

MesoscaleMethods

Continuum Methods

Semiempirical QM

Ab initioQM

MolecularForce Fields

Length / m

Molecular Modeling and Simulation Methods

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Further progress from new simulation methods and software

Moore‘s Law

GFL

OPS

/ G

IPS

Year

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Bridging Scales

QuantumSystems

Molecular Systems

ContinuumSystems

Born-Oppen-heimer MD

MD LargeSystems

Mesoscale Systems

HybridCFD

COSMORS

Examples

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Molecular Methods in Chemical Process Industries

Current Applications @ Evonik Degussa:CatalysisThermo-physical dataPolymersCrystallizationParticle technology

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

COSMO-RS @ Evonik

Quantum chemistry based method for prediction of thermo-physical properties

Quantitative predictions

Quantum chemistry based predictionof energy of molecular interactions

Crude classical assumptions for entropy

Close co-operation between engineersand quantum chemists

Benchmark against phenomenolgicalgroup contribution methods (UNIFAC)

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Force-Field Methods @ Evonik

Example: MD simulations of Water-Polymer interface

Qualitative results

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Mesoscale Methods @ EvonikExample: Simulation of particle morphologies

α = 1

α = 4

α = 16

Semiquantitative results

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Molecular methods are:already used especially attractive if no sufficiently accurate

- experiments - calculations with phenomenological methods

are possiblerecognized as a future key technology

Industrial Applications of Molecular Methods in Process Engineering

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Molecular Modelling (Force Fields)

Geometry:Bond lengths and angles

Electrostatics:Position and strengthof dipoles, quadrupoles,partial charges

Dispersion and Repulsion:Parameters of Lennard-Jones potentials

Many parameters

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Model Parameters from Quantum ChemistryGeometry

HF with small basis set (z.B. 6-31G) or DFT methodsElectrostatics from electronic density distribution

MP2 with small polarizable basis set (e.g., 6-311+G**)Molecule embedded in dielectric cavity for modeling dense fluid phase (COSMO)

Dispersion and RepulsionRequires simulation of arrangements of at least two moleculesCCSD(T) or MP2 with large basis sets (TZV or QZV)Very high computational effort Unsatisfactory accuracy

Fit to thermo-physical data preferred

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Molecular Dynamics (MD)Numerical solution of Newtonian equations of motionDeterministicStatic and dynamic properties

Molecular Simulation Basic Methods

Monte-Carlo (MC)Statistical MethodEnergetic acceptance criteriaStatic properties only

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Direct Simulation of Phase EquilibriaExample: Vapor-liquid equilibirum of Ethylene Oxide @ 375 K

3500 molecules

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Phase Equilibrium from Grand Equilibrium Method

( ) ( ) ( )μ ≈ μ + ⋅ −l l li i 0 i 0p p v p p

Pseudo grand canonical simulation(Specification of V, T) ( )μ l

i p

Specs: T, x

Result: p, y

Liquid Vapor

Simulation:Chemical potentialsPartial molar volumes

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

10

20

30

40

Exe

cutio

n tim

e / 1

000

s

Number of processorsSX-8

XC6000Cacau

StriderMozart

1 2 4 8 16 32 64

High Performance Parallel Computing

Strider

SX 8

Cacau

XC6000

Own parallel FORTRAN codes: ms2 thermo-physical propertiesls1 nano-scale processes

Scaling on selected hardware platforms:

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Polar Two Center Lennard-Jones ModelsQ

ε

L

σ

4 Model parametersε energyσ sizeL elongation

μ dipoleorQ quadrupole

dispersionrepulsion

polarity

μ /

Models of 80 simple pure componentsParametrization: VLE data only

Simulation Exp. (corr.)

typ. deviation < 2%

Vapor pressure

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Pure Component Models: ExtrapolationsJoule-Thomson Inversion

p / M

Pa

T / Kred: critical data

Symbols: SimulationLinies: Reference EOS

Ethylene

Oxygen

Nitrogen

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Ethylene Oxide

Worldwide annual production about 18 Mio. tonsUse: PET and anti-freezeProperties:

- explosive- toxic- highly flammable- cancerogenic- mutagenic

Explosion @ Sterigenics Intl., Ontario, CND (2004):4 wounded, hall destroyed

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Industrial Property Simulation Challenge 2007

Industrial Fluid PropertiesSimulation Collective

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Molecular Model of Ethylene Oxide

3 LJ Sites (one for the oxygen atom, one for each methylene group)1 static point dipole along symmetry axisRigid, non-polarizableAdjustment of five parameters (σO, εO, σCH2, εCH2, μ) to experimental VLE data

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

IFPSC Challenge 2007 : Problem DescriptionDevelopment of a new molecular model for Ethylene OxidePrediction of 17 properties in 3 categories

Benchmarked to “reference data”

Vapor liquid equilibria /thermal propertiesSaturated densitiesVapor pressureEnthalpy of vaporizationCritical propertiesNormal boiling temperatureSecond virial coefficient

Second derivatives/surface tensionHeat capacityIsothermal compressibilitySurface tension

Transport propertiesShear viscosityThermal conductivity

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Deviations from Reference Data

uncertaintyof reference

Round-Robinmodel

new modelscore:331/350

deviation from experiment / %-40 -20 0 20 40 60

sat. vap. thermal conductivitysat. liq. thermal conductivity

sat. vapor shear viscositysat. liquid shear viscosity

surface tensionsat. vap. isoth. compressib.

sat. liq. isoth. compressib.sat. vapor isob. heat capacitysat. liquid isob. heat capacity

critical temperaturecritical density

normal boiling temperatureenthalpy of vaporization

vapor pressure2nd virial coefficient

sat. vapor densitysat. liquid density

deviation from experiment / %-40 -20 0 20 40 60

sat. vap. thermal conductivitysat. liq. thermal conductivity

sat. vapor shear viscositysat. liquid shear viscosity

surface tensionsat. vap. isoth. compressib.

sat. liq. isoth. compressib.sat. vapor isob. heat capacitysat. liquid isob. heat capacity

critical temperaturecritical density

normal boiling temperatureenthalpy of vaporization

vapor pressure2nd virial coefficient

sat. vapor densitysat. liquid density

deviation from experiment / %-40 -20 0 20 40 60

sat. vap. thermal conductivitysat. liq. thermal conductivity

sat. vapor shear viscositysat. liquid shear viscosity

surface tensionsat. vap. isoth. compressib.

sat. liq. isoth. compressib.sat. vapor isob. heat capacitysat. liquid isob. heat capacity

critical temperaturecritical density

normal boiling temperatureenthalpy of vaporization

vapor pressure2nd virial coefficient

sat. vapor densitysat. liquid density

deviation from reference / %

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

IFPSC Party 2007

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Ethanol

3 LJ sites plus 3 point chargesPoint charges model both electrostatics and H-bonding

δρ = 0,3 % δp = 3,7 %

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

H-Bonded-Species in Methanol + CO2Geometrical H-bonding criterion of Haughney et al.Equimolar mixture @ 350 K, 0.1 MPa

Legend:Donor: light blueAcceptor:single: orange double: red

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

1H-NMR Spectroscopy of H-Bonding Mixtures

ppm

293,15 K

338,15 K p = 15 MPa

Experiment

Simulation

Methanol - CO2

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Overview Pure Component ModelsNon-polar, 1CLJ

Neon (Ne), Argon (Ar)Krypton (Kr), Xenon (Xe)Methan (CH4)

Dipolar, 2CLJD

Kohlenmonoxid (CO)R11 (CFCl3)R12 (CF2Cl2)R13 (CF3Cl)R13B1 (CBrF3)R22 (CHF2Cl)R23 (CHF3)R41 (CH3F)R123 (CHCl2-CF3)R124 (CHFCl-CF3)R125 (CHF2-CF3) R134a (CH2F-CF3)R141b (CH3-CFCl2)R142b (CH3-CF2Cl)R143a (CH3-CF3) R152a (CH3-CHF2)R40 (CH3Cl)R40B1 (CH3Br)CH3IR30B1 (CH2BrCl) R20 (CHCl3)

Dipolar, 2CLJD (contd.)

R20B3 (CHBr3)R21 (CHFCl2)R12B2 (CBr2F2) R12B1 (CBrClF2)R10B1 (CBrCl3)R161 (CH2F-CH3)R150a (CHCl2-CH3) (1,1,2) CHCl2-CH2ClR140a (CCl3-CH3)R130a (CH2Cl-CCl3)C2H5Br (CH2Br-CH3)(1,1) CHBr2-CH3CH2F-CCl3(2,2,2) CHClBr-CF3R112a (CCl3-CF2Cl) CHF=CH2CF2=CH2C2H3Cl (CHCl=CH2)CHCl=CF2 CFCl=CF2CFBr=CF2

Quadrupolar, 2CLJQ

Flour (F2)Chlor (Cl2)Brom (Br2)Iod (I2) Stickstoff (N2)Sauerstoff (O2)Kohlendioxid (CO2)Kohlendisulfid (CS2) Ethan (C2H6)Ethylen (C2H4)Ethin (C2H2)R116 (C2F6) C2F4C2Cl4Propadien (CH2=C=CH2)Propin (CH3-C≡CH) Propylen (CH3-CH=CH2)SF6R14 (CF4)R10 (CCl4)R113 (CFCl2-CF2Cl)R114 (CF2Cl-CF2Cl)R115 (CF3-CF2Cl) R134 (CHF2-CHF2) (1,2) CH2Br-CH2BrCBrF2-CBrF2CHCl=CCl2

Dipolar, 1CLJD

R32 (CH2F2) R30 (CH2Cl2)R30B2 (CH2Br2)CH2I2

Polar, Muti-CLJ

iso-Butan (C4H10)Cyclohexan (C6H12)Methanol (CH3OH)Ethanol (C2H5OH)Formaldehyd (CH2=O)Dimethylether (CH3-O-CH3)Aceton (C3H6O)Ammoniak (NH3)Methylamin (NH2-CH3)Dimethylamin (CH3-NH-CH3)R227ea (CF3-CHF-CF3)Schwefeldioxid (SO2)Ethylenoxid (C2H4O)Dimethylsulfid (CH3-S-CH3)Blausäure (NCH)Acetonitril (NC2H3)Thiophen (SC4H4)Nitromethan (NO2CH3)Phosgen (COCl2)Benzol (C6H6)Toluol (C7H8)Chlorbenzol (C6H5Cl)Dichlorbenzol (C6H4Cl2)Cyclohexanol (C6H11OH)Cyclohexanon (C6H10O)

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Unlike interaction A-B:Electrostatics fully predictiveLennard-Jones parameters from combination rules

Molecular Modelling of Mixtures

( )AB A B+= /2σ σ σ

AB A B=ε ε εξ ⋅

A A

B B

σA, εA

σB, εB

σAB, εAB

or

Fit to one experimental data point p(T,x) oder H(T)

ξ = 1Predictions

ModifiedLorentz-Berthelot

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Vapor-Liquid Equilibrium ofHeptafluoropropane + Ethanol

Simulation, =1 + ExperimentPeng-Robinson EOS ξ

InternationalFluidPropertiesSimulationChallenge2006

Data basis:=> VLE @ 283 KProblem:=> H-bonds

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Simulation, ξ = 1□, ∆ Experiment Simulation, ξ fitted

InternationalFluidPropertiesSimulationChallenge2004

,

Henry’s law constant von Oxygen in Ethanol

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Extrapolation to multicomponent mixtures

+ Experiment

PR-EOS, kij fitted to binary subsystems

Simulation, ξ fitted to binary subsystems

R14 + R23 + R13

Fully predictiveNo ternary parameters

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

MD Simulation of Nanoscale Processes: Condensation

N = 40 0001 CLJ

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

N = 40 0001 CLJ

MD Simulation of Nanoscale Processes: Condensation

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

EthaneSimulation Class. nucleation theoryLaaksonen et al.

Prediction of Nucleation Rates

Carbon DioxideSimulation Class. nucleation theory Laaksonen et al.

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Molecular Simulation of Hydrogels

Examples for applications:Super-absorberContact lensesDrug DeliverySensorsActors (e.g., micro-valves)Biocatalysis

200 µm3 actors

flow channel

What are Hydrogels?Three-dimensional hydrophilic polymer networksExtreme swelling/shrinkingVery sensitive to surroundings & conditions

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Swelling of HydrogelsParameters:

Temperature pH-valueSalt(s)Solvent(s)Co-polymersCrosslinker

Influence of temperature

Theta-temperature

PNiPAM, MBA

PNiPAM by electron-microscope

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

• Mainly PNiPAM (numerous experimental data)

MD-Simulation of Hydrogels

• Solvents: Water, Ethanol, aqueous NaCl solution• Temperatures: 260 K - 340 K• Force fields from literature

PVA PNiPAM PAA

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

39

MD-Simulation: Collapse of Hydrogel

primitive PVA-network

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Legend:Default Water model of force field

- Temperature dependence not observed+ Temperature dependence observable++ Temperature dependence reasonably predicted

Force Field Study

PNiPAM Water: SPCE Water: TIP4PGromos96 UA - -Gromacs53a6 UA - +OPLS AA ++ +

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

41

MD-Simulation PNiPAM-Chains

T < TΘ

T > TΘ

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Survey of Coordinated Research ProgramsDFG SPP 1155:Molekulare Modellierung und Simulation in der VerfahrenstechnikProcessNet Arbeitsausschuss MMS:Molekulare Modellierung und Simulation für das Prozess- und ProduktdesignDFG SFB 716:Dynamische Simulation von Systemen mit großen TeilchenzahlenDFG TFB 66:Molekulare Modellierung und Simulation zur Vorhersage von Stoffdaten für industrielle Anwendungen BMBF IMEMO: Innovative HPC-Methoden und Einsatz für hochskalierbare Molekulare Simulation

SFB 716

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

SummaryMolecular Modelling and Simulation in Process Engineering

used in industry high potential is recognizedfuture key technologytruly interdisciplinary field

Co-operation between EngineeringNatural ScienceComputer ScienceMathematics

Lehrstuhl für ThermodynamikProf. Dr.-Ing. H. Hasse

Thanks to co-workers…

Jürgen StollThorsten Schnabel Gimmy FernandezBernhard EcklIsaiah HuangMartin HorschThorsten MerkerGabriela GuevaraJonathan WalterStephan DeubleinCemal Engin

…and colleagues from industryJohannes Vorholz (Evonik)Robert Franke (Evonik)Bernd Eck (BASF)Manfred Heilig (BASF)