56
Tits alternatives for graph products Ashot Minasyan (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012 Ashot Minasyan Tits alternatives for graph products

Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Tits alternatives for graph products

Ashot Minasyan(Joint work with Yago Antolín)

University of Southampton

Düsseldorf, 30.07.2012

Ashot Minasyan Tits alternatives for graph products

Page 2: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GLn(F ) for some field F .Then either H is virtually solvable or H contains a non-abelian freesubgroup.

Ashot Minasyan Tits alternatives for graph products

Page 3: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GLn(F ) for some field F .Then either H is virtually solvable or H contains a non-abelian freesubgroup.

Ashot Minasyan Tits alternatives for graph products

Page 4: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GLn(F ) for some field F .Then either H is virtually solvable or H contains a non-abelian freesubgroup.

Ashot Minasyan Tits alternatives for graph products

Page 5: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GLn(F ) for some field F .Then either H is virtually solvable or H contains a non-abelian freesubgroup.

Ashot Minasyan Tits alternatives for graph products

Page 6: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GLn(F ) for some field F .Then either H is virtually solvable or H contains a non-abelian freesubgroup.

Similar results have later been proved for other classes of groups. Wewere motivated by

Ashot Minasyan Tits alternatives for graph products

Page 7: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GLn(F ) for some field F .Then either H is virtually solvable or H contains a non-abelian freesubgroup.

Similar results have later been proved for other classes of groups. Wewere motivated by

Theorem (Noskov-Vinberg, 2002)

Every subgroup of a finitely generated Coxeter group is eithervirtually abelian or large.

Ashot Minasyan Tits alternatives for graph products

Page 8: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Background and motivation

Theorem (J. Tits, 1972)

Let H be a finitely generated subgroup of GLn(F ) for some field F .Then either H is virtually solvable or H contains a non-abelian freesubgroup.

Similar results have later been proved for other classes of groups. Wewere motivated by

Theorem (Noskov-Vinberg, 2002)

Every subgroup of a finitely generated Coxeter group is eithervirtually abelian or large.

Recall: a group G is large is there is a finite index subgroup K 6 Gs.t. K maps onto F2.

Ashot Minasyan Tits alternatives for graph products

Page 9: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Various forms of Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to Cif for any f.g. sbgp. H 6 G either H ∈ C or H contains a copy of F2.

Ashot Minasyan Tits alternatives for graph products

Page 10: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Various forms of Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to Cif for any f.g. sbgp. H 6 G either H ∈ C or H contains a copy of F2.

Thus Tits’s result tells us that GLn(F ) satisfies the Tits Alternative rel.to Cvsol .

Ashot Minasyan Tits alternatives for graph products

Page 11: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Various forms of Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to Cif for any f.g. sbgp. H 6 G either H ∈ C or H contains a copy of F2.

Thus Tits’s result tells us that GLn(F ) satisfies the Tits Alternative rel.to Cvsol .

Definition

Let C be a class of gps. A gp. G satisfies the Strong Tits Alternativerel. to C if for any f.g. sbgp. H 6 G either H ∈ C or H is large.

Ashot Minasyan Tits alternatives for graph products

Page 12: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Various forms of Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Tits Alternative rel. to Cif for any f.g. sbgp. H 6 G either H ∈ C or H contains a copy of F2.

Thus Tits’s result tells us that GLn(F ) satisfies the Tits Alternative rel.to Cvsol .

Definition

Let C be a class of gps. A gp. G satisfies the Strong Tits Alternativerel. to C if for any f.g. sbgp. H 6 G either H ∈ C or H is large.

The thm. of Noskov-Vinberg claims that Coxeter gps. satisfy theStrong Tits Alternative rel. to Cvab.

Ashot Minasyan Tits alternatives for graph products

Page 13: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Graph products of groups

Graph products naturally generalize free and direct products.

Ashot Minasyan Tits alternatives for graph products

Page 14: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Graph products of groups

Graph products naturally generalize free and direct products.

Let Γ be a graph and let G = {Gv | v ∈ VΓ} be a family of gps.

Ashot Minasyan Tits alternatives for graph products

Page 15: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Graph products of groups

Graph products naturally generalize free and direct products.

Let Γ be a graph and let G = {Gv | v ∈ VΓ} be a family of gps.

The graph product ΓG is obtained from the free product ∗v∈VΓGv byadding the relations

[a, b] = 1 ∀a ∈ Gu, ∀b ∈ Gv whenever (u, v) ∈ EΓ.

Ashot Minasyan Tits alternatives for graph products

Page 16: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Graph products of groups

Graph products naturally generalize free and direct products.

Let Γ be a graph and let G = {Gv | v ∈ VΓ} be a family of gps.

The graph product ΓG is obtained from the free product ∗v∈VΓGv byadding the relations

[a, b] = 1 ∀a ∈ Gu, ∀b ∈ Gv whenever (u, v) ∈ EΓ.

Basic examples of graph products are

Ashot Minasyan Tits alternatives for graph products

Page 17: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Graph products of groups

Graph products naturally generalize free and direct products.

Let Γ be a graph and let G = {Gv | v ∈ VΓ} be a family of gps.

The graph product ΓG is obtained from the free product ∗v∈VΓGv byadding the relations

[a, b] = 1 ∀a ∈ Gu, ∀b ∈ Gv whenever (u, v) ∈ EΓ.

Basic examples of graph products are

right angled Artin gps. [RAAGs]

Ashot Minasyan Tits alternatives for graph products

Page 18: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Graph products of groups

Graph products naturally generalize free and direct products.

Let Γ be a graph and let G = {Gv | v ∈ VΓ} be a family of gps.

The graph product ΓG is obtained from the free product ∗v∈VΓGv byadding the relations

[a, b] = 1 ∀a ∈ Gu, ∀b ∈ Gv whenever (u, v) ∈ EΓ.

Basic examples of graph products are

right angled Artin gps. [RAAGs], if all vertex gps. are Z;

Ashot Minasyan Tits alternatives for graph products

Page 19: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Graph products of groups

Graph products naturally generalize free and direct products.

Let Γ be a graph and let G = {Gv | v ∈ VΓ} be a family of gps.

The graph product ΓG is obtained from the free product ∗v∈VΓGv byadding the relations

[a, b] = 1 ∀a ∈ Gu, ∀b ∈ Gv whenever (u, v) ∈ EΓ.

Basic examples of graph products are

right angled Artin gps. [RAAGs], if all vertex gps. are Z;

right angled Coxeter gps.

Ashot Minasyan Tits alternatives for graph products

Page 20: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Graph products of groups

Graph products naturally generalize free and direct products.

Let Γ be a graph and let G = {Gv | v ∈ VΓ} be a family of gps.

The graph product ΓG is obtained from the free product ∗v∈VΓGv byadding the relations

[a, b] = 1 ∀a ∈ Gu, ∀b ∈ Gv whenever (u, v) ∈ EΓ.

Basic examples of graph products are

right angled Artin gps. [RAAGs], if all vertex gps. are Z;

right angled Coxeter gps., if all vertex gps. are Z/2Z;

Ashot Minasyan Tits alternatives for graph products

Page 21: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Graph products of groups

Graph products naturally generalize free and direct products.

Let Γ be a graph and let G = {Gv | v ∈ VΓ} be a family of gps.

The graph product ΓG is obtained from the free product ∗v∈VΓGv byadding the relations

[a, b] = 1 ∀a ∈ Gu, ∀b ∈ Gv whenever (u, v) ∈ EΓ.

Basic examples of graph products are

right angled Artin gps. [RAAGs], if all vertex gps. are Z;

right angled Coxeter gps., if all vertex gps. are Z/2Z;

If A ⊆ VΓ and ΓA is the full subgraph of Γ spanned by A thenGA := {Gv | v ∈ A} generates a special subgroup GA of G = ΓGwhich is naturally isomorphic to ΓAGA.

Ashot Minasyan Tits alternatives for graph products

Page 22: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Tits Alternative for graph products

Consider the following properties of the class of groups C:

Ashot Minasyan Tits alternatives for graph products

Page 23: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Tits Alternative for graph products

Consider the following properties of the class of groups C:

(P0) if L ∈ C and M ∼= L then M ∈ C;

Ashot Minasyan Tits alternatives for graph products

Page 24: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Tits Alternative for graph products

Consider the following properties of the class of groups C:

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

Ashot Minasyan Tits alternatives for graph products

Page 25: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Tits Alternative for graph products

Consider the following properties of the class of groups C:

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

Ashot Minasyan Tits alternatives for graph products

Page 26: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Tits Alternative for graph products

Consider the following properties of the class of groups C:

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

Ashot Minasyan Tits alternatives for graph products

Page 27: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Tits Alternative for graph products

Consider the following properties of the class of groups C:

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C.

Ashot Minasyan Tits alternatives for graph products

Page 28: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Tits Alternative for graph products

Consider the following properties of the class of groups C:

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C.

Theorem A (Antolín-M.)

Let C be a class of gps. with (P0)–(P4). Then a graph productG = ΓG satisfies the Tits Alternative rel. to C iff each Gv , v ∈ VΓ,satisfies this alternative.

Ashot Minasyan Tits alternatives for graph products

Page 29: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Tits Alternative for graph products

Consider the following properties of the class of groups C:

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C.

Theorem A (Antolín-M.)

Let C be a class of gps. with (P0)–(P4). Then a graph productG = ΓG satisfies the Tits Alternative rel. to C iff each Gv , v ∈ VΓ,satisfies this alternative.

Evidently the conditions (P0)–(P4) are necessary.

Ashot Minasyan Tits alternatives for graph products

Page 30: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Tits Alternative for graph products

Consider the following properties of the class of groups C:

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C.

Theorem A (Antolín-M.)

Let C be a class of gps. with (P0)–(P4). Then a graph productG = ΓG satisfies the Tits Alternative rel. to C iff each Gv , v ∈ VΓ,satisfies this alternative.

Corollary

If all vertex gps. are linear then G = ΓG satisfies the Tits Alternativerel. to Cvsol .

Ashot Minasyan Tits alternatives for graph products

Page 31: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

Ashot Minasyan Tits alternatives for graph products

Page 32: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Ashot Minasyan Tits alternatives for graph products

Page 33: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph productG = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,v ∈ VΓ, satisfies this alternative.

Ashot Minasyan Tits alternatives for graph products

Page 34: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph productG = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,v ∈ VΓ, satisfies this alternative.

(P5) is necessary, b/c if L 6= {1} has no proper f.i. sbgps., then L ∗ Lcannot be large.

Ashot Minasyan Tits alternatives for graph products

Page 35: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph productG = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P5):

Ashot Minasyan Tits alternatives for graph products

Page 36: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph productG = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps,

Ashot Minasyan Tits alternatives for graph products

Page 37: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph productG = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclicgps.,

Ashot Minasyan Tits alternatives for graph products

Page 38: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph productG = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclicgps., virt. nilpotent gps.,

Ashot Minasyan Tits alternatives for graph products

Page 39: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph productG = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclicgps., virt. nilpotent gps., (virt.) solvable gps.,

Ashot Minasyan Tits alternatives for graph products

Page 40: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph productG = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P5): virt. abelian gps, (virt.) polycyclicgps., virt. nilpotent gps., (virt.) solvable gps., elementary amenablegps.

Ashot Minasyan Tits alternatives for graph products

Page 41: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strong Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P4) if Z/2Z ∈ C then D∞ ∈ C;

(P5) if L ∈ C is non-trivial and f.g. then L contains a proper f.i. sbgp.

Theorem B (Antolín-M.)

Let C be a class of gps. with (P0)–(P5). Then a graph productG = ΓG satisfies the Strong Tits Alternative rel. to C iff each Gv ,v ∈ VΓ, satisfies this alternative.

Corollary

Suppose C = Csol−m for some m ≥ 2 or C = Cvsol−n for some n ≥ 1.Let G be a graph product of gps. from C. Then any f.g. sbgp. of Geither belongs to C or is large.

Ashot Minasyan Tits alternatives for graph products

Page 42: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

The Strongest Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Strongest TitsAlternative rel. to C if for any f.g. sbgp. H 6 G either H ∈ C or H mapsonto F2.

Ashot Minasyan Tits alternatives for graph products

Page 43: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

The Strongest Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Strongest TitsAlternative rel. to C if for any f.g. sbgp. H 6 G either H ∈ C or H mapsonto F2.

Example

The gp. G := 〈a, b, c | a2b2 = c2〉 is t.-f. and large but does not maponto F2.

Ashot Minasyan Tits alternatives for graph products

Page 44: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

The Strongest Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Strongest TitsAlternative rel. to C if for any f.g. sbgp. H 6 G either H ∈ C or H mapsonto F2.

Example

The gp. G := 〈a, b, c | a2b2 = c2〉 is t.-f. and large but does not maponto F2.

Example

Any residually free gp. satisfies the Strongest Tits Alternative rel. toCab.

Ashot Minasyan Tits alternatives for graph products

Page 45: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

The Strongest Tits Alternative

Definition

Let C be a class of gps. A gp. G satisfies the Strongest TitsAlternative rel. to C if for any f.g. sbgp. H 6 G either H ∈ C or H mapsonto F2.

Example

The gp. G := 〈a, b, c | a2b2 = c2〉 is t.-f. and large but does not maponto F2.

Example

Any residually free gp. satisfies the Strongest Tits Alternative rel. toCab.

Observe that if L ∗ L maps onto F2 then L must have an epimorphismonto Z.

Ashot Minasyan Tits alternatives for graph products

Page 46: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strongest Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

Ashot Minasyan Tits alternatives for graph products

Page 47: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strongest Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P6) if L ∈ C is non-trivial and f.g. then L maps onto Z.

Ashot Minasyan Tits alternatives for graph products

Page 48: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strongest Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P6) if L ∈ C is non-trivial and f.g. then L maps onto Z.

Theorem C (Antolín-M.)

Let C be a class of gps. with (P0)–(P3) and (P6). Then a graphproduct G = ΓG satisfies the Strongest Tits Alternative rel. to C iffeach Gv , v ∈ VΓ, satisfies this alternative.

Ashot Minasyan Tits alternatives for graph products

Page 49: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strongest Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P6) if L ∈ C is non-trivial and f.g. then L maps onto Z.

Theorem C (Antolín-M.)

Let C be a class of gps. with (P0)–(P3) and (P6). Then a graphproduct G = ΓG satisfies the Strongest Tits Alternative rel. to C iffeach Gv , v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6):

Ashot Minasyan Tits alternatives for graph products

Page 50: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strongest Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P6) if L ∈ C is non-trivial and f.g. then L maps onto Z.

Theorem C (Antolín-M.)

Let C be a class of gps. with (P0)–(P3) and (P6). Then a graphproduct G = ΓG satisfies the Strongest Tits Alternative rel. to C iffeach Gv , v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6): t.-f. abelian gps,

Ashot Minasyan Tits alternatives for graph products

Page 51: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strongest Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P6) if L ∈ C is non-trivial and f.g. then L maps onto Z.

Theorem C (Antolín-M.)

Let C be a class of gps. with (P0)–(P3) and (P6). Then a graphproduct G = ΓG satisfies the Strongest Tits Alternative rel. to C iffeach Gv , v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6): t.-f. abelian gps, t.-f.nilpotent gps.

Ashot Minasyan Tits alternatives for graph products

Page 52: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strongest Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P6) if L ∈ C is non-trivial and f.g. then L maps onto Z.

Theorem C (Antolín-M.)

Let C be a class of gps. with (P0)–(P3) and (P6). Then a graphproduct G = ΓG satisfies the Strongest Tits Alternative rel. to C iffeach Gv , v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6): t.-f. abelian gps, t.-f.nilpotent gps.

Corollary

Any f.g. non-abelian sbgp. of a RAAG maps onto F2.

Ashot Minasyan Tits alternatives for graph products

Page 53: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Strongest Tits Alternative for graph products

(P0) if L ∈ C and M ∼= L then M ∈ C;

(P1) if L ∈ C and M 6 L is f.g. then M ∈ C;

(P2) if L,M ∈ C are f.g. then L × M ∈ C;

(P3) Z ∈ C;

(P6) if L ∈ C is non-trivial and f.g. then L maps onto Z.

Theorem C (Antolín-M.)

Let C be a class of gps. with (P0)–(P3) and (P6). Then a graphproduct G = ΓG satisfies the Strongest Tits Alternative rel. to C iffeach Gv , v ∈ VΓ, satisfies this alternative.

Examples of gps. with (P0)–(P3) and (P6): t.-f. abelian gps, t.-f.nilpotent gps.

Corollary

Any non-abelian sbgp. of a RAAG maps onto F2.

Ashot Minasyan Tits alternatives for graph products

Page 54: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Applications of Theorem C

Corollary

Any non-abelian sbgp. of a RAAG maps onto F2.

Ashot Minasyan Tits alternatives for graph products

Page 55: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Applications of Theorem C

Corollary

Any non-abelian sbgp. of a RAAG maps onto F2.

One can use this to recover

Theorem (Baudisch, 1981)

A 2-generator sbgp. of a RAAG is either free or free abelian.

Ashot Minasyan Tits alternatives for graph products

Page 56: Ashot Minasyan (Joint work with Yago Antolín)reh.math.uni-duesseldorf.de/~gcgta/slides/Minasyan.pdf · (Joint work with Yago Antolín) University of Southampton Düsseldorf, 30.07.2012

Applications of Theorem C

Corollary

Any non-abelian sbgp. of a RAAG maps onto F2.

One can use this to recover

Theorem (Baudisch, 1981)

A 2-generator sbgp. of a RAAG is either free or free abelian.

Combining with a result of Lyndon-Schützenberger we also get

Corollary

If G is a RAAG and a, b, c ∈ G satisfy ambn = cp, for m, n, p ≥ 2, thena, b, c pairwise commute.

Ashot Minasyan Tits alternatives for graph products