Art Antonio

Embed Size (px)

Citation preview

  • 8/9/2019 Art Antonio

    1/56

  • 8/9/2019 Art Antonio

    2/56

    Astract

    "his stud& e%aluates the %ehicle e>haust ?aste heat reco%er& (@H) otential using a

    anine c&cle (C)0 "o this end, oth a C thermod&namic model and a heat e>changer 

    model ha%e een de%eloed0 Both models use as inut, e>erimental data otained 'rom

    a %ehicle tested on a chassis d&namometer0 "he thermod&namic anal&sis ?as er'ormed

    'or ?ater, 124 and 2-7'a and re%ealed the ad%antage o' using ?ater as the ?oring

    'luid in alications o' thermal reco%er& 'rom e>haust gases o' %ehicles euied ?ith a

    sar/ignition engine0 Moreo%er, the heat e>changer e''ecti%eness 'or the organic

    ?oring 'luids 124 and 2-7'a is higher than that 'or the ?ater and, conseuentl&,

    the& can also e considered aroriate 'or use in %ehicle @H alications through

    Cs ?hen the e>haust gas temeratures are relati%el& lo?0 changer,

    the simulations re%ealed increases in the internal comustion engine thermal and %ehicle

    mechanical e''iciencies o' 10-/4072 and 1013/170.7, resecti%el&, ?hile 'or a

    shell and tue heat e>changer, the simulations sho?ed an increase o' 087/102 in the

    thermal e''icienc& and an increase o' 203-/30.3 in the mechanical e''icienc& 'or an

    e%aorating ressure o' 2 M+a0 "he results con'irm the ad%antages o' using the thermal

    energ& contained in the %ehicle e>haust gases through Cs0 ander 

    de%ices allo?ing 'or higher e%aorating ressures are reuired to otain the ma>imum

    @H otential 'rom %ehicle C s&stems0

    !ey"ords5 ?aste heat reco%er&: anine c&cle: ?oring 'luid: thermod&namic

    e''icienc&: heat e>changer0

    2

  • 8/9/2019 Art Antonio

    3/56

    #o$enclature

     A area m2F

     A/F  airG'uel ratiob long side o' a rectangular cross section mFcp heat caacit& g/1 I /1Fd diameter mFDh h&draulic diameter mF´ E e>erg& 'lo? rate @F

    f  Darc& 'riction 'actor F  imosed load JFh seci'ic enthal& g/1F: heat trans'er coe''icient @ m/2 I /1F

     ́I  e>erg& destruction rate @F

    k  thermal conducti%it& coe''icient @ m/1 I /1FL e%aorator tue length mFLHV  lo? heating %alue M g/1F

    ḿ mass 'lo? rate g s/1F

    N engine seed rmFNt  tues numerNu  Jusselt numer  p  ressure +aFP %ehicle e''ecti%e o?er @FPr +randtl numer 

    Q́ heat rate @F

    Rd 'ouling 'actors m2

     I @/1

    FRe e&nolds numer T  temerature IFU o%erall heat trans'er coe''icient @ m/2 I /1Fv  seci'ic %olume m4 g/1FV  %ehicle seed m h/1F

    Ẃ   o?er @F

    Greek symbols

    α ¿ asect ratio o' rectangular ducts, ratio o' a small to large side length β sur'ace area densit& m2 m/4Fδ  distance et?een tues mF∆ p  ressure dro +aFε heat e>changer e''ecti%enessη e''icienc& μ d&namic %iscosit& J s m/2F ρ densit& g m/4F

     Subscripts

    o initial

    4

  • 8/9/2019 Art Antonio

    4/56

    1,2,3,4 anine c&cle rocessamb amientc thermod&namic c&clecond condensationcrit critical

    e e''ecti%eevap e%aoratingexp e>ansionext e>ternalf  ?oring 'luidg e>haust gasesh h&draulici internalin inletm materialout outletp  umpp  inch/ointpump  umings isentroict turinew ?all

     Superscripts

    m %iscosit& ratio e>onent

     Abbreviations

    BME+ rea mean e''ecti%e ressure

    EK e>haust gas recirculation

    E"C electrical turo/comounding

    HC

  • 8/9/2019 Art Antonio

    5/56

    %& 'ntroduction

    !nternal comustion engines (!CEs) are the maLor source o' moti%e o?er in the

    ?orld, and this is e>ected to continue 'or some decades0 Kreenhouse e''ects and

    deleted etroleum sulies are crucial issues that the de%eloed ?orlds economies are

    'acing0 Because o' this, go%ernments in industrialiNed countries ha%e introduced strict

    regulations 'or !CE emissions and 'uel econom& standards0 !n the last t?o decades,

    manu'acturers ha%e imro%ed signi'icantl& !CE e''iciencies & al&ing a numer o' 

    ne? technologies 1F0 !n recognition o' the need to 'urther reduce %ehicle e>haust

     ollutant emissions (C=, J=>, h&drocarons and articulate matter) and, more recentl&,

    also C=2 emissions, there has een a lot o' interest in the de%eloment o' cleaner and

    more e''icient %ehicle o?ertrains 2F0

    !n !CEs onl& aout 1G4 o' the 'uel comustion energ& is con%erted into use'ul

    ?or to dri%e the %ehicle and its accessor& loads0 "he remainder is engine ?aste heat

    dissiated & the engine e>haust s&stem, coolant s&stem, and con%ection as ?ell as

    radiation 'rom the engine loc 4F0 Jearl& - o' the heat energ& is ?asted ?ith the

    engine e>haust gases -F0 !' the ?aste heat o' an !CE can e reco%ered, the engine

    e''icienc& ?ill e imro%ed 4F0

  • 8/9/2019 Art Antonio

    6/56

     ased on the steam generation in a secondar& circuit, ?hich reresents an indirect

    method o' @H0 "his techniue has ad%antages comared ?ith the so/called direct

    @H techniues (e.g., E"C, M"C and "!KES) that use a o?er turine 'itted to the

    %ehicle e>haust, ?hich has a much higher imact on the engine uming losses0   !n

    addition, a C allo?s 'or high ?aste energ& utiliNation and it is cheaer than other 

    @H techniues such as thermo/electric generators 7F0

    "he choice o' the ?oring 'luid to e used in the C deends on a numer o' 

    'actors, namel&, thermod&namic, en%ironmental, sa'et&, rocess/related and economic

    issues0 !n articular, ?hen imlementing such a s&stem on a mo%ing %ehicle ?ith li%e

    occuants, the choice must consider ?orse case scenarios lie leaages or crashes0 =n

    that e%ent the 'luid must e harmless to the %ehicle occuants0

  • 8/9/2019 Art Antonio

    7/56

    conditions o' an =C comaring h&drochloro'luorocaron (HCtra 'uel, oth the

    seci'ic 'uel consumtion and the ollutant emissions o' the %ehicle are reduced

    8, .F0 "he er'ormance anal&sis o' %arious s&stem con'igurations ased on Cs is

     romising0 According ?ith Boretti 3F imro%ements in 'uel econom& u to 19 ma&

     e ossile, ?hich can ser%e as a re'erence asis 'or the assessment o' the current

     otential o' this technolog&, ?hose maLor do?n'alls are the increase o' ?eight, the

     acaging comle>it&, the transient oeration and the costs0 =' course, the

    imlementation o' a C on a %ehicle reuires detailed in%estigations o' all these issues0

    "o reco%er the e>haust ?aste heat, the C needs to utiliNe a heat e>changer to

    e>tract energ& 'rom the e>haust gases0 A heat e>changer used in such an alication has

    to e ale to ro%ide an adeuate sur'ace area in order to achie%e high e>change

    e''icienc&, ?hile using a small/siNe and light?eight arrangement0 cessi%e uming losses that ?ill ha%e a

    negati%e imact on the !CE e''icienc& 13F0 Ma%idrou et al0 13F e>amined the e>haust

    gas heat e>changer design rolem, 'ocusing on the usage o' di''erent heat e>changer 

    con'igurations and di''erent t&es o' heat trans'er sur'aces0

    "his article resents an anal&sis o' a comined C (o?er c&cle) and heat

    e>changer 'or %ehicle @H alications, ?hich, to the est o' our no?ledge, is

    currentl& lacing in the literature0

  • 8/9/2019 Art Antonio

    8/56

    e%aluates e>erimentall& the e>haust thermal energ& contained in a %ehicle euied

    ?ith a sar ignition !CE0 Suseuentl&, the data otained are used as inut in t?o

    de%eloed models5 a C thermod&namic model, ?hich includes oth energ& and e>erg&

    anal&ses, and a heat e>changer model0 Among other 'eatures, the C thermod&namic

    model allo?s assessing the C e''icienc& and the net o?er as 'unction o' the

    e%aorating ressure o' the three ?oring 'luids0 "he heat trans'er model ermits to

     er'orm heat e>changer siNing calculations and to assess the di''erent heat e>changer 

    e''iciencies and ressure dro0 changer models ?ere used together to e%aluate the %ehicle e>haust @H otential

    using di''erent Cs0

    "he e%aorator and the e>ander are the most critical comonents o' a C s&stem0

    "he resent stud& considers a%ailale comonents (e%aorator and e>ander) that allo?

     uilding a short term C rotot&e 'or @H in %ehicle alications0 Based on the

    measured %alues in the chassis d&namometer e>eriments and on the simulation results,

    the otential o?er outut o' the roosed C rotot&e is assessed and comared 'or 

    di''erent %ehicle oerating conditions0

    (& Experi$ental approach

    "his section descries the e>erimental aroach 'ollo?ed to gather the data used

    as inut in the C thermod&namic and heat e>changer models0 !t also uanti'ies the

    e>haust ?aste heat as a 'unction o' the %ehicle oerating conditions0

    Chassis d&namometer measurements ?ere carried out on a %ehicle euied ?ith

    a 208 liter 3 sar ignition engine in order to measure the e>haust gases mass 'lo?

    rate and temerature 'or se%eral stead& state oerating conditions (i0e0, a'ter engine

    ?arm/u)0

  • 8/9/2019 Art Antonio

    9/56

    %arious loads0 "ale 1 resents the %ehicle test conditions considered in this ?or0 !n the

    tale, N  is the imosed engine seed, F  is the imosed load, BME+ is the rea mean

    e''ecti%e ressure,  V   is the %ehicle seed,  P e  is the %ehicle e''ecti%e o?er (or rae

     o?er) measured at the chassis d&namometer, ḿg  is the %ehicle e>haust mass 'lo?

    rate, T  g,in  is the e>haust gases temerature measured do?nstream o' the three ?a&

    catal&st ("@C), and Q́available   is the heat a%ailale in the e>haust gases0 "he test

    conditions originated e>haust gases mass 'lo? rates and temeratures ranging 'rom 1208

    gGs to 7.09 gGs and 940. I to 17204 I0

    All measurements ?ere otained a'ter oth the engine and the "@C reached their 

    stead& states0 "o %alidate the stead& states the coolant temerature ?as controlled to .7

    PC Q 1 PC0 !n addition, controlled temeratures had to remain stale ?ithin Q 7 PC 'or,

    at least, 1 minute0 !n the resent stud&, the recorded measurements ?ere al?a&s the

    a%erage o' the readings o%er a eriod o' time o', at least, 2 minutes0

    !n order to e%aluate the reeatailit& o' the torue and engine seed

    measurements, si> tests ?ere er'ormed 'or each stead& state oerating condition0 !n the

    torue measurements, the comined uncertaint& ranged 'rom Q 201 to Q 20.9 and

    no relationshi et?een the uncertaint& and the torue magnitude ?as identi'ied0 !n the

    engine seed measurements, it ?as 'ound that the comined uncertaint& decreases

    monotonicall& as the engine seed increases0 Conseuentl&, the ma>imum uncertaint&

    occurred at idle (Q 202-) and the minimum uncertaint& at - rm (Q 10-1)0 "he

    BME+ deends on the torue measurement0 As a result, gi%ing that the dislacement

    %olume is no?n, the e>erimental uncertainties associated ?ith the BME+ calculations

    are those o' the torue measurements0

    !n the resent stud& the e>haust gases mass 'lo? rate ?as calculated ased on the

    inlet air mass 'lo? rate and stoichiometric air 'uel ratio0 "he inlet air mass 'lo? rate ?as

    .

  • 8/9/2019 Art Antonio

    10/56

    measured using the engine air mass 'lo? rate sensor0 eeatailit& tests &ielded

    ma>imum uncertainties o' Q 4020 "he uncertainties associated ?ith the temerature o' 

    the e>haust gases ?ere e%aluated to e ?ithin Q 1 I o' the mean %alue0

    "he e>haust gases roerties ha%e een calculated using the euations sho?n in

    "ale 2, ?hich ?ere deri%ed using the so't?are e'ro .0 19F0 "he comosition

    (mass 'ractions) o' the e>haust gases ?as assumed to e 20- C= 2, 908 H2= and

    9108 J2 (minor comonents ha%e een neglected)0

    !n the resent stud&, the heat a%ailale in the e>haust gases ?as calculated through

    the 'ollo?ing euation5

    g ,∈¿−T ambT ¿

    Q́available= ḿ g∙ c pg¿

    (1

    )

    ?here ḿg   is the e>haust gases mass 'lo? rate,g ,∈¿

    T ¿  is the e>haust gases

    temerature e'ore the C heat e>changer (i0e0, the e>haust gases temerature a'ter the

    "@C) and T amb  is the amient temerature, taen eual to 27 PC in the resent stud&0

    "ale 1 includes the %alues o' Q́available  'or all the oerating conditions0 !t is seen that

    the a%ailale e>haust ?aste heat changes signi'icantl& 'rom lo? loads and seeds to

    high loads and seeds0

  • 8/9/2019 Art Antonio

    11/56

    ideal thermod&namic c&cle includes the 'ollo?ing rocesses5 an isentroic comression

     rocess in a um (1/2), an isoaric heat trans'er rocess in a heat e>changer (2/4), an

    isentroic e>ansion rocess through a turine (or other e>ansion machine) (4/-), and

    an isoaric heat trans'er rocess in a condenser (-/1)0

    "he um sulies the ?oring 'luid to the heat e>changer, ?here the ?oring

    'luid is heated and %aoriNed, remo%ing heat 'rom the e>haust gases0 "he ?oring 'luid

    lea%es the heat e>changer in saturated or suerheated state0 "he high enthal& %aor is

    then e>anded in the e>ander (usuall& a turine), ?hich is couled to a generator that

    deli%eries the C o?er outut0 A'ter the e>ander, the ?oring 'luid enters the

    condenser ?here it condensates0

    "he mathematical model o' the simle C uses the thermod&namic energ&

    conser%ations euations 18F0 "he model considers a stead& state oeration ?ith

    negligile inetic and otential energ& e''ects0 "aen these considerations into account,

    the um o?er is gi%en &5

    Ẃ  p= ḿf  (h2−h1 )(2

    )

    "he heat asored 'rom the e>haust gases & the ?oring 'luid in the heat e>changer is

    gi%en &5

    Q́¿=ḿf  (h3−h2 ) (4)

    "he turine o?er is calculated &5

    Ẃ t = ḿf  (h3−h4 ) (-

    11

  • 8/9/2019 Art Antonio

    12/56

    )

    and the heat reLected 'rom the condenser is gi%en &5

    Q́out = ḿf  ( h4−h1 ) (7)

    "he C e''icienc& can e de'ined as the net o?er roduced re'erred to the heat

    recei%ed at the heat e>changer as 'ollo?s5

    ηc=Ẃ t − Ẃ  p

    Q́¿(3)

    E>erg& is a use'ul concet 'or e%aluating the er'ormance o' %arious energ&

    s&stems0 E>erg& is the ma>imum amount o' ?or that can e done & a rocess as it

    aroaches the thermod&namic euilirium ?ith its surroundings & a seuence o' 

    re%ersile rocesses 7, 18, 1.F0 "he e>erg& o' a sus&stem is a measure o' its Rdistance

    'rom euilirium and, thus, it can classi'& the energ& ualit& o' the sus&stem0 E>erg&

    destruction rate laels the loss o' e>erg& during the rocess 7F0 "he e>erg& destruction

    is due to irre%ersiilities occurring inside the s&stem or the comonents o' the s&stem, a

    control mass 'or the s&stem or, as in this ?or, a control %olume 'or each comonent

    and it can e caused & internal or e>ternal 'actors 2F0 As in the re%ious studies e.g.,

    2/22F, in this ?or, the contriutions o' the internal and e>ternal irre%ersiilities are

    not recogniNed searatel&, eing calculated as a ?hole0

    "he e>erg& destruction rate 'or each rocess in the c&cle (e%aoration, e>ansion,

    condensation and uming) can e e>ressed as 'ollo?s5

    12

  • 8/9/2019 Art Antonio

    13/56

    T g, ∈¿T g,out 

    ¿ḿf  (s3−s2)+ ḿg c pgln ( ¿ ]

    ´ I evap=T amb¿

    (9a)

     ́I exp=T amb ḿf  (s4−s3 ) (9)

     ́I co!+!ischa"ge!=T amb ḿf (s1−s4−h1−h4T amb ) (9c)

     ́I  pump

    =T amb

     ḿf  (

    s2−s1)

    (9d)

     Jote that at the condenser the e>erg& destruction rate e>resses the sum o' the

    irre%ersiilit& o' the condenser and the e>erg& discharged ?ith the cooling air that 'lo?s

    across the condenser0

    Aart 'rom the simle C, there are other C con'igurations that ermit to

    increase the reco%ered thermal energ&0 amle, the thermal e''icienc& o' a C can

     e augmented & adding a reheater or a regenerator 9F0 Mago et al0 21F resented an

    anal&sis o' regenerati%e =Cs using dr& 'luids, ?here the& demonstrated that

    regenerati%e =Cs not onl& ha%e higher 'irst and second la? e''iciencies than asic

    =Cs, ut the& also ha%e lo?er irre%ersiilities and lo?er heat reuirements to roduce

    the same o?er0 ecentl&, @ang et al0 22F studied the characteristics o' a dual loo

    =C s&stem ?hich reco%ers the ?aste heat 'rom the e>haust and the coolant o' a sar 

    ignition !CE0 "he high temerature (H") loo reco%ers the e>haust ?aste heat using

    2-7'a as the ?oring 'luid and the lo? temerature (") loo reco%ers the coolant

    ?aste heat and the residual heat 'rom the H" loo using 14-a as the ?oring 'luid0

    "he results re%ealed that ?ith this con'iguration the net o?er o' the " loo is higher 

    than that o' the H" loo0

    14

  • 8/9/2019 Art Antonio

    14/56

    Ho?e%er, Cs ?ith regeneration, reheating rocesses or dual loo s&stems

    reuires more iing (increased ressure losses) and more comle> de%ices 9F0

    icit& and non/'lammailit& are

    a 'e? re'erale h&sical and chemical characteristics 18F0 Se%eral organic 'luids 'or 

    use in Cs ha%e een roosed in the literature 11/17, 2/22, 2-/29F0 Among them, the

    organic 'luids 124 and 2-7'a aear to e the most romising ones 'or the oerating

    conditions used in this ?or, mainl& due to its non/'lammale eha%ior and

    thermod&namic er'ormance0 "here'ore, the organic 'luids 124 and 2-7'a ha%e een

    1-

  • 8/9/2019 Art Antonio

    15/56

    selected 'or the resent stud&0 !n addition, ?ater has een also considered as ?oring

    'luid in this ?or ecause it is non/to>ic and due to its aundant a%ailailit&0 "ale 4

     resents the main thermoh&sical roerties o' the ?oring 'luids studied in this ?or 

    (124, 2-7'a and ?ater)0

    haust gases0 Considering the oerational conditions o' a simle C assemled on the

    !CE e>haust s&stem o' a %ehicle, the resent model constraints are as 'ollo?s5

    (i) e%aorating ressure %ar&ing et?een condensation ressure,  pco! , and

    critical ressure,  pc"it  :

    (ii) dr& e>ansion 'or all 'luids:

    (iii) isentroic e>ander e''icienc&, ηt =0.7  9F:

    (i%) isentroic um e''icienc&, η p=0.8  9F:(%) negligile ressure losses in the heat e>changers and ies:

    (%i) 'or oth organic 'luids (124 and 2-7'a) the condensation temerature is

    T cond 424 I, ?hich corresonds to the condensation ressures gi%en in "ale

    4: 'or ?ater, the condensation temerature is T cond 494 I, ?hich corresonds

    to a condensation ressure o' 1 ar 28F:

    (%ii) the suerheating temerature is set as the minimum to guarantee a dr&

    e>ansion0

    A sensiti%it& assessment ?as er'ormed 'or the %alues o' the e>ander and um

    isentroic e''iciencies, ?ater e%aorating and condensation ressures and organic 'luids

    e%aorating and condensation temeratures0 "ale - summariNes the results otained0 !t

    is seen that the e>ander e''icienc& a''ects signi'icantl& the C net o?er outut0

    Moreo%er, it is interesting to note that the C net o?er outut is more sensiti%e to the

    condensation conditions o' the ?oring 'luids than to the e%aorating conditions0

    changer 

    17

  • 8/9/2019 Art Antonio

    16/56

    characteristics0 !n the resent stud&, ?e used a T g,out    2 PC in all C

    thermod&namics calculations er'ormed0 !t is seen that onl& in the case o' ?ater the

    temerature di''erence et?een the e>haust gases and the ?oring 'luid at the eginning

    o' the e%aoration rocess (the so/called inch/oint temerature di''erence ++"D)

    ma& e rolematic0

    changer0 "he ++"D is the smallest temerature di''erence in

    the C heat e>changer, estalishing the ma>imum allo?ale e%aoration ressure and,

    thus, limiting the C e''icienc&0 !t is necessar& to guarantee a minimum ++"D o' 4 PC

    8F, ?hich is articularl& challenging at lo? loads and lo? engine seeds0

    !n the resent stud&, a C thermod&namic model, ?hich includes oth energ& and

    e>erg& anal&ses, ?as de%eloed to e%aluate the %ehicle e>haust @H otential using a

    C0 "he reuired thermod&namic and transort roerties 'or the ?ater and the organic

    ?oring 'luids ?ere calculated ?ith the aid o' the e'ro .0 19F0 haust gases at the heat e>changer outlet0

    13

  • 8/9/2019 Art Antonio

    17/56

    *& Heat exchanger $odel

    "he heat e>changer (e%aorator) is an essential comonent in %ehicle @H 

    alications0 "he 'ollo?ing characteristics are desirale in an heat e>changer 'or such

    alications5

    i) high heat e>changer e''ecti%eness:

    ii) lo? ressure dro trough the heat e>changer, ?hich minimiNes the negati%e

    imact o' the e>haust ac ressure on the !CE:

    iii) comactness0

    !mro%ements in the heat e>changer e''ecti%eness can e otained & increasing

    the heat trans'er area or the heat trans'er coe''icient 'rom the e>haust gases side0 !n a

    tuular heat e>changer, the heat trans'er area is usuall& increased & increasing the

    numer o' tues andGor & using 'ins inside the tues0 !t is ?ell no?n that the e>haust

    gases heat trans'er coe''icient is much smaller than the C ?oring 'luid heat trans'er 

    coe''icient0 As a result, 'inned sur'aces are usuall& laced on the e>haust gases side to

    increase the heat trans'er area 13F0

    A literature sur%e& e0g0, 13, 2.F re%ealed that shell and tue heat e>changers are

    the most aroriate to e used as e%aorator in Cs 'or %ehicle e>haust alications0

    "he heat e>changer model de%eloed in the resent stud& allo?s accessing the thermal

    and h&draulic characteristics o' %arious duct geometries (suare, rectangular and

    circular) as 'unction o' the numer o' tues o' the heat e>changer0

    "he resent heat e>changer model is ased on the e''ecti%eness/J"$ (ε/J"$)

    method0 "he o%erall heat trans'er coe''icient U  is calculated according to the 'ollo?ing

    euation 4F5

    # =  1

    !e$t 

    ! i hg+

    !e$t  %! , i

    ! i +

     ! e$t 

    2& m ln(!e$t 

    !i )+ %! ,e$t +

     1

    hf 

    (8

    )

    19

  • 8/9/2019 Art Antonio

    18/56

    !n the resent stud& the tue ?as assumed to e made o' Aluminum, ?ith

    & m=225W m−1

     ' −1

    4F0 haust gases 41F0 "he o%erall heat trans'er 

    coe''icientU  is little a''ected & the 'ouling resistances 13F0 "he 'ouling resistance on

    the gas side is higher than that on the 'luid side0 "he articulate matter resent in the

    e>haust gases are the rincial resonsile 'or the 'ouling resistance on the gas side0

     Jote that the resent stud& e>amines an e%aorator laced a'ter a "@C (see

  • 8/9/2019 Art Antonio

    19/56

    2100 , the Jusselt numer is e%aluated ?ith the aid o' the Knielinsi

    correlation 4F5

     (u!=( f  /8 ) (ℜ!−1000 ) ( *" )

    1+12.7 (f  /8 )1/2 ( *"2/3−1 ) [1+( )h + )

    2

    3 ] ( μ/ μ )m , ℜ!>2100 (11)

    !n es0 (1) and (11), μ is the 'luid %iscosit& at the ul 'luid temerature,  μ? is the 'luid

    %iscosit& at the heat trans'er oundar& sur'ace temerature, m  01- 'or

    e U 8 and m  027 'or e V 80 !n e0 (11), f  is a logarithmic 'unction o' the

    e&nolds numer5

    f  =(0.79 ∙ ln ( ℜ! )−1.64)−2

    (12

    )

    "he heat e>changer e''ecti%eness, ε, is calculated 'rom5

    ε =1−e− (T# =1−e−hg -ḿg c pg (14)

    considering onl& the e>haust gases 'lo?0 Jote that this relation is %alid onl& 'or 

    condensers and e%aorators0

    "he sur'ace area densit&,  β , 'or suare, rectangular and circular cross 'lo?

    geometries is calculated through the 'ollo?ing euations 42F5

     β=  4b

    ( b+δ )2(1-a)

     β=   2 (α ¿

    +1 ) b(b α ¿ +δ ) (b+δ )(1-)

    1.

  • 8/9/2019 Art Antonio

    20/56

     β=  2.b

    √ 3 (b+δ )2 (1-c)

    "he ressure dro through shell and tue heat e>changers consisting o' suare,

    rectangular and circular cross 'lo? geometries is calculated as 'ollo?s 42F5

     / p=4 f+ ( ḿ / -0 )

    2

    2 ρg )h ( t  (17)

    "he heat e>changer considered in the resent stud& is a shell and tue counter 

    'lo? t&e, ?ith the hot 'luid (e>haust gases) in tues and the cold 'luid (C ?oring

    'luid) in the shell0 !n order to stud& the e''ect o' the imortant thermal and h&draulic

    characteristics o' the heat e>changer as a 'unction o' the numer o' the tues 'or 

    di''erent cross 'lo? geometries, 'irst ?e had to de'ine the main dimensions o' the heat

    e>changer0 Hussain and Brigham 2.F demonstrated that the heat e>changer 

    e''ecti%eness decreases 'or larger shell diameters, ?hich deend on the cross 'lo? area

    o' the heat e>changer0 =n the other hand, it is ?ell no?n that the e>haust gases

     ressure dro decreases 'or larger cross 'lo? areas o' the heat e>changer tues0

    Considering this trade/o'' and the limited sace a%ailale 'or the installation o' the heat

    e>changer, the cross 'lo? area o' the heat e>changer tues in the resent stud& ?as set

    eual to the %ehicle e>haust duct cross 'lo? area0 "he %ehicle e>haust duct under stud&

    has a cross 'lo? area eual to  -0=2.561010−3

    m2

    0 "o calculate the cross 'lo? area

    o' each tue,  -0  ?as di%ided & the numer o' tues in the e%aorator0 !n regard to

    the heat e>changer length, it ?as assumed tue lengths o' 07 m o?ing to the

    dimensions o' %ehicle under stud&0 !n this case ?e ha%e also er'ormed a sensiti%it&

    anal&sis & considering %ariations in the heat e>changer length o' Q01 m0 "he

    2

  • 8/9/2019 Art Antonio

    21/56

    calculations indicated %ariations in the C net o?er outut o' Q17, re%ealing the

    signi'icant imact o' this arameter in the resent stud&0

    changer is to e installed in the

    e>haust duct o' the %ehicle0 !n such an alication, the minimiNation o' the e>haust

    gases ac ressure on the !CE is o' critical imortance0 "he heat e>changer ?ith

    circular tues ro%ides the lo?est e>haust gases ac ressure (see changer costs0 As a result, in site o' the heat e>changer e''ecti%eness

     enalt&, the con'iguration ?ith circular tues ?as selected 'or this stud&0

    As alread& ointed out,

  • 8/9/2019 Art Antonio

    22/56

    the heat e>changer e''ecti%eness 'or a large numer o' tues (- to 1) is

    comarati%el& small0 "hese results estalish the ma>imum 'or the numer o' tues in

    the heat e>changer5 -4 tues in the resent stud&0 Considering the cross 'lo? area and

    the he>agonal shell and tue heat e>changer arrangement, -4 tues corresonds to a

    tue diameter o' 1 mm, ?ith a distance et?een the tues o' - mm, and a shell inside

    radius o' .- mm0

    "he heat e>changer ?as di%ided into three Nones 'or modeling uroses, as sho?n

    in changer0

    +& Results and discussion

    22

  • 8/9/2019 Art Antonio

    23/56

    +&%& RC ther$odyna$ic analysis

    "his section resents a comined 'irst and second la? anal&sis0 "he main

    oLecti%e o' this section is to assess the C e''icienc&, η , the turine outletGinlet

    e>ansion ratio, v-Gv4, the ?oring 'luid mass 'lo? rate, ḿf  , and C net o?er,

    Ẃ et  , as 'unction o' the e%aorating ressure 'or the ?oring 'luids studied0 "o this

    end, an adiaatic heat e>changer ?as considered so that the ma>imum %ehicle e>haust

    @H otential, assuming a T g,out    2 PC (see section 4) ?as assessed0 "he

    thermod&namic anal&sis reorted elo? has een er'ormed 'or the e>haust conditions

    corresonding to the %ehicle oerating conditions 4, . and 14 (see "ale 1), ?hich

    reresent lo?, intermediate and high engine seed and load stead& state %ehicle

    oerating conditions, resecti%el&0 "his allo?s the assessment o' the er'ormance o' the

    C 'or di''erent e>haust mass 'lo? rates and temeratures0

    ansion ratio (v-Gv4), regardless o' the e%aorating

     ressure0 "his is mainl& due to the higher 2-7'a condenser ressure (-012 ar) as

    comared to that o' the ?ater (1 ar)0 "he turine outletGinlet e>ansion ratio (v-Gv4) is

    an imortant arameter as it indicates ho? much the 'luid %olume increases through the

    e>ansion rocess0 !t should e noted that the e>ansion ratio (v-Gv4) can change

    signi'icantl& according ?ith the characteristics o' the ?oring 'luid0 "he e>ansion ratio

    24

  • 8/9/2019 Art Antonio

    24/56

    is also %er& imortant 'or the e>ander selection0 @hen the e>ansion ratio (v-Gv4) is

    smaller than 7, e>ansion e''iciencies higher than 08 can e achie%ed using a single

    stage a>ial turine as e>ander 9F0

  • 8/9/2019 Art Antonio

    25/56

    chosen a condensation temerature o' 424 I 'or the organic 'luids (124 and 2-7'a)

    and 494 I 'or ?ater0 Desite the higher ?ater condensation temerature, haust @H alications

    that needs to e care'ull& considered in 'uture =C studies0

    "he higher temerature di''erence et?een the e>haust gases and the ?oring

    'luid in the heat e>changer 'or 124 and 2-7'a (see erg&

    destruction rate decreases0 !ncreasing the e%aorating ressure is a good method to

    27

  • 8/9/2019 Art Antonio

    26/56

    a%oid second la? losses0 High e%aorating ressures also increase the C 'irst la?

    e''icienc&, as sho?n in ture ?oring 'luids is still %er& limited and more ?or is necessar& to otain a etter 

    understanding o' their in'luence on the er'ormance o' Cs0

    "he resent results (not sho?n here) re%ealed also that the entro& generation rate

    in the condenser is signi'icantl& lo?er than that in the e%aorator mainl& ecause o' the

    smaller temerature di''erences that occur in the condenser0 "he entro& generation rate

    in the e>ander and um are related to the isentroic e''icienc& o' these de%ices0 =ur 

    results indicated that the e>ander entro& generation rate is much higher than that in

    the um, ut consideral& lo?er than those in the e%aorator and condenser0

    Consistentl& ?ith re%ious studies e0g0, 2F, the resent anal&sis demonstrates that the

    e%aorator maes the iggest contriution to the o%erall entro& generation rate in the

    C s&stem0

    "o comlement the resent second la? anal&sis, the e%aorator e>erg& e''icienc&

    ?as also determined0 "o this end, the dead state ?as seci'ied as T amb=2512    and

     pamb=1atm 0

    "he e>erg& 'lo? rate o' the e>haust gases (assumed to e an ideal gas) entering

    and lea%ing the C can e calculated as5

    23

  • 8/9/2019 Art Antonio

    27/56

    ´ E  3= ḿg[c pg (T g, 3−T amb)−(c pg ln( T g , 3T amb )− % g ln(   p 3 pamb ))] (13)

    "he e>erg& 'lo? rate o' the ?oring 'luid at an& oint o' the C can e

    determined as5

    ´ Ei= ḿf  [ (hi−hamb )−T amb ( si−samb ) ] (19)

    "he e%aorator e>erg& e''icienc& can e e>ressed as5

    ´ Eg ,∈¿− ´ Eg,out  

    ηe$e"g4 ,evap=´ Euseful

    ´ Eavailable=

    ´ E3− ´ E

    2

    ¿(18)

    ?here ´ Euseful   and ´ Eavailable   are the actual e>erg& used and the theoreticall&

    a%ailale e>erg& at the e%aorator, ´ E2   and ´ E3  are the e>erg& 'lo? rates o' the

    ?oring 'luid entering and lea%ing the e%aorator, resecti%el&, andg ,∈¿´ E ¿

      and

    ´ Eg,out    are the e>erg& 'lo? rates o' the e>haust gases entering and lea%ing the

    e%aorator, resecti%el&0

  • 8/9/2019 Art Antonio

    28/56

    comared to the organic 'luids0 "he results 'rom the comined 'irst and second la?

    anal&sis sho? that ?ater &ields higher thermod&namic e''icienc& as comared to the

    organic 'luids0

    "he thermod&namic anal&sis demonstrates that the ?ater is an adeuate ?oring

    'luid 'or use in an e>haust heat reco%er& s&stem ?ith a C 'or the 'ollo?ing reasons5 as

    comared to the organic 'luids, ?ater (i) &ields higher thermod&namic e''icienc& and

    net o?er outut: (ii) reuires lo?er uantities o' ?oring 'luid in the C (less ?eight):

    (iii) condenses easil& at atmosheric ressure: (i%) has lo?er rice and higher 

    aundance: and (%) resents no en%ironmental riss0 !t should e stressed, ho?e%er, that

    the use o' ?ater as the ?oring 'luid in cold regions ma& e rolematic0 !n case o' 

    'rost, ?ater e>ands at 'reeNing and this can destro& the euiment in a single cold

    night0

    +&(& Heat exchanger analysis

    "his section e>tends the C thermod&namic anal&sis resented in the re%ious

    section, & considering also the heat e>changer model0 !t e>amines t?o shell and tue

    counter 'lo? t&e heat e>changers ?ith the e>haust gases assing through the tues,

    re'erred herea'ter as e%aorator 1 and e%aorator 20 E%aorator 1 maintains the cross

    'lo? area o' the %ehicle e>haust duct under stud& ?ith tue diameters o' 1 cm0 Seci'ic

    heat e>changers 'or @H alications are currentl& not a%ailale, so a shell and tue

    counter 'lo? t&e e>haust gas recirculation (EK) cooler 'rom a MAJ diesel truc ?as

    selected as e%aorator 20 A similar aroach ?as considered in re%ious studies e0g0,

    29F0 "ale 7 summariNes the main characteristics o' e%aorators 1 and 20 "he main

    oLecti%e o' this section is to assess the in'luence o' the heat e>changer on the C net

    28

  • 8/9/2019 Art Antonio

    29/56

     o?er outut, Ẃ et  , as a 'unction o' the e%aorating ressure 'or the ?oring 'luids

    studied0

  • 8/9/2019 Art Antonio

    30/56

    !t should e noted that ?hen e%aorator 1 is considered in the simulations, the

    temerature o' the e>haust gases decreases onl& & aout 2 PC0 !n this case the %alue

    o' T g,out   ?as ?ell ao%e that (2 PC) considered in the C thermod&namic anal&sis

    in the re%ious section0

  • 8/9/2019 Art Antonio

    31/56

    e>isting e>haust duct in the %ehicle), ?hich increases the 'lo? %elocit& o' the e>haust

    gases0

    !n regard to the heat trans'er characteristics o' the ?oring 'luids, "ale 3

    demonstrates that the o%erall heat trans'er coe''icient is higher 'or ?ater 'ollo?ed & the

    organic 'luids 2-7'a and 1240 Jote that "ale 3 e>amines the oerating condition 14,

    ?hich corresonds to a high %ehicle load and high engine seed (see "ale 1)0 "his

    means that the oor ?ater e%aorator e''ecti%eness oser%ed 'or the oerating condition

    4 (see haust @H otential0

    "he results 'rom the C thermod&namic and heat e>changer models ?ere used to

    calculate imro%ements in e''iciencies0 "he !CE thermal e''icienc& ?as calculated

    through the 'ollo?ing euation5

    ηth=Ẃ et 

    ḿfuel ∙ +56  =

    Ẃ et 

    ḿai"

     -

     7 

    ∙ +56  (1.)

    ?here H ?as taen eual to -- MGg 44F0

    "he %ehicle  mechanical e''icienc& ?as de'ined as the ratio o' the use'ul ?or 

     roduced & the C, Ẃ et  , and the e''ecti%e o?er roduced & the !CE, P e5

    41

  • 8/9/2019 Art Antonio

    32/56

    ηm=Ẃ et 

     *e(2)

    "he calculations ?ere er'ormed 'or three oerating conditions: seci'icall&,

    oerating conditions 4, . and 14 in "ale 10 !n addition, three distinct Cs ?ere

    e%aluated5

    i) C1 that considers an adiaatic heat e>changer and an e%aorating ressure

    o' 2 M+a:

    ii) C2 that considers e%aorator 1 (see "ale 7) and an e%aorating ressure o' 

    2 M+a:

    iii) C4 that considers e%aorator 2 (see "ale 7) and an e%aorating ressure o' 

    072 M+a0 !n this case a commercial a%ailale e>ander (Kreen "urine "M)

    that ?ors onl& ?ith ?ater as a ?oring 'luid is considered0

     Jote that the C4 case e%aluates the er'ormance o' a C rotot&e s&stem that

    uses e>isting comonents5 e%aorator 2 and the Kreen "urine"M

    , ?hich is currentl&, to

    the est o' our no?ledge, the most aroriate e>ander 'or a C %ehicle alication0

    "he main characteristics o' the Kreen "urine"M are inlet steam ma>imum ressure o' 

    702 ar, inlet steam ma>imum temerature o' 2 PC, o?er o' 207 @, ?eight o' 9 g,

    length o' 27 cm and diameter o' 1. cm 4-F0 "he reduced mass and dimensions maes

    this turine suitale 'or %ehicle e>haust @H alications0

    "he control o' the C in a %ehicle alication is articularl& comle> due to the

    (o'ten) transient regime o' the heat source0 As a result, otimiNing the C control is

    crucial to ma>imiNe the er'ormance o' the s&stem0

  • 8/9/2019 Art Antonio

    33/56

    "ale 9 resents the increase in the !CE thermal and %ehicle mechanical

    e''iciencies 'or the three Cs studied0 @ater is the ?oring 'luid ?ith the greatest

     otential to e used in @H 'rom e>haust gases in %ehicles through C1 as comared

    to the organic ?oring 'luids 124 and 2-7'a0 Seci'icall&, at an e%aorating ressure

    o' 2 M+a, 'or oerating condition ., the increase in the %ehicle mechanical e''icienc&

    using the C1 is 170.7, 140-4 and 103- 'or ?ater, 124 and 2-7'a,

    resecti%el&0

    !n the case o' C2, "ale 9 sho?s that the organic 'luid 124 is more suitale to

     e used in @H 'rom e>haust gases in %ehicles through Cs, eseciall& at lo?er 

    e>haust gases temeratures0 Ho?e%er, 'or higher temeratures and higher e>haust gas

    'lo?s, C2 resents higher thermal and mechanical e''iciencies i' ?ater is used as the

    ?oring 'luid0

    "ale 9 re%eals that the C4 resents thermal and mechanical e''iciencies o' 

    04/087 and 2019/4089, resecti%el&0 As comared ?ith the C1 (see "ale 9)

    these %alues are rather modest0 Ho?e%er, note that the C4 accounts 'or the ractical

    constrains introduced & the e>isting C comonents0

    "he C4 allo?s assessing the thermal and mechanical e''iciencies o' a short term

    C rotot&e0 "he results 'ound demonstrate that 'uture C rotot&es reuire

    imro%ed e%aorator designs and e>ander de%ices allo?ing 'or higher e%aorating

     ressures0

    "he oeration o' the e%aorator at higher ressure allo?s increasing the C 'irst

    and second la? e''iciencies and ermits reducing the temerature di''erences across the

    heat e>changer sur'aces, ?hich minimiNe the 'ilm oiling e''ect in ?hich rates o' heat

    trans'er 'all sharl& 47F0

    44

  • 8/9/2019 Art Antonio

    34/56

    "he oen literature e.g., 9/., 17F generall& anal&sis the ma>imum @H otential

    o' a C 'itted to the %ehicle e>haust0 !n the resent stud& the ma>imum @H otential

    ?as e%aluated through the C10 "he !CE thermal e''iciencies otained in this stud& 'or 

    the C1 are in agreement ?ith those resented & Oamada and Mohamad .F, ?ho

    reorted increases in thermal e''iciencies o' 20./409, as comared ?ith 10-/4072

    in this stud& (see "ale 9)0 !n regard to the increase in %ehicle mechanical e''icienc&

    ('uel econom&), aLa and Kamarotta 9F reorted %alues around 12, as comared

    ?ith 1013/170.7 in this stud& (see "ale 9)0 Srini%asan et al0 8F e>amined the

    e>haust ?aste heat reco%er& otential o' a high e''icienc&, lo? emissions, dual/'uel, lo?

    temerature comustion engine using an =C0 "heir results sho?ed that %ehicle

    mechanical e''icienc& imro%ed & an a%erage o' 9 'or all inLection timings and loads

    ?ith hot EK0 changer model0 Both models used as

    inut, e>erimental data otained in a %ehicle tested on a chassis d&namometer0 "he

    thermod&namic anal&sis ?as er'ormed 'or ?ater, 124 and 2-7'a and re%ealed the

    ad%antage o' using ?ater as the ?oring 'luid in alications o' thermal reco%er& 'rom

    e>haust gases o' %ehicles euied ?ith a sar/ignition engine0 Moreo%er, the heat

    e>changer e''ecti%eness 'or the organic ?oring 'luids 124 and 2-7'a is higher than

    that 'or the ?ater and, conseuentl&, the& can also e considered aroriate 'or use in

    4-

  • 8/9/2019 Art Antonio

    35/56

    %ehicle @H alications through Cs ?hen the e>haust gas temeratures are

    relati%el& lo?0

    changer the simulations re%ealed increases in !CE thermal

    e''icienc& and %ehicle mechanical e''icienc& o' 10-/4072 and 1013/170.7,

    resecti%el&, ?hile 'or a shell and tue heat e>changer, the simulations sho?ed an

    increase o' 087/102 in the thermal e''icienc& and an increase o' 203-/30.3 in the

    mechanical e''icienc& 'or an e%aorating ressure o' 2 M+a0 Ho?e%er, it is imortant to

    note that the thermal and mechanical e''iciencies can e enhanced ?ith the increase in

    the e%aorating ressure o' the ?oring 'luid0

    "he resent anal&sis con'irms that Cs ha%e high otential 'or %ehicle e>haust

    ?aste heat reco%er&0 Ho?e%er, imro%ed e%aorator designs and aroriate e>ander 

    de%ices allo?ing 'or higher e%aorating ressures are reuired to otain the ma>imum

    @H otential 'rom %ehicle C s&stems0 Considering increasing 'uel rices and

    en%ironmental issues, this technolog& ?ill ermit to achie%e 'urther reductions in engine

    seci'ic 'uel consumtion and C=2 seci'ic emissions0

    47

  • 8/9/2019 Art Antonio

    36/56

    -& References

    1F Iatsanos C=, Hountalas D", +ariotis EK0 "hermod&namics anal&sis o' a anine

    c&cle alied on a diesel truc engine using steam and organic medium0 Energ&

    Con%ersion and Management 212:3:38/930

    2F @ang ", Xhang O, +eng X, Shu K0 A re%ie? o' researches on thermal e>haust heat

    reco%er& ?ith anine c&cle0 ene?ale and Sustainale Energ& e%ie?s

    211:1752832/910

    4F He M, Xhang Y, Xeng I, Kao I0 A comined thermod&namic c&cle used 'or ?aste

    heat reco%er& o' internal comustion engine0 Energ& 211:4353821/.0

    -F Ou C, Chau I"0 "hermoelectric automoti%e ?aste heat energ& reco%er& using

    ma>imum o?er oint tracing0 Energ& Con%ersion and Management

    2.:75173/120

    7F @ang EH, Xhang HK, haust and coolant heat

    reco%er& through organic anine c&cles0 !nternational ournal o' H&drogen

    Energ& 211:435127.1/30

    9F aLa !, Kamarotta A0 !nternal comustion engine (!CE) ottoming ?ith organic

    anine c&cles (=Cs)0 Energ& 21:47518-/.40

    8F Srini%asan II, Mago +, Irishnan S0 Anal&sis o' e>haust ?aste heat reco%er&

    'rom a dual 'uel lo? temerature comustion engine using an organic anine

    c&cle0 Energ& 21:4752489/..0

    43

  • 8/9/2019 Art Antonio

    37/56

    .F Oamada J, Mohamad MJA0 E''icienc& o' h&drogen internal comustion engine

    comined ?ith oen steam anine c&cle reco%ering ?ater and ?aste heat0

    !nternational ournal o' H&drogen Energ& 21:4751-4/-20

    1F Miller E@, Hendrics ", +eterson B0 Modeling energ& reco%er& using

    thermoelectric con%ersion integrated ?ith an organic anine ottoming c&cle0

    ournal o' Electronic Materials 2.:485123/140

    11F Saleh B, Ioglauer K, @endland M, haust gas heat e>changer 'or truc alications ?ith

    con%entional and state o' the art heat trans'er enhancements0 Alied "hermal

    Engineering 21:45.47/-90

    19F emmon E@, Mcinden M=, Huer M0 J!S" re'erence 'luid thermod&namic

    and transort roerties / E

  • 8/9/2019 Art Antonio

    38/56

    1.F Cengel OA, Boles MA0 "hermod&namics an engineering aroach0 3th ed0

    ondon5 McKra?/Hill: 280

    2F @ei D, u Y, $ X, Ku 0 +er'ormance anal&sis and otimiNation o' organic

    anine c&cle (=C) 'or ?aste heat reco%er&0 Energ& Con%ersion and Management

    29:-851114/111.0

    21F Mago +, Chamra M, Srini%asan I, Soma&aLi C0 An e>amination o' regenerati%e

    organic anine c&cles using dr& 'luids0 Alied "hermal Engineering

    28:285..8/190

    22F @ang EH, Xhang HK, Xhao O,

  • 8/9/2019 Art Antonio

    39/56

    28F iming ian Y0 Heat reco%er& 'rom internal comustion

    engine ?ith anine c&cle: 210 +roceedings o' +o?er and Energ& Engineering

    Con'erence, 0 1/-, March 28/41, 21, Chengdu, China0

    2.F Hussain Z, Brigham D0 =rganic anine c&cle 'or light dut& assenger %ehicles0

    Directions in Engine/E''icienc& and Emissions esearch (DEE) Con'erence:

    2110 +resentation a%alaile at

    htt5GG???10eere0energ&0go%G%ehiclesand'uelsGd'sGdeer\211G?ednesda&Gresentat

    ionsGdeer11\hussain0d' , =ctoer 4/3, 211, Detroit, Michigan, $SA0

    4F !ncroera

  • 8/9/2019 Art Antonio

    40/56

    .igure captions

    .igure %0 Schematic o' a simle C0

    .igure (0  Schematic o' a t&ical C ?aste heat reco%er& s&stem 'rom !CE e>haust

    gases0

    .igure )0 T-s rocess diagrams0 a) @ater, ) 124 and c) 2-7'a0

    .igure *0 Schematic o' the T-   Q́  diagram used 'or the inch/oint anal&sis in the C

    heat e>changer0

    .igure +0 Algorithm 'or the C thermod&namic model0

    .igure ,0 "hermal and h&draulic characteristics o' the e>haust gases as a 'unction o' the

    numer o' tues in the e%aorator 'or di''erent cross 'lo? geometries0 a) e,

     ) Ju, c) h, d) ε , e) β , ') W p0

    .igure -0 "he three Nones o' the heat e>changer considered 'or modeling uroses0

    .igure /0 Algorithm 'or the heat e>changer model0

    .igure 00 C e''icienc& as a 'unction o' the e%aorating ressure 'or the ?oring 'luids

    studied0

    .igure %10 "urine outletGinlet e>ansion ratio (v-Gv4) as a 'unction o' the e%aorating

     ressure 'or the ?oring 'luids studied0

    .igure %%0 @oring 'luid mass 'lo? rate as a 'unction o' the e%aorating ressure 'or 

    the ?oring 'luids studied0

    .igure %(0  C net o?er outut as a 'unction o' the e%aorating ressure 'or the

    ?oring 'luids studied0

    .igure %)0  C e%aorator e>erg& destruction rate as a 'unction o' the e%aorating

     ressure 'or the ?oring 'luids studied0

    .igure %*0 C e%aorator e>erg& e''icienc& as a 'unction o' the e%aorating ressure

    'or the ?oring 'luids studied0

    -

  • 8/9/2019 Art Antonio

    41/56

  • 8/9/2019 Art Antonio

    42/56

    2ale %0 ehicle test conditions0

    =erating

    condition

     ( ["pm]

     7 [ ( ]

    89E¿̄¿

    6 [&m/h]

     *e[&W ]

    ḿg[g /s ]

    g ,∈¿T ¿

    [ '  ]

    Q́available[&W ]

    1 2 1208 940. 3024

    2 2 7 0.1 4109 -023 190 9.0 .0-9

    4 2 1 1097 401 8018 210 82.09 12091

    - 2 17 2047 2303 10.3 240. 8709 1709

    7 2 2 2098 2407 120.3 270. 83802 1308.

    3 4 1904 8904 10

    9 4 7 0.8 702 3088 2708 8.90. 19099

    8 4 1 10.7 -.09 14039 4107 .4.03 2404-

    . 4 17 2087 -802 1.0.9 490. .3809 2.0-9

    1 4 2 4099 -902 2304. -40 .8.08 4-07.

    11 - 270- 83.0- 1303

    12 - 1 10.8 390 180-7 -40 1108 47027

    14 - 2 40.8 390 49019 7.09 17204 72081

    2ale (0 Euations used to calculate the e>haust gas roerties (a)0

    Seci'ic heat caacit&

    g/1 I /1F  c

     pg=956.0+0.3386 ∙ T 

    g−2.476010

    −5∙ T 

    g

    2

    D&namic %iscosit&

    J s m/2F  μg=10

    −60 (3.807+4.731010−2∙ T g−9.945010

    −6∙T g

    2 )

    +randtl numer    *"=0.774+1.387010−4

    ∙T g+1.863010−7

    ∙ T g2+7.695010

    −11∙T g

    3

    "hermal conducti%it&

    @ m/1 I /1F  & g=10

    −30 (4.643+6.493010−2 ∙T g )

    Densit& g m/4F   ρg=1.665−2.404010−3

    ∙ T g+1.121010−6

    ∙T g2

    (a)"he euations are %alid 'or 400:T g:1200 '  0

    -2

  • 8/9/2019 Art Antonio

    43/56

    2ale )0 Main thermoh&sical roerties o' the ?oring 'luids studied (124, 2-7'a

    and ?ater)0

    @oring'luid

    Categor& p

    c"

    [ 9*a ]

    T c"

    [ '  ]

     Jormal oiling

    temerature[℃ ]

     pcond, T   424 I 

    ¿̄¿

    Sloe o' thesaturation %aor line

    @ater / 2203 9-30.7 1 0124 Jegati%e

    124 HCander e''icienc&, ηt  6G/ 1 6G/ 13

    +um e''icienc&, η p 6G/ 1 6G/ 01

    @ater e%aorating

     ressure, pe%a6G/ 01 ar 6G/ 1

    @ater condensation

     ressure, pcond6G/ 01 ar /G6 -

    =rganic 'luids e%aorating

    temerature, T e%a6G/ 1 PC 6G/ 7

    =rganic 'luidscondensation temerature,

    T cond

    6G/ 1 PC /G6 .

    2ale +0 Main characteristics o' e%aorators 1 and 20

    Characteristic E%aorator 1 E%aorator 2

     Jumer o' tues,  ( t  -4 48

    "ues diameter, ! i  (m) 01 03

    Distance et?een tues, δ   (m)(a)

    0- 02

    "ues length,  +  (m) 07 09

    "hicness, e  (mm) 07

    E>ternal diameter, !e$t   (m) 011

    (a) "ues in an euidistant he>agonal arrangement0

    -4

  • 8/9/2019 Art Antonio

    44/56

    2ale ,0 Heat e>changer characteristics 'or e%aorators 1 and 2 (oerating condition 14,

    see "ale 1)0

    E%aorator @oring

    'luid

    "hermal resistance,

    1#-

     I @/1F

    Area

    m2F

    =%erall heat trans'er 

    coe''icient,U  @ m/2 0I /1F

    1

    @ater 029

    0397

    7707

    124 04. 480-

    2-7'a 04- -403.

    2 @ater 02- 071 97019

    2ale -0 !ncrease in the !CE thermal and %ehicle mechanical e''iciencies 'or the three

    Cs studied0

    C@oring

    'luid

    !ncrease o' thermal e''icienc& F !ncrease o' mechanical e''icienc& F

    (4) (.) (14) (4) (.) (14)

    1

    @ater 2011 20.8 4072 1702- 170.7 170.-

    124 1099 2071 20.9 12084 140-4 140-4

    2-7'a 10- 10.. 2047 1013 103- 1034

    2

    @ater 043 0.3 102 203- 701- 70-1

    124 0.3 1017 1017 30.3 3017 7024

    2-7'a 087 104 103 3018 7074 -09.

    4 @ater 04 092 087 2019 4084 4089

    --

  • 8/9/2019 Art Antonio

    45/56

    Heat exchanger 

    Turbine

    Condenser Pump

    Qin

    Qout

    W t

    W p

    (2)

    (3)

    (4)

    .igure %0 Schematic o' a simle C0

    Heat exchanger 

    Condenser 

    PumpTurbine

    TWC

    Generator 

     Air 

     Air + ue!

    "xhaust gases

    2 3

    4#

    .igure (0 Schematic o' a t&ical C ?aste heat reco%er& s&stem 'rom !CE e>haust

    gases0

    -7

  • 8/9/2019 Art Antonio

    46/56

          T

       (   $   )

          T

       (   $   )

          T

       (   $   )

    2%%

    3%%

    4%%

    &%%

    '%%

    %%

    %%

    '%% %% #%%% #2%% #4%% #'%% #%%

    s (*,g$)

    2%%

    3%%

    4%%

    &%%

    '%%

    %%

    %%

    '%% %% #%%% #2%% #4%% #'%% #%% 2%%%

    b) -#23

    a) Water 

    c) -24&a

    % #%%% 2%%% 3%%% 4%%% &%%% '%%% %%% %%% .%%%2%%

    3%%

    4%%

    &%%

    '%%

    %%

    %%

    .%%

    #%%%

    /dea!-ea!

    .igure )0 T-s rocess diagrams0 a) @ater, ) 124 and c) 2-7'a0

    -3

  • 8/9/2019 Art Antonio

    47/56

    Wor,ing !uid

          T

       (   $   )

    Q (,W)

    T g0out

    T g0pp

    T 2x

    T g0in

    T 2

    T 3

    1T pp

    .igure *0 Schematic o' the T-   Q́  diagram used 'or the inch/oint anal&sis in the C

    heat e>changer0

    -9

  • 8/9/2019 Art Antonio

    48/56

    /nput ariab!es

    Thermodnamicconditions

    !o5 ba!ance ineaporator 

    or eachexperimenta!condiction

    Ca!cu!ateeicienc andthermophsics

    properties

    Ca!cu!ate po5er output and

    5or,ing !uid !o5

    6ho5 resu!ts

    or eacheaporatingpressure

    7atabaseinterace

    -eprop .8%

    Wor,ing !uid0

    T cond0 pcrit

    .igure +0 Algorithm 'or the C thermod&namic model0

    -8

  • 8/9/2019 Art Antonio

    49/56

    #% 2% 3% 4% &% '% % % .% #%%

    N t   N t

    #% 2% 3% 4% &% '% % % .% #%%

    #% 2% 3% 4% &% '% % % .% #%% #% 2% 3% 4% &% '% % % .% #%%

    #% 2% 3% 4% &% '% % % .% #%% #% 2% 3% 4% &% '% % % .% #%%

    %

    &%%%

    #%%%%

    #&%%%

    2%%%%

    2&%%%

    3%%%%

       -  e

    '%

    %

    %

    .%

    #%%

    ##%

    #2%

          h   (   W   m

      9   2    $

      9   #   )

       (   :   )

       (  m   2   m

      9   3   )

    &%

    #%%

    #&%

    2%%

    2&%

    3%%

    %

    #%

    2%

    3%

    4%

    &%

    '%

    %

       ;  u

    #%

    2%

    3%

    4%

    &%

    '%

    %

    %

    .%

    #%%

    %

    %8&

    #

       (  x   #   %

       &   P  a   )

    #8&

    a)   b)

    c)   d)

    e)   f)

    6

  • 8/9/2019 Art Antonio

    50/56

    "aporating=one

    Preheating=one

    6uperheating=one

    T 2

    T g0out   T g0pp   T g0pp2   T g0in

    T 3T 3x

    .igure -0 "he three Nones o' the heat e>changer considered 'or modeling uroses0

    7

  • 8/9/2019 Art Antonio

    51/56

    -esu!ts o thethermodnamic

    mode!

    /nterace 5ith-eprop .8%

    -ununti!

    conergence

    7einegeometrica!

    characteristics

    /nitia! conditions>

    temperature and!enght

    or each sub9component

    "xhaust gascharacteristics

    -epeatca!cu!ations

    or eachsub9component

    9;?T method

    Ca!cu!ate!o5 ba!ance

    or eachsub9component

    Ca!cu!ate

    exhaust gasestemperature andsub9component

    !enght

    Ca!cu!ateheat exchanger 

    po5er outputand eicienc

    .igure /0 Algorithm 'or the heat e>changer model0

    71

  • 8/9/2019 Art Antonio

    52/56

    %

    %8%2

    %8%4

    %8%'

    %8%

    %8#

    %8#2

    %8#4

    %8#'

    %8#

    %82

    % # 2 3 4 &"aporating pressure (@Pa)

    Water -#23-24&a

    .igure 00 C e''icienc& as a 'unction o' the e%aorating ressure 'or the ?oring 'luids

    studied0

    %

    &

    #%

    #&

    2%

    2&

    3%

        v   4   +    v   3

    % # 2 3 4 &

    "aporating pressure (@Pa)

    Water -#23-24&a

    .igure %10 "urine outletGinlet e>ansion ratio (v-Gv4) as a 'unction o' the e%aorating

     ressure 'or the ?oring 'luids studied0

    72

  • 8/9/2019 Art Antonio

    53/56

       W  o  r   ,   i  n  g      !  u   i   d      !  o  5   (   ,  g   +  s   )

    "aporating pressure (@Pa)

    %

    %8%&

    %8#

    %8#&

    %82

    %82&

    % # 2 3 4 &

    Water -#23-24&a

    Ap8 condition #3Ap8 condition .Ap8 condition 3

    .igure %%0 @oring 'luid mass 'lo? rate as a 'unction o' the e%aorating ressure 'or 

    the ?oring 'luids studied0

       ;

      e   t  p  o  5  e  r  o  u   t  p  u   t   (   ,   W   )

    "aporating pressure (@Pa)% # 2 3 4 &

    %

    #

    2

    3

    4

    &

    '

    Water -#23-24&a

    p8 condition #3p8 condition .p8 condition 3

    .igure %(0 C net o?er outut as a 'unction o' the e%aorating ressure 'or the

    ?oring 'luids studied0

    74

  • 8/9/2019 Art Antonio

    54/56

    "aporating pressure (@Pa)

       "  x  e  r  g     d  e  s   t  r  u  c   t   i  o  n  r  a   t  e   (   ,   W   )

    3

    4

    &

    '

    .

    #%

    ##

    % # 2 3 4 &

    Water0 op8 condition .-#230 op8 condition .-24&a0 op8 condition .

    .igure %)& C e%aorator e>erg& destruction rate as a 'unction o' the e%aorating

     ressure 'or the ?oring 'luids studied0

    "aporating pressure (@Pa)

    % # 2 3 4 &

       "

        a  p  o  r  a   t  o  r  e  x  e  r  g    e         i  c   i  e  n  c     (  B   )

    %8%&

    %8#

    %8#&

    %82

    %82&

    %83

    %83&

    %84

    %84&

    Water0 op8 condition .

    -#230 op8 condition .-24&a0 op8 condition .

    .igure %*& C e%aorator e>erg& e''icienc& as a 'unction o' the e%aorating ressure

    'or the ?oring 'luids studied0

    7-

  • 8/9/2019 Art Antonio

    55/56

       W  o  r   ,   i  n  g      !  u   i   d      !  o  5   (   ,

      g   +  s   )

    "aporating pressure (@Pa)

    %8& # #8& 2 28& 3 38&%

    %8%2

    %8%4

    %8%'

    %8%

    %8#

    %8#2

    %8#4

    Water -#23-24&a

    p8 condition #3p8 condition .p8 condition 3

    .igure %+0 @oring 'luid mass 'lo? rate as a 'unction o' the e%aorating ressure 'or 

    the ?oring 'luids studied using e%aorator 10

    %

    #%2%

    3%

    4%

    &%

    '%

    %

    %.%

    #%%

       (   :   )

    %8& # #8& 2 28& 3 38&

    "aporating pressure (@Pa)

    Water 

    -#23-24&a

    p8 condition #3

    p8 condition .p8 condition 3

    .igure %,0 Heat e>changer e''ecti%eness as a 'unction o' the e%aorating ressure 'or 

    the ?oring 'luids studied using e%aorator 10

    77

  • 8/9/2019 Art Antonio

    56/56

    # #8& 2 28& 3 38&"aporating pressure (@Pa)

       ;  e   t  p  o  5  e  r  o  u   t  p  u   t   (   ,   W   )

    %8&%

    %8&

    #

    #8&

    2

    28&

    3

    Water -#23-24&a

    p8 condition #3p8 condition .p8 condition 3

    .igure %-0 C net o?er outut as a 'unction o' the e%aorating ressure 'or the

    ?oring 'luids studied using e%aorator 10